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Abstract—Service robotics has been growing significantly in the
last years, leading to several research results and to a number
of consumer products. One of the essential features of these
robotic platforms is represented by the ability of interacting
with users through natural language. Spoken commands can
be processed by a Spoken Language Understanding chain, in
order to obtain the desired behavior of the robot. The entry
point of such a process is represented by an Automatic Speech
Recognition (ASR) module, that provides a list of transcriptions
for a given spoken utterance. Although several well-performing
ASR engines are available off-the-shelf, they operate in a general
purpose setting. Hence, they may be not well suited in the
recognition of utterances given to robots in specific domains. In
this work, we propose a practical yet robust strategy to re-rank
lists of transcriptions. This approach improves the quality of ASR
systems in situated scenarios, i.e., the transcription of robotic
commands. The proposed method relies upon evidences derived
by a semantic grammar with semantic actions, designed to
model typical commands expressed in scenarios that are specific
to human service robotics. The outcomes obtained through
an experimental evaluation show that the approach is able to
effectively outperform the ASR baseline, obtained by selecting
the first transcription suggested by the ASR.

Index Terms—Spoken language understanding, service
robotics, re-ranking of automatic speech recognition systems.

I. INTRODUCTION

DURING the recent years, the interest of the research
community in the Robotics field has been rapidly

increasing: robotic platforms are spreading in our domestic
environments and the research on Service Robotics is
becoming a hot topic. A significant aspect in this context
is the study of the interaction between humans and robots,
especially when this communication involves non-expert users.
For this reason, natural language is a key component in
human-robot interfaces. Specifically, the task of Spoken
Language Understanding (SLU) is related to the interpretation
of spoken language commands and their mapping into actions
that can be executed by a robotic platform in the operational
environment. Hence, the input of a typical SLU process is the
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user’s speech, while the output can be either the corresponding
action or, more in general, a response. When dealing with
this problem, manifold approaches can be adopted. On the
one hand, grammar-based approaches allow the design of
systems that embed the entire process in a single stage,
from the speech recognition up to the semantic interpretation,
e.g., [1], [2], [3]. These systems rely on grammars generated
by knowledge engineers, that aim at covering the (possibly
vast) plethora of linguistic phenomena the user may be
interested into. Moreover, these grammars can be provided
with semantic attachments [4], that enable for a structured
representation of the meaning of the sentence. On the other
hand, approaches relying on statistical methods [5] alleviate
the need to explicitly encode the information required by the
NLU process, but they require training data annotated with the
targeted (linguistic) phenomena the final system is expected to
capture.

Regarding the Automatic Speech Recognition (ASR)
systems, most of the existing off-the-shelf solutions are
based on very well-performing statistical methods [6], that
enable their adoption in everyday scenarios. Nevertheless,
these tools rely on general-purpose language models and
false positives might be generated in specific scenarios.
For example, they may be optimized to transcribe queries
for a Search Engine, that are characterized by different
linguistic constructions with respect to a command for a
robot. However, it is reasonable to expect that domain-specific
scenarios provide knowledge and specific information that can
improve the performance of any off-the-shelf ASR. To this
regard, several works proposed techniques where a hybrid
combination of free-form ASRs and grammar-based ASRs
is employed to improve the overall recognition accuracy.
In these approaches, the grammar-based ASR is often used
to prune the transcriptions hypothesized by the free-form
ASR [7], [8] or to generate new training sentences [9], [10].
Nevertheless, the above approaches are subject to several
issues. In fact, as often emphasized, e.g., [11], grammar-based
approaches may lack of adequate coverage, especially in
dealing with the variability of (often ungrammatical) spoken
language, causing a high rate of failures in the recognition
of the transcription of the ASR system. On the contrary,
a highly complex grammar can improve the coverage of
the captured linguistic phenomena. However, this complexity
may introduce ambiguities. Moreover, the cost of developing
and maintaining a complex grammar may be inapplicable in
realistic applications.
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In this work, we propose an approach to increase the
robustness of an off-the-shelf free-form ASR system in the
context of Spoken Language Understanding for Human-Robot
Interaction (HRI), relying on grammars designed over specific
domains. Our target is house service robotics, with the special
purpose of understanding spoken commands. We rely here on
the semantic grammar proposed in [2]: this is modeled around
the task of interpreting commands for robots expressed in
natural language by encoding (i) the set of allowed actions that
the robot can execute, (ii) the set of entities in the environment
that should be considered by the robot and (iii) the set of
syntactic and semantic phenomena that arise in the typical
sentences of Service Robotics in domestic environment.
In [2], this grammar has been used to directly provide a
semantic interpretation of spoken utterances. However, this
interpretation requires every sentence to be entirely recognized
by this grammar: even a single word or syntactic construct
missing in the process may potentially cause the failure of the
overall process.

