
 

  

Abstract—We propose a method based on autoregressive 
hidden Markov models (AR-HMM) for filtering out 
compromised nodes from a sensor network. We assume that 
sensors are healthy, self-healing and corrupted whereas each 
node submits a number of readings. A different AR-HMM (A, B, 
π) is used to describe each of the three types of nodes. For each 
node, we train an AR-HMM based on the sensor's readings, and 
subsequently the B matrices of the trained AR-HMMs are 
clustered together into two groups: healthy and compromised 
(both self-healing and corrupted), which permits us to identify 
the group of healthy sensors. The existing algorithms are 
centralized and computation intensive. Our approach is a simple, 
decentralized model to identify compromised nodes at a low 
computational cost. Simulations using both synthetic and real 
datasets show greater than 90% accuracy in identifying healthy 
nodes with ten nodes datasets and as high as 97% accuracy with 
500 or more nodes datasets. 

Index Terms—Autoregressive hidden Markov models, 
environment sensing, filtering corrupted nodes, sensor network, 
clustering, anomaly detection. 

I. INTRODUCTION 
ENSOR systems have significant potential for aiding 
scientific discoveries by instrumenting the real world. For 

example, the sensor nodes in a wireless sensor network can be 
used collaboratively to collect data for the purpose of 
observing, detecting and tracking scientific phenomena. 
Sensor network deployment is becoming more commonplace 
in environmental, business and military applications. 
However, sensor networks are vulnerable to adversaries as 
they are frequently deployed in open and unattended 
environments. Anomaly detection is a key challenge in 
ensuring both the security and usefulness of the collected data. 
In this paper, we propose a method to filter the compromised 
nodes, be it self-healing or corrupted, using an autoregressive 
hidden Markov model (AR-HMM).  

The paper is organized as follows. In the next Section II we 
cover the literature review for this work. In Section III, we 
give a brief overview of AR-HMMs. In Section IV, we 
describe the proposed algorithm, and in Section V we give 
numerical results. The conclusions are given in Section VI.  
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II. RELATED WORK 

Hidden Markov models and the Baum–Welch algorithm 
were first described in a series of articles by Leonard E. Baum 
and his peers at the Institute for Defense Analysis in the late 
1960s [1]. However detecting compromised nodes using AR-
HMM is a new area of investigation and we were unable to 
find any references that researched the same. Hence we 
provide the literature review in two parts, first, how 
compromised nodes are currently filtered and second, on the 
use of AR-HMM for solving diverse problems of 
identification, filtering, and prediction. 

Wang & Bagrodia [2] have designed an intrusion detection 
system for identifying compromised nodes in wireless sensor 
networks using common application features (sensor readings, 
receive power, send rate, and receive rate). Hinds [3] has used 
Weighted Majority voting algorithm to create a concept of a 
node which could not be compromised, and to develop 
detection algorithms which relied on the trustworthiness of 
these nodes. Li, Song and Alam [4] have defined a data 
transmission quality function which keeps close to constant or 
change smoothly for legitimate nodes and decreases for 
suspicious nodes. The final decision of whether or not a 
suspicious node is compromised is determined by a group 
voting procedure. These designs take the en-network detection 
approach: misbehaved nodes are detected by their neighboring 
watchdog nodes. However en-network designs are insufficient 
to defend collaborative attacks when many compromised 
nodes collude together in the network. Zhang, Yu and 
Ning [5] present an alert reasoning algorithm for intelligent 
sensors using cryptographic keys. Zhanga et al. [6] exploit a 
centralized proven collision-resilient hashing scheme to sign 
the incoming, outgoing and locally generated/dropped 
message sets.  These algorithms work on pinpointing exactly 
where the false information is introduced and who is 
responsible for it, but they are centralized and do so at a high 
computational cost. We propose a simple, decentralized model 
based approach to identify compromised nodes at a low 
computational cost using HMMs. 

