

Abstract—We propose a method based on autoregressive
hidden Markov models (AR-HMM) for filtering out
compromised nodes from a sensor network. We assume that
sensors are healthy, self-healing and corrupted whereas each
node submits a number of readings. A different AR-HMM (A, B,
π) is used to describe each of the three types of nodes. For each
node, we train an AR-HMM based on the sensor's readings, and
subsequently the B matrices of the trained AR-HMMs are
clustered together into two groups: healthy and compromised
(both self-healing and corrupted), which permits us to identify
the group of healthy sensors. The existing algorithms are
centralized and computation intensive. Our approach is a simple,
decentralized model to identify compromised nodes at a low
computational cost. Simulations using both synthetic and real
datasets show greater than 90% accuracy in identifying healthy
nodes with ten nodes datasets and as high as 97% accuracy with
500 or more nodes datasets.

Index Terms—Autoregressive hidden Markov models,
environment sensing, filtering corrupted nodes, sensor network,
clustering, anomaly detection.

I. INTRODUCTION
ENSOR systems have significant potential for aiding
scientific discoveries by instrumenting the real world. For

example, the sensor nodes in a wireless sensor network can be
used collaboratively to collect data for the purpose of
observing, detecting and tracking scientific phenomena.
Sensor network deployment is becoming more commonplace
in environmental, business and military applications.
However, sensor networks are vulnerable to adversaries as
they are frequently deployed in open and unattended
environments. Anomaly detection is a key challenge in
ensuring both the security and usefulness of the collected data.
In this paper, we propose a method to filter the compromised
nodes, be it self-healing or corrupted, using an autoregressive
hidden Markov model (AR-HMM).

The paper is organized as follows. In the next Section II we
cover the literature review for this work. In Section III, we
give a brief overview of AR-HMMs. In Section IV, we
describe the proposed algorithm, and in Section V we give
numerical results. The conclusions are given in Section VI.

Manuscript received on September 30, 2016, accepted for publication on
October 24, 2016, published on October 30, 2016.

The authors are with Missouri University of Sci & Tech, Rolla, MO
63128, USA (e-mail: bushra.anjum@gmail.com, chaman@mst.edu).

II. RELATED WORK

Hidden Markov models and the Baum–Welch algorithm
were first described in a series of articles by Leonard E. Baum
and his peers at the Institute for Defense Analysis in the late
1960s [1]. However detecting compromised nodes using AR-
HMM is a new area of investigation and we were unable to
find any references that researched the same. Hence we
provide the literature review in two parts, first, how
compromised nodes are currently filtered and second, on the
use of AR-HMM for solving diverse problems of
identification, filtering, and prediction.

Wang & Bagrodia [2] have designed an intrusion detection
system for identifying compromised nodes in wireless sensor
networks using common application features (sensor readings,
receive power, send rate, and receive rate). Hinds [3] has used
Weighted Majority voting algorithm to create a concept of a
node which could not be compromised, and to develop
detection algorithms which relied on the trustworthiness of
these nodes. Li, Song and Alam [4] have defined a data
transmission quality function which keeps close to constant or
change smoothly for legitimate nodes and decreases for
suspicious nodes. The final decision of whether or not a
suspicious node is compromised is determined by a group
voting procedure. These designs take the en-network detection
approach: misbehaved nodes are detected by their neighboring
watchdog nodes. However en-network designs are insufficient
to defend collaborative attacks when many compromised
nodes collude together in the network. Zhang, Yu and
Ning [5] present an alert reasoning algorithm for intelligent
sensors using cryptographic keys. Zhanga et al. [6] exploit a
centralized proven collision-resilient hashing scheme to sign
the incoming, outgoing and locally generated/dropped
message sets. These algorithms work on pinpointing exactly
where the false information is introduced and who is
responsible for it, but they are centralized and do so at a high
computational cost. We propose a simple, decentralized model
based approach to identify compromised nodes at a low
computational cost using HMMs.