We propose here to adopt a grammar to improve the
robustness of an ASR system by relying on a scaling-down
strategy. First, we relax some of the grammar constraints
allowing the coverage of shallower linguistic information.
Given a grammar, we derive two lexicons designed to
recognize (i) the mention to robotic actions (ii) the mention
to entities in the environment. For each lexicon, we define a
specific cost that is inversely proportional to its correctness.
The transcriptions initially receive a cost that is inversely
proportional to the rank provided by the ASR system and,
each time one of them is recognized by the grammar or a
lexicon, the corresponding cost decreases. The more promising
transcription is the one minimizing the corresponding final
cost. The final decision thus depends on the combination of
all the costs so that, even when none of the transcriptions is
recognized by the complete grammar, their rank still depends
on the lexicons. In this way, those transcriptions that do not
refer to any known actions and/or entities are accordingly
penalized.

The proposed re-ranking strategy has been evaluated
on the Human Robot Interaction Corpus (HuRIC, [12]) a
collection of utterances semantically annotated and paired
with the corresponding audio file. This corpus is related
with the adopted semantic grammar as this has been
designed by starting from a subset of utterances contained
in HuRIC. Experimental results show that the proposed
method is effective in re-ranking the list of hypothesis of
a state-of-the-art ASR system, especially on the subset of
utterances whose transcriptions are not recognized by the
grammar, i.e., no pruning strategy is applicable.

In the rest of the paper, Section II provides an overview
of the existing approaches to improve the quality of ASR
systems. Section III presents the proposed approach and
defines individual cost factors. In Section IV an experimental
evaluation of the re-ranking strategy is provided and discussed.
Finally, Section V derives the conclusions.

II. RELATED WORK

The robustness of Automatic Speech Recognition in
domain-specific settings has been addressed in several works.
In [13], the authors propose a joint model of the speech
recognition process and language understanding task. Such
a joint model results in a re-ranking framework that aims
at modeling aspects of the two tasks at the same time.
In particular, re-ranking of n-best list of speech hypotheses
generated by one or more ASR engines is performed by taking
the NLU interpretation of these hypotheses into account.
On the contrary, the approach proposed in [14] aims at
demonstrating that perceptual information can be beneficial
even to improve the language understanding capabilities of
robots. They formalize such information through Semantic
Maps, that are supposed to synthesize the perception the robot
has of the operational environment.