HMMs have been successfully used to filter unreliable 
agents, see Chang & Jiliu [7], Anjum et al. [8]. However the 
approach is unable to model correlation between observations. 
Autoregressive HMMs alleviate this limitation. Introduced in 
the 1980’s, Juang and Rabiner published a series of papers 
[9], [10] regarding the application of Gaussian mixture 
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autoregressive HMM to speech recognition. Switching 
autoregressive processes are well understood and have been 
applied in many areas. They have been particularly popular in 
economics, see Alexander [11] and Hamilton [12]. A brief 
summary of this subject and an extensive list of references can 
be found in [13]. The model is also successfully used by Park, 
Kwon and Lee [14], they have used AR-HMM by modeling 
the probabilistic dependency between sequential target 
appearances, presenting a highly accurate algorithm for robust 
visual tracking.  

III. PROPOSED MODEL USING AUTOREGRESSIVE 
HIDDEN MARKOV MODELS 

A hidden Markov model is a Markov Chain with N states, 
which are hidden from the user. When the Markov chain is in 
a state, it produces an observation with a given state-
dependent probability distribution. There are M different 
observation paths. It is this sequence of observations that the 
user sees, and from which it is possible to estimate the 
parameters of the HMM. An HMM is defined by the A matrix 
which is the one-step transition matrix of the Markov chain, 
the B matrix (referred to as the event matrix) which contains 
the probability distribution of the observations likely to occur 
when the Markov chain is in a given state, and π, the vector of 
probabilities of the initial state of the Markov chain. The (A, 
B, π) are together represented by λ. In this paper, we will 
make use of the following notation: 

A: One-step transition Matrix (N × N) 
aij: One-step probability from state i to state j 
B: Event Matrix (N × M) 
bi(k): Probability that the kth value will be observed when 

system shifts to state i 
π: Initial Probability vector (N × 1) 
N: Number of hidden states 
M: Number of observations 
O: An observation sequence 
T: Length of the observation sequence 
Q: A sequence of hidden states traversed by the system 
λ = (A, B, π) 

A useful extension of HMM is autoregressive HMM (AR-
HMM), which enhances the HMM architecture by introducing 
a direct stochastic dependence between observations. In 
AR(p)-HMM, the observation sequence is not only dependent 
on the HMM model parameters but also on a subset of p 
previous observations. Thus the model switches between sets 
of autoregressive parameters with probabilities determined by 
a state of transition probability similar to that of a standard 
HMM: 

 

where ar(st) is the rth autoregressor when in state s ∈ {1 … N} 
at time t and each  is an i.i.d. normally distributed 
innovation with mean 0 and variance . Observations in the 
general AR-HMM can be continuous, but for our purposes we 
restrict the discussion to the discrete case. For example, a 
discrete HMM with AR(1) can be depicted by the Directed 
Acyclic Graph (DAG) as shown in Fig. 1.  Three different, but 
related, problems have been defined for HMMs, briefly 
described below. 

 
Fig. 1. DAG of the AR(1)-HMM where qi and oi represent the state and the 
observation generated at time slot i respectively. 

Problem 1: Forward Probability Computation: Given an 
observation sequence, compute the probability that it came 
from a given λ. 

Let the system be in state i at time t. The probability of the 
system shifting to state j at t+1 is given by the one-step 
transition probability aij. The probability that of the M 
possible observed states, the kth one is observed given that the 
system shifted from state i to j is aijbj(k). Since the state i can 
be any one of the states from 1 to N, the probability of 
observing the kth value, given that the system shifts to state j 
at time t+1 is the sum of all probable paths to state j, i.e., 

.  
Now, the only remaining unknown is the joint probability of 

having observed the sequence from O1 through Ot and being in 
state i at time t, given λ. Representing this quantity by αt(i) and 
representing the kth observed value at time t+1 by Ot+1, we 
have 

 

To start off this induction, the initialization step for 
calculating αt(i) can be obtained as follows. The probability of 
the system being in state i at time 1 is given by πi and the 
probability of observing O1 is then given by bj(O1). Thus, 

 

αT(i) obtained from the induction step represents the 
probability of observing the sequence from O1 through OT, 
and ending up in state i. Thus, the total probability of 
observing the sequence O1 through OT, given λ is 

 

q t - 1  q t  q t + 1  

o t - 1  o t  o t + 1  
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Problem 2: Backward Probability Computation: Given an 
observation sequence, compute the probable states the system 
passed through.  

