
  

Abstract—We present an alternative method to the use of 
overlapping as a distance measure in simple Lesk algorithm. 
This paper presents an algorithm that uses Alpha-Beta 
associative memory type Max and Min to measure a given 
ambiguous word’s meaning in relation to its context, assigning to 
the word the meaning that is most related. The principal 
advantage of using this algorithm is the ability to deal with 
inflectional and derivational forms of words, enabling the 
possibility of bypassing the stemming procedure of words 
involved in the disambiguation process. Different experiments 
were performed, with two parameters as variables: the context 
window size, and whether stemming was applied or not. The 
experimental results (F1-score) show that our algorithm 
performs better than the use of the overlapped metric in the 
simple Lesk algorithm. Moreover, the experiments show that as 
more information is added to the sense or meaning, and the 
overlap metric is used, the precision of the simple Lesk algorithm 
is decreased-in contrast to the performance of our algorithm. 

Index Terms—Word sense disambiguation, simple Lesk 
algorithm, Alpha-Beta associative memories. 

I. INTRODUCTION 
ATURAL Language Processing (NLP) is a 
multidisciplinary area of research, in which the main 

objective is to develop theories, algorithms, and technologies 
that enable and strengthen communication between computers 
and humans using languages that have naturally evolved in 
human societies (e.g., English, Spanish, French, among 
others.) instead of the constructed, formal languages that have 
been employed to program computers. Examples of NLP 
applications include knowledge management and discovery, 
information retrieval, question answering, and machine 
translation [1]. 

One of the biggest obstacles to human-computer interaction 
is the prevalence of homonyms in many natural languages 
(i.e. words that are said or spelled the same way but have 
different meanings). For example, the word “bass” can refer 
to a musical instrument, or a freshwater fish. In general, 
humans are very good at figuring out the meaning of 
ambiguous words; however, the automatic disambiguation of 
words remains a difficult task for computers. 
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Word sense disambiguation (WSD) is one of the central 
topics of NLP [2]. WSD consists of automatically finding the 
correct meaning of an ambiguous word in a text, simply by 
analyzing the context in which it exists. Current WSD 
methods can be classified into four categories [3]: supervised, 
unsupervised, semi-supervised, and knowledge-based.  

Supervised methods are characterized by the employment 
of machine-learning techniques, for the purpose of creating 
classification models based on a training set of hand-labeled 
corpus that indicates the correct meaning of each ambiguous 
word in a text.  Unsupervised methods do not rely on training; 
instead, they attempt to provide sense (i.e. meaning) labels by 
generating clusters of word occurrences.  Semi-supervised 
methods start with a small hand-labeled training set, and 
progressively improve the classification model, as it is used. 
Knowledge-based methods make use of knowledge sources 
such as collocations, thesauri, and dictionaries to assign a 
sense to an ambiguous word, first by comparing each of its 
possible definitions with those of other words in the context, 
and then computing a semantic similarity metric of the 
definitions. 

Knowledge-based methods have recently been proven to 
outperform supervised approaches in the presence of enough 
knowledge, or within a knowledge-based domain, while 
providing at the same time much wider coverage [4]. 

One of the main challenges of using a dictionary for 
knowledge-based WSD methods is that the words in the 
dictionary may be in different forms (e.g., verb, plural, root, 
etc.), making it difficult to determine the degree of overlap 
between a word and its respective meanings in the dictionary. 
To overcome this problem, many of the knowledge-based 
methods incorporate a stemming step in their algorithms, 
which consist of reducing inflected (or sometimes derived) 
words to their word stem, base, or root form. 

On the other hand, an associative memory is a 
computational tool that consists of structures that relate one or 
more input patterns with an output pattern [5]. One of the 
foremost properties and fundamental purposes of associative 
memories is their ability to recall output patterns, despite 
possible alterations or noise present in input patterns [6]. 
Associative memories eliminate the exhaustive search 
operations common in indexed memory, and therefore are 
very attractive in applications such as data mining and the 
implementation of sets, where the computations can benefit 
from the application’s specific functioning [7]. 
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Associative memory has been an active topic of research 
for more than 50 years, and is still investigated both in 
neuroscience and in artificial neural networks [8]. In 
particular, Alpha-Beta associative memories have been 
proven to be a powerful tool for pattern recognition tasks 
when used in various scientific and technologic applications, 
such as the classification of patterns in bioinformatics 
databases [1], prediction of contaminant levels [10], image 
encryption [11], and translation of Spanish to English [5]. 

In this paper, we present a method that employs Alpha-Beta 
associative memory types Max and Min to determine how 
related each definition of a word is to its context, and then 
choose the correct definition or sense. Our method was tested 
using the dataset for the SENSEVAL-2 “All-words” task, 
with WordNet as the lexical resource. Six different 
experiments were made, four of them not using a back-off 
strategy and the remaining two, using it. A back-off strategy is 
an alternative method that takes a decision when the principal 
method cannot; the most common strategies used in WSD are: 
random sense, and most frequent sense. For our purposes we 
use random sense, because is considered an unsupervised 
method. 

Moreover, to measure the performance of the six different 
experiments, three statistical metrics were used: precision, 
recall, and F1-score. All of them were used when our method 
does not implement a back-off strategy, conversely, when it 
was used, we only report the F1-score. The latter given that, 
when a method always take a decision (i.e. the coverage is 
one hundred percent), the precision, recall, and F1-score are 
the same. 

The rest of the paper is organized as follows: Section II 
presents the background and related work of simplified Lesk 
and Alpha-Beta associative memories. Section III presents our 
proposed method to replace overlapped metric. Section IV 
describes the experimental resources and results, and in 
Section V, conclusions derived from the experimental analysis 
are presented. 