HMMs have been successfully used to filter unreliable
agents, see Chang & Jiliu [7], Anjum et al. [8]. However the
approach is unable to model correlation between observations.
Autoregressive HMMs alleviate this limitation. Introduced in
the 1980’s, Juang and Rabiner published a series of papers
[9], [10] regarding the application of Gaussian mixture

Filtering Compromised Environment Sensors
Using Autoregressive Hidden Markov Model

 Bushra Anjum and Chaman Lal Sabharwal

S

5 Polibits, vol. 54, 2016, pp. 5–10https://doi.org/10.17562/PB-54-1

IS
S

N
 2395-8618

autoregressive HMM to speech recognition. Switching
autoregressive processes are well understood and have been
applied in many areas. They have been particularly popular in
economics, see Alexander [11] and Hamilton [12]. A brief
summary of this subject and an extensive list of references can
be found in [13]. The model is also successfully used by Park,
Kwon and Lee [14], they have used AR-HMM by modeling
the probabilistic dependency between sequential target
appearances, presenting a highly accurate algorithm for robust
visual tracking.

III. PROPOSED MODEL USING AUTOREGRESSIVE
HIDDEN MARKOV MODELS

A hidden Markov model is a Markov Chain with N states,
which are hidden from the user. When the Markov chain is in
a state, it produces an observation with a given state-
dependent probability distribution. There are M different
observation paths. It is this sequence of observations that the
user sees, and from which it is possible to estimate the
parameters of the HMM. An HMM is defined by the A matrix
which is the one-step transition matrix of the Markov chain,
the B matrix (referred to as the event matrix) which contains
the probability distribution of the observations likely to occur
when the Markov chain is in a given state, and π, the vector of
probabilities of the initial state of the Markov chain. The (A,
B, π) are together represented by λ. In this paper, we will
make use of the following notation:

A: One-step transition Matrix (N × N)
aij: One-step probability from state i to state j
B: Event Matrix (N × M)
bi(k): Probability that the kth value will be observed when

system shifts to state i
π: Initial Probability vector (N × 1)
N: Number of hidden states
M: Number of observations
O: An observation sequence
T: Length of the observation sequence
Q: A sequence of hidden states traversed by the system
λ = (A, B, π)

A useful extension of HMM is autoregressive HMM (AR-
HMM), which enhances the HMM architecture by introducing
a direct stochastic dependence between observations. In
AR(p)-HMM, the observation sequence is not only dependent
on the HMM model parameters but also on a subset of p
previous observations. Thus the model switches between sets
of autoregressive parameters with probabilities determined by
a state of transition probability similar to that of a standard
HMM:

where ar(st) is the rth autoregressor when in state s ∈ {1 … N}
at time t and each is an i.i.d. normally distributed
innovation with mean 0 and variance . Observations in the
general AR-HMM can be continuous, but for our purposes we
restrict the discussion to the discrete case. For example, a
discrete HMM with AR(1) can be depicted by the Directed
Acyclic Graph (DAG) as shown in Fig. 1. Three different, but
related, problems have been defined for HMMs, briefly
described below.

Fig. 1. DAG of the AR(1)-HMM where qi and oi represent the state and the
observation generated at time slot i respectively.

Problem 1: Forward Probability Computation: Given an
observation sequence, compute the probability that it came
from a given λ.

Let the system be in state i at time t. The probability of the
system shifting to state j at t+1 is given by the one-step
transition probability aij. The probability that of the M
possible observed states, the kth one is observed given that the
system shifted from state i to j is aijbj(k). Since the state i can
be any one of the states from 1 to N, the probability of
observing the kth value, given that the system shifts to state j
at time t+1 is the sum of all probable paths to state j, i.e.,

.
Now, the only remaining unknown is the joint probability of

having observed the sequence from O1 through Ot and being in
state i at time t, given λ. Representing this quantity by αt(i) and
representing the kth observed value at time t+1 by Ot+1, we
have

To start off this induction, the initialization step for
calculating αt(i) can be obtained as follows. The probability of
the system being in state i at time 1 is given by πi and the
probability of observing O1 is then given by bj(O1). Thus,

αT(i) obtained from the induction step represents the
probability of observing the sequence from O1 through OT,
and ending up in state i. Thus, the total probability of
observing the sequence O1 through OT, given λ is

q t - 1 q t q t + 1

o t - 1 o t o t + 1

6Polibits, vol. 54, 2016, pp. 5–10 https://doi.org/10.17562/PB-54-1

Bushra Anjum, Chaman Lal Sabharwal
IS

S
N

 2395-8618

Problem 2: Backward Probability Computation: Given an
observation sequence, compute the probable states the system
passed through.