The quantity βt(i) is defined as the probability that the 
sequence of observations from Ot+1 through OT are observed 
starting at state i at time t for a given λ. It is calculated in the 
same way as αt(i), but in the backward direction. We have, 

 

For t = T we have βT(i)=1, i = 1, 2, …, N. To calculate the 
probability that the system was in state i at time t given O and 
λ, we observe that αt(i) accounts for the observation sequence 
from O1 through Ot and βt(i) accounts for Ot+1 through OT, and 
both account for the state i at time t. So the required 
probability is given by αt(i)βt(i). Introducing the normalizing 
factor from problem 1, P(O|λ), we have 

 

At each time t, the state with the highest γ is the most 
probable state at time t. A better way to obtain the most 
probable path of states Q that give rise to an observation 
sequence O, is to use dynamic programming, as described 
in [13]. 

Problem 3: Matrix Estimation: Given an observation 
sequence O, compute the most probable λ.  

The term aij can be calculated as the ration of the number of 
transitions made from state i to state j over the total number of 
transitions made out of state i. We have from problem 2 that 
γt(i) is the probability of being in state i at time t. Extending 
this, the probability of being in state i at time t and in state j at 
time t+1 can be calculated as follows: 

 

IV. THE ALGORITHM 

We consider a set of sensors that consists of a mix of 
healthy, self-healing and corrupted sensors. We assume that 
time is slotted, let T be the total number of slots.  During each 
slot, each sensor submits a reading about the environment. For 
simplicity, let all the nodes submit a reading at each time slot. 
(This constraint can be easily removed, by appropriately 
modifying the way the αi(t) and βi(t) are calculated.)  

For each node, we have a sequence of T readings 
(observations) to train an AR-HMM. Thus, we end up with as 
many AR-HMMs as the number of nodes. Using statistical 
clustering techniques, we cluster the B matrices of these AR-
HMMs into two groups, one for healthy and the other for 

compromised nodes (self-healing and corrupted). This permits 
us to identify and filter out the compromised sensors.  

To test the accuracy of the algorithm, we consider three 
types of sensors, healthy, self-healing and corrupted. To 
achieve this, we define three λ's, all having the same A and π, 
but different B. The B matrix of the healthy nodes (Bh) should 
be such that the readings generated echo the environmental 
phenomenon it is sensing. The B matrix of self-healing nodes 
(Bs) introduces spurs of invalid data before moving back to the 
valid state and the B matrix of the corrupted nodes (Bc) is set 
up to predominantly generate invalid data. The exact matrices 
are defined in the next section. 

Next, this sequence of T readings is used to estimate the A, 
B, and π matrices of the sensor. Using the B matrices, we 
cluster the sensors into two groups, i.e., healthy and 
compromised nodes. For this, we take the mean squared error 
(MSE) of each estimated B matrix with the perfectly healthy 
matrix Bp (see Section IV), where  

 
and bi(k) and bpi(k) are the (i,k)th element of the B and Bp 
matrices respectively. 

The resulting MSE values are then classified into two 
clusters using the k-means clustering algorithm. As Bp 
represents the truly healthy matrix, the cluster with a center 
closer to 0 represents the group of healthy nodes.  

V. EXPERIMENTAL SETUP AND RESULTS 

A. Synthetic Datasets – Richardson’s Model 
For our simulation study, we use the classic Richardson’s 

model for the temperature [14] to define the transition matrix 
A and the autoregressors vi. Richardson’s model uses two 
states St = {Dry, Wet}, hence N = 2, and second order 
autoregression, AR(2), to define the temperature readings. The 
model is given as follows: 

 

 
The results reported in this section were based on 60% 

healthy nodes, 20% self-healing, and 20% corrupted nodes. In 
all experiments, we set the Markov chain to start with an equal 
probability of being in any of the two hidden states, i.e., π = 
[0.5, 0.5]. We define three B matrices (Bh, Bs and Bc), such 
that they model the behavior of the three nodes under 
consideration, healthy, self-healing and corrupted respectively. 
B is a 2 × 2 matrix where the first column corresponds to the 
probability of generating a value using autoregressive 
equations, and second column corresponds to the probability 
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of entering the corrupted state and generating an invalid value. 
(The selection of N = M = 2 is not significant, and any other 
values can be readily used).   