II. BACKGROUND AND RELATED WORK 

A. Simplified Lesk Algorithm 
One of the most popular knowledge-based methods for 

WSD is the Lesk algorithm [12], which is based on the 
assumption that words occurring in a given section of text will 
tend to share a common topic. This method consists of 
obtaining definitions in a dictionary for each word in a given 
text, and computes the relatedness between all those 
definitions.  The definitions with the greatest relatedness are 
chosen as the correct senses of the words. 

Since the Lesk algorithm may be computationally 
expensive, a simple Lesk algorithm was proposed [13]. In this 
method, the meaning of a word is determined by locating the 
sense that overlaps the most between the definition of the 
word in a dictionary, and neighboring words (context) of the 
ambiguous word. In this approach, each word is processed 

individually and independently of the meaning of other words 
occurring in the same context. 

B. Alpha-Beta Associative Memories 
An associative memory is conceived as a system that 

associates an input pattern (x) with an output pattern (y), 
through a series of steps known as the learning phase building 
matrix (M); on the contrary, to retrieve the input’s 
corresponding output pattern, we present the input pattern to 
the matrix according to the recall phase. The k-th associations 
are stored in the matrix (M) and its ij-th component is denoted 
by mij. 

The associative memory M is built from a finite set of pre-
associated patterns, known as the fundamental set, and is 
expressed as follows: 

 { (𝑥𝑥𝜇𝜇 ,𝑦𝑦𝜇𝜇) | 𝜇𝜇 = 1,2, … , 𝑝𝑝 } (1) 

p being the cardinality of the fundamental set. Each pattern in 
the fundamental set is called a fundamental pattern. 

There are two categories for an associative memory: if it 
holds for all fundamental patterns that the input and output 
patterns to be associated are equals, then the memory M is 
auto-associative, i.e. 𝑥𝑥𝜇𝜇 = 𝑦𝑦𝜇𝜇   ∀µ ∈ {1, 2, ..., p}. Otherwise, 
if there exists one association where the input pattern is 
different from the output pattern, then the memory M is called 
hetero- associative i.e. ∃μ ∈ {1, 2, ..., p}, for which  𝑥𝑥𝜇𝜇 ≠ 𝑦𝑦𝜇𝜇. 

One of the most important characteristics of an associative 
memory is its ability to deal with a distortion or altered 
version of the input vectors. It is expected that, if an altered 
fundamental input vector (𝑥𝑥�k) is presented to the associative 
memory, then the fundamental output pattern 𝑦𝑦𝑘𝑘  is recalled. 
When this happens, we say that the recall is correct. 

According to [14], the Alpha-Beta model presents two 
binary operators designed specifically for these memories. 
First, we defined the sets A = {0, 1} and B = {0, 1, 2}, and 
operators α and β are defined in table 1. The sets A and B, the 
α and β operators (see Table I), along with the usual ∧ 
(minimum) and ∨ (maximum) operators, form the algebraic 
system (A, B, α, β, ∧, ∨) which is the mathematical basis for 
the Alpha-Beta associative memories. This system presents 
two types of memories: Alpha-Beta associative memory types 
Max and Min; its name, functionality, and capacity to deal 
with altered patterns depend on the use of minimum or 
maximum operators in both learning and recalling phases. 

The building of both Max and Min associative memories is 
denoted by the operator ⊠, which is defined in Equation 2: 

 [𝑦𝑦𝜇𝜇 ⊠ (𝑥𝑥𝜇𝜇)𝑡𝑡]𝑖𝑖𝑖𝑖 = 𝛼𝛼�𝑦𝑦𝑖𝑖
𝜇𝜇 , 𝑥𝑥𝑖𝑖

𝜇𝜇�; 
 𝜇𝜇 ∈ {1,2, … , 𝑝𝑝}, 𝑖𝑖 ∈ {1,2, … ,𝑚𝑚}, 𝑗𝑗 ∈ {1,2, … ,𝑛𝑛} (2) 

C. Alpha-Beta Heteroassociative Memories with correct 
recall  

Alpha-Beta heteroassociative memories, unlike the 
original [14] model and others [15], guarantee the correct 
recall of the fundamental set [16]. In the following sections, 
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we present the Alpha-Beta heteroassociative memory types 
Max and Min, with which the complete recall of the 
fundamental set is guaranteed [16]. 

 
Let A = {0,1}, n, p ∈ Z+, μ ∈ {1, 2, ..., p}, i ∈ {1, 2, ..., p} 

and j ∈ {1, 2, ..., n}, and let x ∈ An and y ∈ Ap be input and 
output vectors, respectively. The corresponding fundamental 
set is denoted by {(xμ , yμ) | μ = 1, 2, ..., p}. 

C.1. Alpha-Beta Heteroassociative Memories type Max 

Learning phase  
The fundamental set must be built according to the 

following rules: first, all y vectors must be built according to 
the one-hot codification, assigning for yμ  the following  
values:  𝑦𝑦𝑘𝑘

𝜇𝜇 = 1, and 𝑦𝑦𝑘𝑘
𝜇𝜇 = 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 ∈ {1,2, . . . , 𝑘𝑘 − 1, 𝑘𝑘 +

1, . . . ,𝑚𝑚} where 𝑘𝑘 ∈ {1,2,3, . . .𝑚𝑚}. Second, each yμ vector 
must correspond to one and only one xμ vector, this is, both 
vectors must belong to only one binary tuple (xμ, yμ) in the 
fundamental set. 