The quantity βt(i) is defined as the probability that the
sequence of observations from Ot+1 through OT are observed
starting at state i at time t for a given λ. It is calculated in the
same way as αt(i), but in the backward direction. We have,

For t = T we have βT(i)=1, i = 1, 2, …, N. To calculate the
probability that the system was in state i at time t given O and
λ, we observe that αt(i) accounts for the observation sequence
from O1 through Ot and βt(i) accounts for Ot+1 through OT, and
both account for the state i at time t. So the required
probability is given by αt(i)βt(i). Introducing the normalizing
factor from problem 1, P(O|λ), we have

At each time t, the state with the highest γ is the most
probable state at time t. A better way to obtain the most
probable path of states Q that give rise to an observation
sequence O, is to use dynamic programming, as described
in [13].

Problem 3: Matrix Estimation: Given an observation
sequence O, compute the most probable λ.

The term aij can be calculated as the ration of the number of
transitions made from state i to state j over the total number of
transitions made out of state i. We have from problem 2 that
γt(i) is the probability of being in state i at time t. Extending
this, the probability of being in state i at time t and in state j at
time t+1 can be calculated as follows:

IV. THE ALGORITHM

We consider a set of sensors that consists of a mix of
healthy, self-healing and corrupted sensors. We assume that
time is slotted, let T be the total number of slots. During each
slot, each sensor submits a reading about the environment. For
simplicity, let all the nodes submit a reading at each time slot.
(This constraint can be easily removed, by appropriately
modifying the way the αi(t) and βi(t) are calculated.)

For each node, we have a sequence of T readings
(observations) to train an AR-HMM. Thus, we end up with as
many AR-HMMs as the number of nodes. Using statistical
clustering techniques, we cluster the B matrices of these AR-
HMMs into two groups, one for healthy and the other for

compromised nodes (self-healing and corrupted). This permits
us to identify and filter out the compromised sensors.

To test the accuracy of the algorithm, we consider three
types of sensors, healthy, self-healing and corrupted. To
achieve this, we define three λ's, all having the same A and π,
but different B. The B matrix of the healthy nodes (Bh) should
be such that the readings generated echo the environmental
phenomenon it is sensing. The B matrix of self-healing nodes
(Bs) introduces spurs of invalid data before moving back to the
valid state and the B matrix of the corrupted nodes (Bc) is set
up to predominantly generate invalid data. The exact matrices
are defined in the next section.

Next, this sequence of T readings is used to estimate the A,
B, and π matrices of the sensor. Using the B matrices, we
cluster the sensors into two groups, i.e., healthy and
compromised nodes. For this, we take the mean squared error
(MSE) of each estimated B matrix with the perfectly healthy
matrix Bp (see Section IV), where

and bi(k) and bpi(k) are the (i,k)th element of the B and Bp
matrices respectively.

The resulting MSE values are then classified into two
clusters using the k-means clustering algorithm. As Bp
represents the truly healthy matrix, the cluster with a center
closer to 0 represents the group of healthy nodes.