Regarding the combination of free-form ASR engines and
grammar based systems, in [15] two different ASR systems
work together sequentially: the first is grammar-based and
it is constrained by the rule definitions, while the second
is a free-form ASR, that is not subject to any constraint.
This approach focuses on the acceptance of the results of the
first recognizer. In case of rejection, the second recognizer
is activated. In order to improve the accuracy of such a
decision, the authors propose an algorithm that augments the
grammar of the first recognizer with valid paths through the
language model of the second recognizer. In [7], a robust
ASR for robotic application is proposed, aiming at exploiting a
combination of a Finite State Grammar (FSG) and an n-gram
based ASR to reduce false positive detections. In particular,
a hypothesis produced by the FSG-based decoder is accepted
if it matches some hypotheses within the n-best list of the
n-gram based decoder. This approach is similar to the one
proposed in [16], where a multi-pass decoder is proposed
to overcome the limitations of single ASRs. The FSG is
used to produce the most likely hypothesis. Then, the n-gram
decoder produces an n-best list of transcriptions. Finally, if
the best hypothesis of the FSG decoder matches with at
least one transcription among the n-best, then the sentence
is accepted. A hybrid language model is proposed in [8]. It
is defined as a combination of a n-gram model, aiming at
capturing local relations between words, and a category-based
stochastic context-free grammar, where words are distributed
into categories, aiming at representing the long-term relations
between these categories. In [9], an interpretation grammar is
employed to bootstrap Statistical Language Models (SLMs)
for Dialogue Systems. In particular, this approach is used
to generate SLMs specific for a dialogue move. The models
obtained in this way can then be used in different states of a
dialogue, depending on some contextual constraints. In [17],
n-grams and FSG are integrated in one decoding process
for detecting sentences that can be generated by the FSG.
They start from the assumption that sentences of interest are
usually surrounded by carrier phrases. The n-gram is aimed at
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detecting those surrounding phrases and the FSG is activated
in the decoding-process whenever start-words of the grammar
are found.

All the above approaches can be considered complementary
to the one proposed here. However, the advantages of our
method are mainly in the simplicity of the proposed solution
and the independence of the resulting work-flow from the
adopted free-form ASR system: our aim is to define a simple
yet applicable methodology that can be usable in every robot.

III. A ROBUST DOMAIN-SPECIFIC APPROACH

In this section, we propose an approach to select the
most correct transcription among the results proposed by a
Automatic Speech Recognition (ASR) system. Given a spoken
command from the user, e.g., move to the fridge, such a system
produces a rank of possible transcriptions such as

1) move to the feet
2) more to the fridge
3) move to the fridge
4) move to the fate
5) move to the finch

In this case, the correct transcription is ranked as third. In
order to choose this sentence, we apply a cost function to the
hypotheses based on (i) the adherence to the robot grammar,
as it describes the typical commands for a robot, (ii) the
recognition of action(s) applicable/known to the robot (as for
move) and (iii) the recognition of entities, like nouns referring
to objects recognized/known to the robot, e.g., fridge. The
cost function we propose decreases along with the constraints
satisfied by the sentence, e.g., the second sentence satisfies
(iii), but not (i) and (ii) (as more is not an action); as
a consequence it results into a higher cost with respect to
the third transcription. Before discussing the cost function
as a ASR ranking methodology, we define the grammatical
framework used in this work, in line with [2].

A. Grammar-based SLU for HRI

Robots based on speech recognition grammars usually rely
on speech engines whose grammars are extended according
to conceptual primitives, generally referring to known lexical
theories such as Frame Semantics [18]. Early steps in the HRI
chain are based on ASR modules that derive a parse tree
encoding both syntactic and semantic information based on
such theory. Parse trees are based on grammar rules activated
during the recognition, and augmented by an instantiation
of the corresponding semantic frame, that corresponds to
an action the robot can execute. Compiling the suitable
robot command proceeds by visiting the tree and mapping
recognized frames into the final command.

The applied recognition grammar jointly models syntactic
and semantic phenomena that characterize the typical
sentences of HRI applications in the context of Service
Robotics. It encodes a set of imperative and descriptive
commands in a verb-arguments structure. Each verb is retained

as it directly evokes a frame, and each (syntactic) verb
argument corresponds to a semantic argument. The lexicon
of arguments is semantically characterized, as argument
fillers are constrained by one (or more) semantic types. For
example, for the semantic argument THEME of the BRINGING
frame, only the type TRANSPORTABLE OBJECTS is allowed.
As a consequence, a subset of words referring to things
transportable by the robots, e.g., can, mobile phone, bottle is
accepted. A subset of the grammar for the BRINGING frame,
covering the sentence Bring the book to the table is reported
hereafter:
Bringing → Target Theme Goal | ...
Target → bring | carry | ...
Theme → the Transportable_objects | ...
Transportable_objects → can | book | bottle | ...
Goal → ...