Step 1: For each 𝜇𝜇 ∈ {1,2, … , 𝑝𝑝} from the couple (𝑥𝑥𝜇𝜇 ,𝑦𝑦𝜇𝜇), 
build the matrix: [𝑦𝑦𝜇𝜇 ⊠ (𝑥𝑥𝜇𝜇)𝑡𝑡]𝑚𝑚×𝑛𝑛 

Step 2: Apply the binary ∨ operator to the matrices obtained 
in step 1 to get the new Alpha-Beta heteroassociative 
memory. Assign Max 𝑽𝑽 as follows: 𝑽𝑽 = ⋁ [𝑦𝑦𝜇𝜇 ⊠ (𝑥𝑥𝜇𝜇)𝑡𝑡]𝑃𝑃

𝜇𝜇=1 , 
with the ij-th component given by: 

 𝑣𝑣𝑖𝑖𝑖𝑖 = ⋁ 𝛼𝛼�𝑦𝑦𝑖𝑖
𝜇𝜇 , 𝑥𝑥𝑖𝑖

𝜇𝜇�𝑃𝑃
𝜇𝜇=1  (3) 

Recalling phase 

Step 1: Present pattern 𝒙𝒙𝜔𝜔 to 𝑽𝑽, complete the ∆𝛽𝛽 operation, 
and assign the resulting vector to a vector called 𝒛𝒛𝝎𝝎: 𝒛𝒛𝝎𝝎 =
𝑽𝑽∆𝛽𝛽𝒙𝒙𝝎𝝎. The i-th component of the resulting column vector is: 

 𝒛𝒛𝒊𝒊𝜔𝜔 = ⋀ 𝛽𝛽�𝑣𝑣𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑖𝑖𝜔𝜔�𝑛𝑛
𝑖𝑖=1  (4) 

Step 2: It is necessary to build a max sum vector s according 
to Equation 5: 

 𝑠𝑠𝑖𝑖 = ∑ 𝑇𝑇𝑖𝑖𝑛𝑛
𝑖𝑖=1  (5) 

where T ∈ Bn and its components are defined as  

T𝑖𝑖 = �
1 ↔ 𝑣𝑣𝑖𝑖𝑖𝑖 = 1
0 ↔ 𝑣𝑣𝑖𝑖𝑖𝑖 ≠ 1 

∀𝑗𝑗 ∈ {1,2, … ,𝑛𝑛} 𝑎𝑎𝑛𝑛𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑖𝑖  𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝒔𝒔 ∈ 𝒁𝒁𝑝𝑝 

Therefore, the corresponding 𝒚𝒚𝝎𝝎 is given as 

 𝑦𝑦𝑖𝑖𝜔𝜔 = �1 if 𝑠𝑠𝑖𝑖 = ⋁ 𝑠𝑠𝑘𝑘  ∧  𝑧𝑧𝑖𝑖𝜔𝜔 = 1𝑘𝑘 ∈ 𝜃𝜃
0 otherwise

 (6) 

where 𝜃𝜃 = {𝑖𝑖|𝑧𝑧𝑖𝑖𝜔𝜔 = 1} with ω ∈ {1,2, … ,𝑛𝑛} 

C.2. Alpha-Beta Heteroassociative Memories type Min 

Learning phase  
The fundamental set must be built according to the 

following rules: first, all y vectors must be built according to 
the zero-hot codification, assigning for  yμ  the following  
values:  𝑦𝑦𝑘𝑘

𝜇𝜇 = 0, and 𝑦𝑦𝑘𝑘
𝜇𝜇 = 1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 ∈ {1,2, . . . , 𝑘𝑘 − 1, 𝑘𝑘 +

1, . . . ,𝑚𝑚} where 𝑘𝑘 ∈ {1,2,3, . . .𝑚𝑚}. Second, each yμ vector 
must correspond to one and only one xμ vector, this is, both 
vectors must belong to only one binary tuple (xμ, yμ) in the 
fundamental set. 

Step 1: For each 𝜇𝜇 ∈ {1,2, … , 𝑝𝑝} from the couple (𝑥𝑥𝜇𝜇 ,𝑦𝑦𝜇𝜇), 
build the matrix: [𝑦𝑦𝜇𝜇 ⊠ (𝑥𝑥𝜇𝜇)𝑡𝑡]𝑚𝑚×𝑛𝑛 

Step 2: Apply the binary ∧ operator to the matrices obtained 
in step 1, to get the new Alpha-Beta heteroassociative 
memory. Assign Min 𝜦𝜦 as follows: 𝜦𝜦 = ⋀ [𝑦𝑦𝜇𝜇 ⊠ (𝑥𝑥𝜇𝜇)𝑡𝑡]𝑃𝑃

𝜇𝜇=1 , 
with the ij-th component given by:  

 𝜆𝜆𝑖𝑖𝑖𝑖 = ⋀ 𝛼𝛼�𝑦𝑦𝑖𝑖
𝜇𝜇 , 𝑥𝑥𝑖𝑖

𝜇𝜇�𝑃𝑃
𝜇𝜇=1  (7) 

Recalling phase 

Step 1: Present pattern 𝒙𝒙𝜔𝜔 to 𝜦𝜦, finish the 𝛻𝛻𝛽𝛽 operation, and 
assign the resulting vector to a vector called 𝒛𝒛𝝎𝝎: 𝒛𝒛𝝎𝝎 = 𝜦𝜦𝛻𝛻𝛽𝛽𝒙𝒙𝝎𝝎. 
The i-th component of the resulting column vector is: 

 𝒛𝒛𝒊𝒊𝜔𝜔 = ⋀ 𝛽𝛽�𝜆𝜆𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑖𝑖𝜔𝜔�𝑛𝑛
𝑖𝑖=1  (8) 

Step 2: It is necessary to build a min sum vector r according to 
equation 9: 