V. EXPERIMENTAL SETUP AND RESULTS

A. Synthetic Datasets – Richardson’s Model
For our simulation study, we use the classic Richardson’s

model for the temperature [14] to define the transition matrix
A and the autoregressors vi. Richardson’s model uses two
states St = {Dry, Wet}, hence N = 2, and second order
autoregression, AR(2), to define the temperature readings. The
model is given as follows:

The results reported in this section were based on 60%

healthy nodes, 20% self-healing, and 20% corrupted nodes. In
all experiments, we set the Markov chain to start with an equal
probability of being in any of the two hidden states, i.e., π =
[0.5, 0.5]. We define three B matrices (Bh, Bs and Bc), such
that they model the behavior of the three nodes under
consideration, healthy, self-healing and corrupted respectively.
B is a 2 × 2 matrix where the first column corresponds to the
probability of generating a value using autoregressive
equations, and second column corresponds to the probability

7 Polibits, vol. 54, 2016, pp. 5–10https://doi.org/10.17562/PB-54-1

Filtering Compromised Environment Sensors Using Autoregressive Hidden Markov Model
IS

S
N

 2395-8618

of entering the corrupted state and generating an invalid value.
(The selection of N = M = 2 is not significant, and any other
values can be readily used).

The perfectly healthy matrix, Bp used for MSE calculations
is defined as

For the above A matrix, we define three AR(2)-HMMs,

namely, λh = (A, Bh, π), λs = (A, Bs, π) and λc = (A, Bc, π)..
Subsequently, we generate random samples of temperature
readings for all the nodes, and then apply the algorithm
described in the previous section to identify the group of
healthy nodes. Then, we compare the number of identified
healthy nodes to the original set of healthy sensors and report
the result as a percentage of correctly identified healthy nodes.
We used MS_Regress MATLAB package for Markov Regime
Switching Models by Perlin [15] to implement the above
algorithm and obtain numerical results.

The results are given in Fig. 2 which gives the percentage of
correctly identified healthy (left) and corrupted (right) nodes
along with the 95th confidence interval. For the figure, we
assume 10, 50 and 100 sensors, and vary the number of
observations per sensor from 10 to 50. The confidence
intervals are obtained by replicating each result 100 times, and
each time using a different seed for the pseudo-random
number generator.

Interesting observations (Fig. 2): As the number of
readings increases per node, the prediction accuracy the nodes
(both healthy and corrupted) increases as well. For healthy
nodes, the average prediction accuracy for 10 readings is
around 88% and for 50 readings per node, it jumps to around
97%. Overall, the prediction accuracy of healthy nodes is
much higher than that of corrupted nodes. This can be
explained by the fact that the cluster distribution of self-
healing nodes and corrupted nodes is quite similar whereas
both differ significantly from the cluster distribution of healthy
nodes.

Based on the results, we also observe that it is not necessary
to have a large sample of nodes and readings per node. We see
that with as little as 10 nodes and 10 readings per node, we
obtain results which are similar to those obtained with larger
number of nodes and readings per node. This leads us to
conclude that our approach can be used in a decentralized
manner, i.e., we do not need data from all (or a large number)
of the sensors in order to prune out the compromised ones.

Finally, we turn towards sensitivity analysis of our
approach, i.e., how does the percentage of self-healing nodes
impact the filtering accuracy. For this we varied the percent of
self-healing nodes from 0 to 50%. Keeping the number of
nodes to 50 and the number of readings per node to also 50,
we calculate the prediction accuracy of the healthy and
corrupted nodes. The results are presented in Table I.

We make the following observations. As the number of self-
healing nodes increases, the prediction accuracy of both
healthy nodes and corrupted nodes decreases. However, where

Fig. 2. Prediction accuracy for healthy nodes (left), corrupted nodes (right)

TABLE I
PREDICTION ACCURACY FOR SYNTHETIC SENSOR DATA MODEL

 Percentage of self-healing nodes
 0% 10% 20% 30% 40% 50%

 Healthy nodes 0.98 0.96 0.95 0.97 0.96 0.95
 Corrupted nodes 0.95 0.88 0.84 0.78 0.75 0.68

8Polibits, vol. 54, 2016, pp. 5–10 https://doi.org/10.17562/PB-54-1

Bushra Anjum, Chaman Lal Sabharwal
IS

S
N

 2395-8618

the change in healthy node prediction is minor (98% to 95%),
corrupted node prediction suffers increasingly as the number
of self-healing nodes increases (95% to 68%). This confirms
our initial observation that the cluster distribution of self-
healing nodes is similar in nature to corrupted nodes. Hence it
becomes difficult for the algorithm to pick corrupted nodes
exclusively from the set of corrupted and self-healing nodes.
The success of our approach, however, lies with the
identification of healthy nodes, with accuracy greater
than 90%.