 

The perfectly healthy matrix, Bp used for MSE calculations 
is defined as 

 
For the above A matrix, we define three AR(2)-HMMs, 

namely, λh = (A, Bh, π), λs = (A, Bs, π) and λc = (A, Bc, π).. 
Subsequently, we generate random samples of temperature 
readings for all the nodes, and then apply the algorithm 
described in the previous section to identify the group of 
healthy nodes. Then, we compare the number of identified 
healthy nodes to the original set of healthy sensors and report 
the result as a percentage of correctly identified healthy nodes. 
We used MS_Regress MATLAB package for Markov Regime 
Switching Models by Perlin [15] to implement the above 
algorithm and obtain numerical results. 

The results are given in Fig. 2 which gives the percentage of 
correctly identified healthy (left) and corrupted (right) nodes 
along with the 95th confidence interval. For the figure, we 
assume 10, 50 and 100 sensors, and vary the number of 
observations per sensor from 10 to 50. The confidence 
intervals are obtained by replicating each result 100 times, and 
each time using a different seed for the pseudo-random 
number generator. 

Interesting observations (Fig. 2):  As the number of 
readings increases per node, the prediction accuracy the nodes 
(both healthy and corrupted) increases as well. For healthy 
nodes, the average prediction accuracy for 10 readings is 
around 88% and for 50 readings per node, it jumps to around 
97%. Overall, the prediction accuracy of healthy nodes is 
much higher than that of corrupted nodes. This can be 
explained by the fact that the cluster distribution of self-
healing nodes and corrupted nodes is quite similar whereas 
both differ significantly from the cluster distribution of healthy 
nodes. 

Based on the results, we also observe that it is not necessary 
to have a large sample of nodes and readings per node. We see 
that with as little as 10 nodes and 10 readings per node, we 
obtain results which are similar to those obtained with larger 
number of nodes and readings per node. This leads us to 
conclude that our approach can be used in a decentralized 
manner, i.e., we do not need data from all (or a large number) 
of the sensors in order to prune out the compromised ones. 

Finally, we turn towards sensitivity analysis of our 
approach, i.e., how does the percentage of self-healing nodes 
impact the filtering accuracy. For this we varied the percent of 
self-healing nodes from 0 to 50%. Keeping the number of 
nodes to 50 and the number of readings per node to also 50, 
we calculate the prediction accuracy of the healthy and 
corrupted nodes. The results are presented in Table I.  

We make the following observations. As the number of self-
healing nodes increases, the prediction accuracy of both 
healthy nodes and corrupted nodes decreases. However, where 

 
Fig. 2. Prediction accuracy for healthy nodes (left), corrupted nodes (right) 

TABLE I 
PREDICTION ACCURACY FOR SYNTHETIC SENSOR DATA MODEL 

        Percentage of self-healing nodes 
  0% 10% 20% 30% 40% 50% 

 Healthy nodes 0.98 0.96 0.95 0.97 0.96 0.95 
 Corrupted nodes 0.95 0.88 0.84 0.78 0.75 0.68 
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the change in healthy node prediction is minor (98% to 95%), 
corrupted node prediction suffers increasingly as the number 
of self-healing nodes increases (95% to 68%). This confirms 
our initial observation that the cluster distribution of self-
healing nodes is similar in nature to corrupted nodes. Hence it 
becomes difficult for the algorithm to pick corrupted nodes 
exclusively from the set of corrupted and self-healing nodes. 
The success of our approach, however, lies with the 
identification of healthy nodes, with accuracy greater 
than 90%. 

B. Real Sensor Datasets 
In order to test our models on real world sensor datasets, we 

use datasets from two sources: Intel Berkley Research 
Laboratory [16] and Labeled Wireless Sensor Network Data 
Repository (LWSNDR) projects [17]. Both projects represent 
the state of the art in sensor systems and collect measurements 
in very different environments. Hence, these datasets allow us 
to evaluate the accuracy of AR-HMM classification on 
representative and diverse sensor system data. 