 𝑓𝑓𝑖𝑖 = ∑ 𝑇𝑇𝑖𝑖𝑛𝑛
𝑖𝑖=1  (9) 

where T ∈ Bn and its components are defined as  

T𝑖𝑖 = �
1 ↔ 𝜆𝜆𝑖𝑖𝑖𝑖 = 0
0 ↔ 𝜆𝜆𝑖𝑖𝑖𝑖 ≠ 0 

∀𝑗𝑗 ∈ {1,2, … ,𝑛𝑛} 𝑎𝑎𝑛𝑛𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑖𝑖  𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝒓𝒓 ∈ 𝒁𝒁𝑝𝑝 

Therefore, the corresponding 𝒚𝒚𝝎𝝎 is given as 

 𝑦𝑦𝑖𝑖𝜔𝜔 = �0 if 𝑓𝑓𝑖𝑖 = ⋀ 𝑓𝑓𝑘𝑘  ∧  𝑧𝑧𝑖𝑖𝜔𝜔 = 0𝑘𝑘 ∈ 𝜃𝜃
1 otherwise

 (10) 

where 𝜃𝜃 = {𝑖𝑖|𝑧𝑧𝑖𝑖𝜔𝜔 = 0} with ω ∈ {1,2, … ,𝑛𝑛}. 

TABLE I 
DEFINITIONS OF THE ALPHA AND BETA OPERATORS 

 

 𝛼𝛼 ∶ 𝐴𝐴 × 𝐴𝐴 → 𝐵𝐵  
 𝑥𝑥  𝑦𝑦  𝛼𝛼 (𝑥𝑥, 𝑦𝑦)  
0 0 1 
0 1 0 
1 0 2 
1 1 1 

 

 𝛽𝛽 ∶ 𝐵𝐵 × 𝐴𝐴 → 𝐴𝐴  
 𝑥𝑥   𝑦𝑦   𝛽𝛽 (𝑥𝑥, 𝑦𝑦)  
0 0 0 
0 1 0 
1 0 0 
1 1 1 
2 0 1 
2 1 1 
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III. PROPOSED ALGORITHM 

Considering that inflectional and derivational forms of 
words affect the process of word sense disambiguation, we 
propose an algorithm that diminishes the influence of those 
syntactic phenomena present in the simple Lesk algorithm. 

The proposed method replaces the overlap method used in 
the original simple Lesk algorithm (with the use of Alpha-
Beta associative memory types Max and Min), providing one 
with the ability to deal with an altered version of the words. 
The following steps show the process of building an 
associative memory per sense (i.e. one Max and one Min). In 
the learning phase, the words in the definition of an 
ambiguous word are used as a fundamental input pattern. 
Once the memories are built, to assign a sense to an 
ambiguous word, the context words (which may be an altered 
version of any fundamental input pattern) are presented to 
each pair of memories. At the end, a voting strategy applied to 
the output patterns is used to assign a correct sense. 

For example, take the sentence, “The man plays an 
instrument in a band”. To disambiguate the word play, then: 

1. The surrounding words and definitions (glosses) are 
separated in different sets of words, one representing the 
context and the remaining sets (as many sets as there are 
meanings for the ambiguous word) corresponding to the 
senses of the ambiguous word. For this example, we only 
use the first three senses of the ambiguous word: 
C1 = {instrument, band, man} 
S1 = {game, sport, hocky, afternoon, cards} 
S2 = {act, have, effect, specified} 
S3 = {music, instrument, band, night} 

2. Due to the binary domain of associative memory 
operators, the words in the senses, and the context words, 
are mapped to their corresponding binary representation; 
for simplicity, we used the ASCII code. 

C1 = { 
c1 =  (0110100101101110011100110111010001110010011 

1010101101101011001010110111001110100), 
c2 =  (01100010011000010110111001100100), 
c3 =  (011011010110000101101110) } 

S1 = { 
x1 =  (01100111011000010110110101100101), 
x2 =  (0111001101110000011011110111001001110100), 
x3 =  (0110100001101111011000110110101101111001), 
x4 =  (0110000101100110011101000110010101110010011 

01110011011110110111101101110), 
x5 =  (0110001101100001011100100110010001110011) } 

S2 = { 
x1 =  (011000010110001101110100), 
x2 =  (01101000011000010111011001100101), 
x3 = (01100101011001100110011001100101011000110111       

0100), 
x4 = (01110011011100000110010101100011011010010110 

0110011010010110010101100100) } 

S3 = { 
x1 =  (0110110101110101011100110110100101100011), 
x2 = (01101001011011100111001101110100011100100111 

010101101101011001010110111001110100), 
x3 =  (01100010011000010110111001100100), 
x4 =  (0110111001101001011001110110100001110100) } 

3. In order to have vectors with the same dimensions, the 
missing components are filled with zeros or ones 
depending on the Alpha-Beta associative memory used, 
zeros for Max types and ones for Min types. In this 
example, we filled them with zeros. 

C1 = { 
c1 =  (0110100101101110011100110111010001110010011 

1010101101101011001010110111001110100), 
c2 =  (0110001001100001011011100110010000000000000 

0000000000000000000000000000000000000), 
c3 =  (0110110101100001011011100000000000000000000 

0000000000000000000000000000000000000) } 
S1 = { 

x1 = (01100111011000010110110101100101000000000000 
0000000000000000000000000000), 

x2 = (01110011011100000110111101110010011101000000 
0000000000000000000000000000), 

x3 = (01101000011011110110001101101011011110010000 
0000000000000000000000000000), 

x4 = (01100001011001100111010001100101011100100110 
1110011011110110111101101110), 

x5 = (01100011011000010111001001100100011100110000 
0000000000000000000000000000) } 

S2 = { 
x1 =  (0110000101100011011101000000000000000000000 

00000000000000000000000000000), 
x2 =  (0110100001100001011101100110010100000000000 

00000000000000000000000000000), 
x3 =  (0110010101100110011001100110010101100011011 

10100000000000000000000000000), 
x4 =  (0111001101110000011001010110001101101001011 

00110011010010110010101100100) } 
S3 = { 

x1 = (01101101011101010111001101101001011000110000 
000000000000000000000000000000000000), 

x2 = (01101001011011100111001101110100011100100111 
010101101101011001010110111001110100), 

x3 = (01100010011000010110111001100100000000000000 
000000000000000000000000000000000000), 

x4 = (01101110011010010110011101101000011101000000 
000000000000000000000000000000000000) } 

4. For each sense, two fundamental sets are built: one 
according to the associative memory type max (C.1), and 
one for the associative memory type Min (C.2). Each word 
in the sense is considered as a fundamental input pattern. 