B. Real Sensor Datasets
In order to test our models on real world sensor datasets, we

use datasets from two sources: Intel Berkley Research
Laboratory [16] and Labeled Wireless Sensor Network Data
Repository (LWSNDR) projects [17]. Both projects represent
the state of the art in sensor systems and collect measurements
in very different environments. Hence, these datasets allow us
to evaluate the accuracy of AR-HMM classification on
representative and diverse sensor system data.

First dataset is collected from 54 sensors deployed in the
Intel Berkeley Research lab. The Mica2Dot sensors with
weather boards collected time stamped topology information,
along with humidity, temperature, light and voltage values
once every 31 seconds. This dataset includes a log of about
2.3 million readings collected from the 54 motes (mote is a
sensor that is capable of doing some processing in addition to
collecting and transmitting data), where data from some motes
may be missing or truncated.

Second dataset is collected from a simple single-hop and a
multi-hop wireless sensor network deployment using TelosB
motes. The data consists of humidity and temperature
measurements collected during 6 hour period at intervals of 5
seconds. For this evaluation, we are using the single hop
labeled readings which consist of approximately 15,000
entries.

The first dataset is unlabeled. We have tested our anomaly
detection algorithms with by visually inspecting the sensor
data time series. The second dataset, is a labelled wireless
sensor network dataset where label ‘0’ denotes normal data
and label ‘1’ denotes an introduced event (anomaly). More
details can be obtained from [18].

We assume that the sensor readings collected over a

reasonable duration capture the normal patterns in the sensor
data series. As a general rule, we have used 20% of the data
points to work out the auto regression equations for the
system. The auto regressive coefficients are calculated using
the least squares method. Also, the same data points are used
to calculate λ = (A, B, π) as defined under Problem 3 in
Section 2.

For comparison, we are using two popular classification
algorithms ZeroR and Naïve Bayes along with our proposed
AR-HMM model. Briefly, ZeroR is a useful predictor for
determining a baseline performance, predicting mean for a
numeric class and mode for a nominal class, and Naïve Bayes
is a conditional probabilistic classifier based on Bayer’s
theorem. The filtering accuracy to identify healthy nodes is
given in Table II.

Table II displays that as ZeroR provides a baseline
accuracy, AR-HMM clearly surpasses Naïve Bayesian
classification for correctly identifying the healthy sensors. We
further describe our method’s accuracy using (1) number of
false positives (detecting non-exist compromised nodes) and
(2) number of false negatives (not being able to detect a
compromised node) as our metrics. Specifically, the results in
Table III below are presented as follows – the x/y number
indicates that x out of y compromised nodes were detected
correctly (corresponding to y-x false negatives) plus we also
indicate the number of corresponding false positives.

VI. CONCLUSION
In this paper, we propose a method based on autoregressive

hidden Markov models (AR-HMMs) for filtering out

TABLE II
OVERALL PREDICTION ACCURACY FOR REAL SENSOR DATA

 Algorithm Accuracy

Intel Berkley Research Lab
Naïve Bayes 89.785 %
ZeroR 85.543 %
AR-HMM 97.231 %

Labelled WSN Data Repository
Naïve Bayes 90.754 %
ZeroR 86.352 %
AR-HMM 98.413 %

TABLE III
PREDICTION ACCURACY FOR HEALTHY AND COMPROMISED NODES INDIVIDUALLY

 Algorithm Healthy nodes Compromised nodes

Intel Berkley Research Lab
Naïve Bayes 33/40 9/14
ZeroR 30/40 8/14
AR-HMM 37/40 11/14

Labelled WSN Data Repository
Naïve Bayes 12/16 3/5
ZeroR 11/16 2/5
AR-HMM 14/16 4/5

9 Polibits, vol. 54, 2016, pp. 5–10https://doi.org/10.17562/PB-54-1

Filtering Compromised Environment Sensors Using Autoregressive Hidden Markov Model
IS