First dataset is collected from 54 sensors deployed in the 
Intel Berkeley Research lab. The Mica2Dot sensors with 
weather boards collected time stamped topology information, 
along with humidity, temperature, light and voltage values 
once every 31 seconds. This dataset includes a log of about 
2.3 million readings collected from the 54 motes (mote is a 
sensor that is capable of doing some processing in addition to 
collecting and transmitting data), where data from some motes 
may be missing or truncated. 

Second dataset is collected from a simple single-hop and a 
multi-hop wireless sensor network deployment using TelosB 
motes. The data consists of humidity and temperature 
measurements collected during 6 hour period at intervals of 5 
seconds. For this evaluation, we are using the single hop 
labeled readings which consist of approximately 15,000 
entries. 

The first dataset is unlabeled. We have tested our anomaly 
detection algorithms with by visually inspecting the sensor 
data time series. The second dataset, is a labelled wireless 
sensor network dataset where label ‘0’ denotes normal data 
and label ‘1’ denotes an introduced event (anomaly). More 
details can be obtained from [18]. 

We assume that the sensor readings collected over a 

reasonable duration capture the normal patterns in the sensor 
data series. As a general rule, we have used 20% of the data 
points to work out the auto regression equations for the 
system. The auto regressive coefficients are calculated using 
the least squares method. Also, the same data points are used 
to calculate λ = (A, B, π) as defined under Problem 3 in 
Section 2. 

For comparison, we are using two popular classification 
algorithms ZeroR and Naïve Bayes along with our proposed 
AR-HMM model. Briefly, ZeroR is a useful predictor for 
determining a baseline performance, predicting mean for a 
numeric class and mode for a nominal class, and Naïve Bayes 
is a conditional probabilistic classifier based on Bayer’s 
theorem. The filtering accuracy to identify healthy nodes is 
given in Table II. 

Table II displays that as ZeroR provides a baseline 
accuracy, AR-HMM clearly surpasses Naïve Bayesian 
classification for correctly identifying the healthy sensors. We 
further describe our method’s accuracy using (1) number of 
false positives (detecting non-exist compromised nodes) and 
(2) number of false negatives (not being able to detect a 
compromised node) as our metrics. Specifically, the results in 
Table III below are presented as follows – the x/y number 
indicates that x out of y compromised nodes were detected 
correctly (corresponding to y-x false negatives) plus we also 
indicate the number of corresponding false positives. 

VI. CONCLUSION 
In this paper, we propose a method based on autoregressive 

hidden Markov models (AR-HMMs) for filtering out 

TABLE II 
OVERALL PREDICTION ACCURACY FOR REAL SENSOR DATA 

 Algorithm Accuracy  

Intel Berkley Research Lab  
Naïve Bayes 89.785 % 
ZeroR 85.543 % 
AR-HMM 97.231 % 

Labelled WSN Data Repository  
Naïve Bayes 90.754 % 
ZeroR 86.352 % 
AR-HMM 98.413 % 

 

TABLE III 
PREDICTION ACCURACY FOR HEALTHY AND COMPROMISED NODES INDIVIDUALLY 

 Algorithm Healthy nodes Compromised nodes 

Intel Berkley Research Lab  
Naïve Bayes 33/40 9/14 
ZeroR 30/40 8/14 
AR-HMM 37/40 11/14 

Labelled WSN Data Repository  
Naïve Bayes 12/16 3/5 
ZeroR 11/16 2/5 
AR-HMM 14/16 4/5 
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compromised nodes in a sensor network. We confirm through 
experimentation, based on revised Richardson’s temperature 
model, that our filtering method is quite accurate and 
identifies the healthy sensors with an accuracy greater than 
90%. We further used real sensor data from Intel Labs and 
WSN repository from UNC to calculate the prediction 
accuracy of AR-HMM approach as opposed to Naïve Bayes 
and ended up with encouraging results, with prediction 
accuracy as high as 97% 
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