Input vectors: 
Sense1 = { x1, x2, x3, x4, x5} 
Sense2 = { x1, x2, x3, x4} 
Sense3 = { x1, x2, x3, x4} 
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Output vectors for type Max: 
Sense1 = {  yMax1 = (10000)t, yMax2 = (01000)t,            

yMax3 = (00100)t, yMax4 = (00010)t,                             
yMax5 = (00001)t }  

Sense2 = {  yMax1 = (10000)t, yMax2 = (01000)t,           
yMax3 = (00100)t, yMax4 = (00010)t } 

Sense3 = {  yMax1 = (10000)t, yMax2 = (01000)t,            
yMax3 = (00100)t, yMax4 = (00010)t } 

Output vectors for type Min: 
Sense1 = {  yMin1 = (01111)t, yMin2 = (10111)t, 

yMin3 = (11011)t, yMin4 = (11101)t,  
yMin5 = (11110)t } 

Sense2 = {  yMin1
 = (0111)t, yMin2 = (1011)t,  

yMin3 = (1101)t, yMin4 = (1110)t } 

Sense3 = {  yMin1 = (01111)t, yMin2 = (10111)t,  
yMin3 = (11011)t, yMin4 = (11101)t} 

Six different fundamental sets are built, two per sense. 
Sense 1 

FSS1Max = { (x1,yMax1), (x2,yMax2), (x3,yMax3), 
(x4,yMax4), (x5,yMax5) } 

FSS1Min = { (x1,yMin1), (x2,yMin2), (x3,yMin3), 
(x4,yMin4), (x5,yMin5) } 

Sense 2 
FSS2Max = { (x1,yMax1), (x2,yMax2), (x3,yMax3), 

(x4,yMax4) } 
FSS2Min = { (x1,yMin1), (x2,yMin2), (x3,yMin3), 

(x4,yMin4) } 
Sense 3 

FSS3Max = { (x1,yMax1), (x2,yMax2), (x3,yMax3), 
(x4,yMax4) } 

FSS3Min = { (x1,yMin1), (x2,yMin2), (x3,yMin3),  
(x4,yMin4) } 

5. For each fundamental set, the corresponding associative 
memory types Max and Min are built according to step 2 
of sections C.1 and C.2of their respective learning phases. 
At the end, two associative memories have been built for 
each sense. We show the building of the matrices 
corresponding to the third sense (MMax3 and MMin3). 

Step 1: 

𝑀𝑀𝑀𝑀𝑎𝑎𝑥𝑥31 = �

1
0
0
0

�    ⊠    (0 1 1 0 1 1 0 … 0)

=   �

2 1 1 2 1 1 2 … 2
1 0 0 1 0 0 1 … 1
1 0 0 1 0 0 1 … 1
1 0 0 1 0 0 1 … 1

� 

𝑀𝑀𝑀𝑀𝑖𝑖𝑛𝑛31 = �

0
1
1
1

�    ⊠    (0 1 1 0 1 1 0 … 0)

=   �

1 0 0 1 0 0 1 … 1
2 1 1 2 1 1 2 … 2
2 1 1 2 1 1 2 … 2
2 1 1 2 1 1 2 … 2

� 

 

𝑀𝑀𝑀𝑀𝑎𝑎𝑥𝑥32 = �

0
1
0
0

�    ⊠    (0 1 1 0 1 0 0 … 0)

=   �

1 0 0 1 0 1 1 … 1
2 1 1 2 1 2 2 … 2
1 0 0 1 0 1 1 … 1
1 0 0 1 0 1 1 … 1

� 

𝑀𝑀𝑀𝑀𝑖𝑖𝑛𝑛32 = �

1
0
1
1

�     ⊠    (0 1 1 0 1 0 0 … 0)

=   �

2 1 1 2 1 2 2 … 2
1 0 0 1 0 1 1 … 1
2 1 1 2 1 2 2 … 2
2 1 1 2 1 2 2 … 2

� 

𝑀𝑀𝑀𝑀𝑎𝑎𝑥𝑥33 = �

0
0
1
0

�    ⊠    (0 1 1 0 0 0 1 … 0)

=   �

1 0 0 1 1 1 0 … 1
1 0 0 1 1 1 0 … 1
2 1 1 2 2 2 1 … 2
1 0 0 1 1 1 0 … 1

� 

𝑀𝑀𝑀𝑀𝑖𝑖𝑛𝑛33 = �

1
1
0
1

�     ⊠    (0 1 1 0 0 0 1 … 0)

=   �

2 1 1 2 2 2 1 … 2
2 1 1 2 2 2 1 … 2
1 0 0 1 1 1 0 … 1
2 1 1 2 2 2 1 … 2

� 

𝑀𝑀𝑀𝑀𝑎𝑎𝑥𝑥34 = �

0
0
0
1

�    ⊠    (0 1 1 0 1 1 1 … 0)

=   �

1 0 0 1 0 0 0 … 1
1 0 0 1 0 0 0 … 1
1 0 0 1 0 0 0 … 1
2 1 1 2 1 1 1 … 2

� 

𝑀𝑀𝑀𝑀𝑖𝑖𝑛𝑛34 = �

1
1
1
0

�     ⊠   (0 1 1 0 1 1 1 … 0)