We will distinguish between terminals denoting entities
(such as can, book, bottle that belong to the lexicon of
TRANSPORTABLE OBJECTS) from the lexicon of possible
actions (such as bring, take or carry characterizing the
actions of the frame BRINGING) as they will give rise to
different predicates augmented with grammatical constraints.
Moreover, transcribed sentences covered by the grammar,
i.e., belonging to the grammar language, are more likely to
correspond to the intended command expressed by the user,
and should be ranked first in the ASR output.

B. A grammar-based cost model for accurate ASR ranking

A first interesting type of constraint is posed by the ASR
system itself. In fact the rank proposed by an ASR system is
usually driven by a variety of linguistic knowledge in the ASR
device. A basic notion of cost can be thus formulated ignoring
the domain of the specific grammar.

Given a spoken utterance v, let H(v) be the corresponding
list of hypotheses produced by the ASR. The size |H(v)| =
N corresponds to the number of hypotheses. Each hypothesis
h ∈ H(v) is a pair 〈s, ω(s)〉, where s is the transcription of
v, and ω(s) is a cost attached to s. Let p(s) be its position in
the ASR systems ranking. According to this cost function, the
higher is ω(s), the lower the confidence in h being the correct
transcription.

Since many off-the-shelf ASR systems do not provide the
confidence score for each transcription, in order to provide
a general solution, only the rank is taken into account: let
v be a spoken utterance and H(v) the corresponding list of
transcriptions, then, ∀s ∈ H(v) the ranking cost ωrc is defined
as follows:

ωrc(s, θ) =
p(s) + θ∑

s′∈H(v) p(s
′) + θN

(1)

where p(s) corresponds to the position (1, . . . , |H(v)|) of s in
H(v). Here θ is a smoothing parameter that enables the tuning
of the variability allowed to the final rank with respect to the
initial rank proposed by the ASR system.
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The overall cost assigned to a transcription s depends on
the ASR ranking as well as on the grammar. Let s ∈ H(v),
let ωi be a parametric cost depending on the grammar G, the
overall cost ω(s) can be defined as:

ω(s) = log
(
ωrc(s, θ)

)
+
∑
i

log
(
ωi(s, αi)

)
(2)

where the different ωi capture different aspects of the grammar
G with scores derived from the grammatical or lexical
criteria. Higher values of ωi correspond to stronger violations.
Moreover, ωrc(s, θ) is the ranking cost as in Equation (1),
while αi is the parameter associated to each cost ωi.

In this paper we investigate three possible cost factors,
i.e., i = 1, 2, 3, to enforce information derived by different
grammatical, i.e., domain-dependent, constraints. As these can
be different, we designed three different cost factors:

– ωG(s, αG) is the complete-grammar cost that is minimal
when the transcription belongs to the language generated
by the grammar G, and maximal otherwise;

– ωA(s, αA) is the action-dependent cost that is minimal
when the transcription explicitly refers to actions the
robot is able to perform, and maximal otherwise;

– ωE(s, αE) is the entity-dependent cost that takes into
account the entities targeted by the commands, and is
minimal if they are referred into the transcription s and
maximal otherwise.

These cost factors are detailed hereafter.

Complete-grammar cost. When dealing with the Spoken
Language Understanding with robots we may want to restrict
the user sentences to a set of possible commands. This is
often realized by defining a grammar covering the linguistic
phenomena we want to catch. Moreover, if the grammar
is designed to embed also semantic information as in [2],
it can be introduce also higher level semantic constraints.
For instance, the BRINGING action can be applied only to
TRANSPORTABLE OBJECTS. As an example, a sentence a
transcription such as bring me the fridge is discarded by the
grammar if the fridge is not a TRANSPORTABLE OBJECTS.