S
N

 2395-8618

compromised nodes in a sensor network. We confirm through
experimentation, based on revised Richardson’s temperature
model, that our filtering method is quite accurate and
identifies the healthy sensors with an accuracy greater than
90%. We further used real sensor data from Intel Labs and
WSN repository from UNC to calculate the prediction
accuracy of AR-HMM approach as opposed to Naïve Bayes
and ended up with encouraging results, with prediction
accuracy as high as 97%

REFERENCES
[1] R. Lawrence, “First Hand: The Hidden Markov Model”. IEEE

Global History Network. Retrieved 2 October 2013.
[2] Y.T Wang and R. Bagrodia, “Com-Sen: A Detection System for

Identifying Compromised Nodes in Wireless Sensor Networks”,
SECURWARE 2012.

[3] C.V. Hinds, Efficient detection of compromised nodes in
wireless sensor networks, 2012.

[4] T. Li, M. Song, M. Alam, “Compromised Sensor Nodes
Detection: A Quantitative Approach,” ICDCSW 2008.

[5] Q. Zhang, T. Yu, and P. Ning, “A Framework for Identifying
Compromised Nodes in Wireless Sensor Networks,” ACM
Transactions on Information and Systems Security, vol. 11,
no. 3, Article 12, 2008.

[6] Y. Zhanga, J. Jun Yangb, W. Lia, L. Wangc, and L. Jind, “An
authentication scheme for locating compromised sensor nodes
in WSNs,” Journal of Network and Computer Applications,
vol. 33, no. 1, 2010.

[7] L. Chang, and Z. Jiliu. “The reputation evaluation based on
optimized hidden Markov model in e-commerce,”
Mathematical Problems in Engineering, vol. 2013, Hindawi,
2013.

[8] B. Anjum, M. Rajangam, H. Perros, and W. Fan, “Filtering
Unfair Users: A Hidden Markov Model Approach,” ICISSP,
Loire, France, 2015.

[9] B.H. Juang and L.R. Rabiner, “A Probabilistic Distance
Measure for Hidden Markov Models,” AT&T Tech. J., vol. 64,
no. 2, pp. 391–408, 1985.

[10] B.H. Juang and L.R. Rabiner, “Mixture Autoregressive Hidden
Markov Models for Speech Signals,” IEEE Trans., vol. ASSP-
33, no. 6 , pp. 1404–1413, 1985.

[11] C. Alexander, “Market Risk Analysis: Practical Financial
Econometrics,” Wiley Books, 2008.

[12] J.D. Hamilton, “Regime Switching Models,” Palgrave
Dictionary of Economics, available at http://dss.ucsd.edu/
~jhamilto/palgrav1.pdf, 2005.

[13] Y. Ephraim and N. Merhav, “Hidden Markov processes,” IEEE
Trans. Inf. Theory, vol. 48, no. 6, pp. 1518–1569, 2002.

[14] C.W. Richardson, “Stochastic simulation of daily precipitation,
temperature, and solar radiation,” Water Resour. Res., vol. 17,
no. 1, 182–190, doi:10.1029/WR017i001p00182, 1981.

[15] M. Perlin, “MS Regress. The MATLAB Package for Markov
Regime Switching Models.” Available at http://ssrn.com/
abstract=1714016, 2014.

[16] Intel Lab Data. http://db.csail.mit.edu/labdata/labdata.html
[17] UNC Greensboro, Machine Learning Models and Algorithms

for Big Data Classification. http://www.uncg.edu/cmp/
downloads.

[18] S. Suthaharan, M. Alzahrani, S. Rajasegarar, C. Leckie and
M. Palaniswami, “La-belled Data Collection for Anomaly
Detection in Wireless Sensor Networks”, in Proceedings of the
Sixth International Conference on Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP 2010), Brisbane,
Australia, 2010.

10Polibits, vol. 54, 2016, pp. 5–10 https://doi.org/10.17562/PB-54-1

Bushra Anjum, Chaman Lal Sabharwal
IS

S
N

 2395-8618