=   �

2 1 1 2 1 1 1 … 2
2 1 1 2 1 1 1 … 2
2 1 1 2 1 1 1 … 2
1 0 0 1 0 0 0 … 1

� 

Step 2: 

𝑀𝑀𝑀𝑀𝑎𝑎𝑥𝑥3 = �

2 1 1 2 1 1 2 … 2
2 1 1 2 1 2 2 … 2
2 1 1 2 2 2 2 … 2
2 1 1 2 2 2 1 … 2

� 

𝑀𝑀𝑀𝑀𝑖𝑖𝑛𝑛3 = �

1 0 0 1 0 0 1 … 1
1 0 0 1 0 1 1 … 1
1 0 0 1 1 1 0 … 1
1 0 0 1 0 0 0 … 1

� 

The learning matrices MMax1, MMin1, MMax2, MMin2 
are computed in the same fashion. 

6. In order to assign a sense to an ambiguous word, its 
context words are presented to each pair of associative 
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memories. Given that each associative memory 
corresponds to a sense, the resulting output vectors 
represent the relation of the context word with said sense. 
In this example, we present c3 vector to the MMax3 and 
MMin3 matrices. 

Step 1 Max: 

𝑀𝑀𝑀𝑀𝑎𝑎𝑥𝑥3∆𝛽𝛽𝑐𝑐3 =     �

2 1 1 2 1 1 2 … 2
2 1 1 2 1 2 2 … 2
2 1 1 2 2 2 2 … 2
2 1 1 2 2 2 1 … 2

�∆𝛽𝛽

⎝

⎜
⎜
⎜
⎜
⎛

0
1
1
0
1
1
⋮
0⎠

⎟
⎟
⎟
⎟
⎞

= �

0
0
1
0

� 

Step 2 Max: 

𝑧𝑧3 = �

0
0
1
0

� , 𝑠𝑠 = �

23
45
14
21

� 

𝑦𝑦𝑀𝑀𝑎𝑎𝑥𝑥3 = �

0
0
1
0

� 

Step 1 Min: 

𝑀𝑀𝑀𝑀𝑖𝑖𝑛𝑛3𝛻𝛻𝛽𝛽𝑐𝑐3 =       �

1 0 0 1 0 0 1 … 1
1 0 0 1 0 1 1 … 1
1 0 0 1 1 1 0 … 1
1 0 0 1 0 0 0 … 1

�𝛻𝛻𝛽𝛽

⎝

⎜
⎜
⎜
⎜
⎛

0
1
1
0
1
1
⋮
0⎠

⎟
⎟
⎟
⎟
⎞

= �

1
1
0
1

� 

Step 2 Min: 

𝑧𝑧3 = �

1
1
0
1

� , 𝑠𝑠 = �

23
45
14
21

� 

𝑦𝑦𝑀𝑀𝑖𝑖𝑛𝑛3 = �

1
1
0
1

� 

7. To adjust the resulting output vectors, derived from the 
recall phase of the associative memory type Min (in 
correspondence to the output vectors from associative 
memory type Max), all their components are negated. This 
is, a zero value is exchanged for 1, and vice versa. 

𝑦𝑦𝑀𝑀𝑖𝑖𝑛𝑛3 = �

1
1
0
1

� → �

0
0
1
0

� 

8. For all output vectors related to each learning matrix, the 
sum of all components equal to 1 are computed (voting): 

 

 

9. The sense corresponding to the learning matrix that has the 
greatest votes is selected as the correct sense. If more than 
one sense is selected, then the method is considered unable 
to determine the sense for the ambiguous word. In this 
example, the sense selected for the ambiguous word, with 
a score of four, is the third sense. 

IV. EXPERIMENTS 

The performance of the proposed algorithm was assessed 
using a semantically annotated corpus for SENSEVAL-2 
English all-words task [17], and it was compared with results 
from the simple Lesk algorithm. 

SENSEVAL-2 is a dataset that consists of three documents 
with 2,456 words in 238 sentences. It consists of three tasks: 
1) "all-words", "lexical sample", and "translation task". Our 
comparison is extracted from performances on the "all-words" 
task. Our proposal, as with any other knowledge-based 
algorithm, uses a machine readable dictionary; in this case, we 
used WordNet. 

To measure the performance of the two algorithms, the 
statistical metrics precision, recall, and F1-score were 
employed. They are statistical measures that evaluate several 
aspects of the algorithms [18]. 

Precision indicates the fraction of retrieved instances that 
are relevant. This is determined by the number of correct 
answers, divided by the number of answers given by the 
algorithm.  

Learning 
Matrix 

Context 
vector 

Output 
vector 

Sum of 
components 

MMax1 
c1 (00000)t 0 
c2 (00000)t 0 
c3 (00000)t 0 

MMin1 
c1 (00000)t 0 
c2 (00000)t 0 
c3 (00000)t 0 

Total 0 

MMax2 
c1 (0000)t 0 
c2 (0000)t 0 
c3 (0000)t 0 

MMin2 
c1 (0000)t 0 
c2 (0000)t 0 
c3 (0000)t 0 

Total 0 

MMax3 
c1 (0100)t 1 
c2 (0010)t 1 
c3 (0000)t 0 

MMin3 
c1 (0100)t 1 
c2 (0010)t 1 
c3 (0000)t 0 

Total 4 
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Recall is the fraction of relevant instances that are retrieved, 
and is computed by the number of correct answers, divided by 
the total number of words for which there is an answer. 

F1-score is considered as a weighted average of precision 
and recall. It is determined by (2PR) / (P + R). 