Let G be a grammar designed for parsing commands for a
robot R. Let L(G) be the language generated by the grammar,
i.e., the set of all possible sentences that G can produce. Then,
the complete-grammar cost ωG is computed as

ωG(s, αG) =

{
αG if s ∈ L(G)
1 otherwise

(3)

where αG ∈ (0, 1] is a weight that measures the strength of
the violation and can be used to weight the impact of an
“out-of-grammar” transcription. Notice that the weight αG

can be either set as a subjective confidence or tuned through
a set of manually validated hypotheses. If αG is set to 1, no
grammatical constraint is applied and the complete grammar
cost has no effect.

Action-dependent cost. Robot specifications enable the
construction of the lexicon of potential actions A, hereafter

called LA. Let A be the set of actions that a robot can
perform, e.g., MOVE, GRASP, OPEN. For each action a ∈
A, a corresponding set of lexical entries can be used to
linguistically refer to a: we will denote such a set as L(a) ⊂
LA.

The action-dependent cost ωA for a transcription s ∈ H(v)
is thus given by:

ωA(s, αA) =
∏
∀w∈s

αA(w) (4)

where αA(w) is defined as:

αA(w) =

{
αA ∃a ∈ A such that w ∈ L(a)
1 otherwise

(5)

αA ∈ (0, 1] is a weight that favors words corresponding to
actions that are in the repertoire of the robot. The weight
αA can be either set as a subjective preference or tuned over
a set of manually validated hypotheses. Note that if αA is
set to 1, no action dependent constraint is applied and the
corresponding cost is not triggered.

Entity-dependent cost. Exploiting environment observations
can be beneficial in interpreting commands. Notice that the
objects of the robot’s environment are more likely to be
referred by correct transcriptions rather than by the wrong
ones, as these are usually “out of scope”. Let G be the grammar
designed for commands. Given the set of terminals of G,
in the lexicon LG a specific set of terms is used to make
(explicit) reference to objects of the environment. For each
entity e (e.g., MOVABLE OBJECTS such as bottles, books,
. . . , or FURNITURES, such as table or armchair) the set of
nouns used to refer to e in the language L(G) is well defined,
and it is denoted by L(e).

The entity-dependent cost ωE for a transcription s ∈ H(v)
is thus given by:

ωE(s, αE) =
∏
∀w∈s

αE(w) (6)

where αE(w) is defined as:

αE(w) =

{
αE ∃ entity e such that w ∈ L(e)
1 otherwise

(7)

and αE ∈ (0, 1] is a weight that favors words corresponding
to entities the robot is able to recognize in the environment.
The weight αE can be either set as a subjective preference or
tuned over a set of manually validated hypotheses. Also αE ,
when set to 1, produces no entity dependent constraint and
corresponds to a null impact on the final cost.

IV. EXPERIMENTAL EVALUATIONS

The grammar employed in these evaluations has been
designed in [19], lately improved in [2], and its
definition is compliant to the Speech Recognition Grammar
Specification [4]. The grammar takes into account 17 frames,
each of which is evoked by an average of 2.6 lexical units.
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On average, for each frame 27.9 syntactic patterns are defined.
Entities are clustered in 28 categories, with an average amount
of items per cluster of 11.2 elements. We extracted an Actions
Lexicon L(a) containing 44 different verbs. The Entities
Lexicon L(e) is composed of 216 and 97 single and compound
words, respectively, with a total amount of 313 entities. The
dataset of the empirical evaluation is the HuRIC corpus1, a
collection of utterances annotated with semantic predicates and
paired with the corresponding audio file. HuRIC is composed
of three different datasets, that display an increasing level of
complexity in relationship with the grammar employed.

The Grammar Generated dataset (GG) contains sentences
that have been generated by the above speech recognition
grammar. The Speaky for Robot dataset (S4R) has been
collected during the Speaky for Robots project2 and contains
sentences for which the grammar has been designed, so that
the grammar is supposed to recognize a significant number
of utterances. While the grammar is expected to cover all
the sentences in the GG dataset, this may be not true
for the S4R one, as some sentences are characterized by
linguistic structures not considered in the grammar definition.
The Robocup dataset (RC) has been collected during the
2013 Robocup@Home competition [20] and it represents the
most challenging section of the corpus, given its linguistic
variability. In fact, even referring to the same house service
robotics, it contains sentences not constrained by the grammar
structure, as, during the acquisition process, speakers were
allowed to say any kind of sentence related to the domain.

The experimental evaluation aimed at measuring the
effectiveness of the approach we proposed. To this end,
the cost function ω(s) has been used in different settings.
The αi can be used to properly activate/deactivate the costs
operating on specific evidences. In fact, if αi = 1, the
corresponding cost is not triggered. However, whenever a cost
is activated, its parameter has been estimated through 5-fold
cross validation (with one fold for testing), as well as the θ
smoothing parameter of the ranking cost ωrc. Performances
have been measured in terms of Precision at 1 (P@1), that
is the percentage of correctly transcribed sentences occupying
the first position in the rank, and Word Error Rate (or WER).
All audio files are analyzed through the official Google ASR
APIs [21]. In order to reduce the evaluation bias to ASR errors,
only those commands with an available solution within the 5
input candidates were retained for the experiments.

A. Experimental Results

Table I shows the mean and standard deviation of the
P@1 and the WER across the 5 folds. The results have been
obtained by testing our cost function on the aforementioned
HuRIC corpus. The transcription have been gathered in
January 2016. The sizes of the GG, S4R and RC datasets were

1http://sag.art.uniroma2.it/demo-software/huric/
2http://www.dis.uniroma1.it/~labrococo/?q=node/3

TABLE I
RESULTS IN TERMS OF P@1 AND WER

GG S4R RC
P@1 WER P@1 WER P@1 WER

ASR BL 74.00 ±6.52 3.66 84.71 ±7.57 2.61 79.55 ±10.66 3.89
Greedy 94.79 ±0.12 4.33 93.58 ±4.43 1.09 79.30 ±7.96 5.00
ωG 90.00 ±3.54 1.13 93.98 ±6.36 0.89 78.64 ±9.59 3.92
ωA 80.00 ±7.07 2.22 82.71 ±10.02 2.85 82.27 ±10.21 3.65
ωE 78.00 ±5.70 2.97 83.66 ±6.04 3.00 83.18 ±11.32 3.19
ωG,A 90.00 ±3.54 1.13 92.93 ±6.63 1.06 80.45 ±11.54 3.79
ωE,G 90.00 ±3.54 1.13 93.98 ±6.36 0.89 82.27 ±10.71 3.23
ωA,E 83.00 ±2.74 1.94 86.72 ±5.42 2.21 83.18 ±10.85 3.71
ωG,A,E 90.00 ±3.54 1.13 92.93 ±6.63 1.06 82.27 ±12.07 3.75

of 100, 97 and 112 utterances, each paired with 5 transcriptions
derived from the ASR system.

We compared our approach, where hypotheses are re-ranked
according to our cost function ω(s), to two different baselines.
In the first baseline (ASR BL), the best hypothesis is selected
by following the initial guess given by the ASR, i.e., the
transcription ranked in first position. The second baseline
(Greedy) selects the first transcription, occurring within the
list, that belongs to the language generated by the grammar.
Conversely, the row ωG refers to the cost function setting when
αA and αE are set to 1, i.e., just the cost ωG is actually
triggered. In general, ωi,j,k refers to the cost function when
the costs ωi, ωj and ωk are considered.