Then, for each sentence in the corpus, and for each word in 
the sentence, the word to be evaluated (the ambiguous word) 
is separated from the surrounding words (context). Usually, 
the senses of each word are expressed in a dictionary 
(WordNet), as a definition or gloss. In addition to the gloss, 
there is other information that could be used as an addendum 
to increase the performance of the disambiguation algorithms. 
Examples of such information are Synonyms (Syns) and 
Hyponyms (Hypo). The former, are sets of words that have 
similar meanings, the latter is a set of more specific 
synonyms. 

Four different experiments were prepared using the 
information source mentioned before: 
1) Gloss (G): only the information of the gloss 
2) Gloss + Syns (G+S): the synonyms of the ambiguous word 
added to its own gloss. 
3) Gloss + Hypo (G+H): the hyponyms of the ambiguous 
word added to its own gloss. 
4) Gloss + Syns + Hypo (G+S+H): The gloss of the word 
added to the hyponyms and synonyms. 

V. RESULTS AND DISCUSSION  

Tables II, III, IV, and V show the results of different 
experiments, comparing our implementation of the simple 
Lesk algorithm (SL) against the proposed method (AM). The 
experiments were developed using two parameters as 
variables: context window and stemming. It is worth noting 
that the algorithms presented in these tables did not use a 
back-off strategy. 

The context window is the number of sentences used to 
disambiguate a word. The possible values for this are: one 
sentence (which is where the ambiguous word is), and three 
sentences (the sentence where the ambiguous word is, the one 
after, and the one before). There are two special cases in 
context selection: a) when the ambiguous word is in the first 
sentence, and b) when it is in the last sentence. For both cases, 
only two sentences are considered: in the first sentence, the 
window is composed using the sentence with the ambiguous 
word and its following one. For the last sentence, the context 
window is the sentence with the ambiguous word and its 
preceding one. For each configuration, precision, recall, and 
F1-score were computed. 

On the other hand, stemming represents the reduction of a 
word into a base form. This reduction could be applied (or 
not) to the context and ambiguous words before the 
disambiguation process. 

Tables II and III show the experiments using the gloss 
(table II), and gloss and synonyms (table III), as the source of 

information to form the fundamental set of associative 
memories. Both tables show that in the precision metric the 
simple Lesk algorithm performs better than our proposal in 
each experiment; this means that the simple Lesk algorithm is 
more assertive when assigning a sense to a word. However 
our proposal assigns a sense to more words, according to the 
recall results. In addition, our proposal presents better results 
as tested using F1-score metric. We can thus conclude from 
these results that: a) considering the tradeoff between 
precision and recall, our proposal performs better, and b) our 
proposal is less dependent on the stemming process, given 
that the differences between F1-score with and without 
stemming are smaller than the ones reported from using the 
simple Lesk algorithm. 

 

Table IV reports the results of when the fundamental set 
was constructed using the gloss and hyponyms. It shows that 
each metric had a better performance compared with the ones 
presented in table II and III, maintaining observed patterns. 
This is, the simple Lesk outperforms our proposal in 
precision, but our proposal performs better in recall and F1-
score. In addition, it is worth noting that the AM with a 
context window of three, without stemming, surpasses the SL 
in precision. 

Table V presents the results of when the fundamental set 
was the compound of the gloss, synonyms, and hyponyms. As 
opposed to table III and IV, which present an increased 
performance when more information was included in the 
fundamental set, table V presents a decrease in performance 

TABLE II 
RESULTS USING THE GLOSS OF THE AMBIGUOUS WORD 

 

 Context 
window Stemming Precision Recall F1-Score 

AM 1 Yes 42.11 17.56 24.78 
SL 1 Yes 53.88 10.38 17.40 
AM 1 No 49.18 15.47 23.53 
SL 1 No 55.93 7.86 13.78 
AM 3 Yes 47.86 25.34 33.13 
SL 3 Yes 56.33 17.86 27.12 
AM 3 No 53.07 22.91 32.00 
SL 3 No 55.05 13.97 22.28 

 

TABLE III 
RESULTS USING THE GLOSS AND SYNONYMS OF THE AMBIGUOUS WORD 

 

 Context 
window Stemming Precision Recall F1-Score 

AM 1 Yes 43.67 18.29 25.78 
SL 1 Yes 54.97 10.64 17.82 
AM 1 No 50.47 16.03 24.33 
SL 1 No 56.20 8.33 14.50 
AM 3 Yes 48.48 25.85 33.72 
SL 3 Yes 57.29 18.46 27.92 
AM 3 No 54.27 23.63 32.92 
SL 3 No 56.73 14.96 23.67 
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of all simple Lesk experiments in relation to table IV, whereas 
just one AM experiment shows this performance decrement. 
Moreover, as is the same as table IV, the AM presents a better 
performance in all F1-scores and presents one case where the 
AM precision is better than the simple Lesk Algorithm. 

 

Meanwhile, Table VI shows the results of different 
experiments, comparing the SL algorithm against AM using 
random sense as a back-off strategy. The F1-score was 
computed for each information source (G, G+S, G+H, 
G+S+H), using one and three sentences as context window, 
and with or without stemming. These experiments exhibit that 
the AM algorithm does not outperform the SL algorithm for 
all cases but one, when the context window size is one 
sentence, without using stemming, and "G+H" as information 
source, being the F1-score of 45.98. 