The Greedy approach seems to be effective when the
sentences are more constrained by the grammar, i.e., it is likely
that the correct transcription is recognized by the grammar. In
fact, this approach is able to reach high scores of P@1 in
both GG and S4R datasets, i.e., 94.79 and 93.58, respectively.
Moreover, when the complete-grammar cost is triggered, i.e.,
ωG, ωG,A and ωG,A,E , we get comparable results, specially
on the S4R dataset, with a relative increment of +10.94%.
These observations do not apply for the RC dataset, where
the structures and lexicon of the sentences are not constrained
by the grammar. In fact, the complete-grammar cost does not
seem to provide any actual improvement.

Conversely, we observe a drop of performance when the
full constrained grammar is employed, i.e., both Greedy and
ωG. On the other hand, when the action-dependent and
entity-dependent costs are considered, we reach the best
results. In particular, ωE and ωA,E are able to outperform
both the ASR BL and the grammar constrained approaches.
This behavior seems to depict a sort of scaling-down strategy:
when the grammar does not fully cover the sentence, or
it is not available, we can still rely on simpler, but more
effective, information. Nevertheless, even though it does not
perform the best, the strategy where all costs are triggered, i.e.,
ωG,A,E , seems to be the most stable across different sentence
complexity conditions.

We conducted experiments on the transcription lists that
have been employed in [14]. These have been gathered by
relying on the same ASR engine, but almost two years earlier
(May 2014). Hence, a different amount of sentences are
employed in this experiment. In fact, the GG, S4R and RC
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TABLE II
RESULTS IN TERMS OF P@1 AND WER OBTAINED OVER DATA USED

IN [14]

GG S4R RC
P@1 WER P@1 WER P@1 WER

ASR BL 84.18 ±11.53 2.04 85.48 ±6.80 4.61 78.75 ±8.39 5.15
Greedy 94.00 ±5.48 2.36 95.78 ±5.79 0.62 74.96 ±5.33 5.80
ωG 92.00 ±8.37 0.74 92.60 ±5.48 2.09 80.00 ±8.15 4.82
ωA 86.00 ±13.42 1.47 85.48 ±6.80 4.30 82.50 ±6.85 2.69
ωE 84.18 ±11.53 2.04 82.40 ±6.41 3.37 83.75 ±3.42 3.57
ωG,A 92.00 ±8.37 0.74 92.88 ±7.05 1.41 82.50 ±5.23 2.66
ωG,E 92.00 ±8.37 0.74 92.60 ±5.48 2.09 82.50 ±5.23 2.98
ωA,E 86.00 ±13.42 1.47 83.94 ±7.84 3.32 90.00 ±8.39 1.85
ωG,A,E 92.00 ±8.37 0.74 92.88 ±7.05 1.41 83.75 ±3.42 2.66

datasets are composed of 51, 68 and 80 lists, respectively.
The results are shown in Table II. We observe here similar
trend, with both Greedy and complete-grammar cost reaching
the highest scores in GG and S4R datasets. Even though the
results obtained on these corpora are still comparable with the
ones presented in [14], the interesting behavior observed on
the RC dataset represents the main substantial difference. Even
on this dataset, the trend seems to be the same, with the ωA,E

outperforming any other approach with relative improvements
in P@1 up to +20.06%. The trend of ωG,A,E is confirmed
here, making it the best solution as the most stable approach.

V. CONCLUSIONS

In this work, we presented a practical approach to increase
the robustness of an off-the-shelf free-form Automatic Speech
Recognition (ASR) system in the context of Spoken Language
Understanding for Human-Robot Interaction (HRI), relying on
grammars designed over specific domains. In particular, a cost
is assigned to each ASR transcription, that decreases along
with the number of constraints satisfied by the sentence with
respect to adopted grammar. Despite to the simplicity of the
proposed method, experimental results show that the proposed
method allows to significantly improve a state-of-the-art ASR
system over a dataset of spoken commands for robots.

Future work will consider the adoption of this re-ranking
strategy within full chains of Spoken Language Understanding
in the context of HRI, as the one presented in [5]. Moreover,
the simple proposed method can be jointly used with
supervised learning methods ([14]) that may exploit evidenced
derived from the grammar to learn more expressive re-ranking
functions.
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