On the other hand, Table VII presents the results of the AM 
algorithm compared with two state-of-art algorithms, the 
random base line (RBL), and the simple Lesk algorithm. The 
state-of-art algorithms are: 1) a modified implementation of 
simple Lesk algorithm which instead of selecting the 
neighboring sentences as context window, it builds its own 
context by selecting the words that do overlap at least in one 
word with any gloss of the target word [19]; and 2) a word 
sense disambiguation algorithm based on Bayes' theorem 
which compute the a posteriori probabilities of the senses of a 
polysemous word, then, the sense selected for a given 
ambiguous word is that with the greater probability [20] 

(hereinafter Modified SLA and NaiveBayesSM, respectively). 
These results show that the AM performs better in three out of 
four algorithms presented, but it is below to Modified SLA 
which presents an F1-score of 47.8. 

 

VI. CONCLUSIONS AND FUTURE WORK 
Tables II to V present, among others metrics, the F1-scores 

computed for both the associative memory and the original 
simple Lesk approach. These show that the AM performs 
better than the simple Lesk algorithm in all cases. In respect to 
the precision metric, even when the simple Lesk algorithm 
performs better than our proposal, Tables IV and V show two 
cases where the associative memory approach outperforms it. 
These two cases share a context window size of three (the 
greatest size presented in this work), and the stemming 
process was not applied. From this, it may be aptly concluded 
that, in contrast to the simple Lesk algorithm, the associative 
memory approach is beneficial when more information is 
available. Furthermore, its performance is not severely 
reduced when stemming is not applied. 

On the other hand, Tables IV and V present interesting 
outcomes: it seems that, the more data entered in the simple 
Lesk algorithm for the “bag of words”, the more its precision 
was decreased. If, for both tables, the experiments that 
correspond to equal size context window –with the same 
stemming option– are compared, we notice that the simple 
Lesk algorithm has a reduced precision, if the gloss, 
synonyms, and hyponyms conform to the bag of words. 

Subsequently, Table VI show that when applying the 
random sense back-off strategy, the SL reports a greater F1-
score except for one instance. It is important to note however, 

TABLE IV 
RESULTS USING THE GLOSS AND HYPONYMS OF THE AMBIGUOUS WORD 

 

 Context 
window Stemming Precision Recall F1-Score 

AM 1 Yes 45.07 19.15 26.87 
SL 1 Yes 53.89 10.94 18.18 
AM 1 No 52.34 17.65 26.39 
SL 1 No 56.37 8.50 14.77 
AM 3 Yes 51.49 28.08 36.34 
SL 3 Yes 56.55 18.63 28.02 
AM 3 No 57.12 25.90 35.63 
SL 3 No 56.67 14.70 23.34 

TABLE V 
RESULTS USING THE GLOSS, SYNONYMS AND HYPONYMS 

 OF THE AMBIGUOUS WORD  
 

 Context 
window Stemming Precision Recall F1-Score 

AM 1 Yes 46.21 19.79 27.71 
SL 1 Yes 53.77 10.98 18.23 
AM 1 No 53.55 18.03 26.97 
SL 1 No 56.02 8.55 14.83 
AM 3 Yes 51.41 28.03 36.27 
SL 3 Yes 55.80 18.72 28.03 
AM 3 No 57.70 26.11 35.95 
SL 3 No 55.97 14.83 23.44 

 

TABLE VI 
RESULTS USING RANDOM SENSE AS A BACK-OFF STRATEGY 

 

 Context 
window Stemming G G+S G+H G+S+H 

AM 1 Yes 44.06 43.46 43.97 44.02 
SL 1 Yes 43.76 45.00 46.54 45.04 
AM 1 No 45.30 44.57 45.98 45.90 
SL 1 No 44.27 44.02 44.27 43.76 
AM 3 Yes 42.78 43.42 44.49 43.29 
SL 3 Yes 47.31 47.52 47.14 46.50 
AM 3 No 44.15 43.80 44.49 45.00 
SL 3 No 43.93 46.54 45.81 46.58 

TABLE VII 
STATE-OF-ART COMPARISON 

 

 Context 
window Stemming F1-Score 

Modified SLA 1 - 47.8 
AM 1 No 45.98 
SL 1 No 44.27 

RBL - - 41.22 
NaiveBayesSM 1 Yes 36.2 

 

50Polibits, vol. 54, 2016, pp. 43–51 https://doi.org/10.17562/PB-54-6

Sulema Torres-Ramos, Israel Román-Godínez, E. Gerardo Mendizabal-Ruiz
IS

S
N

 2395-8618



that most of the cases where the SL performs better (Table 
VI) are those where the SL without back-off strategy (Table 
V), presented a bigger F1-score difference between both 
algorithms. Therefore, it is possible to infer that when 
combining a back-off strategy with the SL algorithm, the 
smaller the F1-score, the fewer decisions are taken by it, then, 
the back-off randomly choose a sense, and, if the target word 
has a few senses, it is more likely select the correct one; 
improving the overall performance. The only instance where 
the AM comes out better is that where F1-score presents a 
shorter difference between AM and SL (Table V). 

Finally, even when random sense back-off strategy is 
combined with AM, it does not succeed over Modified SLA. 
It may be because of the words with which the context are 
built, are those that appear, at least, one time in any gloss of 
the word to disambiguate; being more likely selecting the 
correct sense when the gloss shares one word than those that 
does not. 

In future work, a search for different binary codifications 
will be made; then, their corresponding implementations will 
be tested to find the codification that best fit the 
disambiguation purposes. Another interesting approach to 
research involves changing the lexical resources 
(dictionaries), and performing a set of experiments to identify 
the advantages and disadvantages that are present in each of 
them. Also, it would be interesting to combine the context 
building strategy presented by Viveros-Jimenez et al. [19] 
with our proposal. Finally, in order to increase the response 
time of the algorithm, a CUDA implementation of our 
proposal will be made. 

In addition, on our future work we plan to explore the role 
of our WSD method in important tasks where the meaning of 
ambiguous words plays an important role, such as sentiment 
analysis [21], [22], [23], sarcasm detection [24], and textual 
entailment [25]. 
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