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Abstract—The development of location-based services has
spread over many aspects of modern social life. This development
brings not only conveniences to users’ daily life but also
great concerns about users’ location privacy. In such services,
location privacy aware query processing that handles cloaked
regions is becoming an essential part in preserving user
privacy. However, the state-of-the-art cloaked-region-based query
processors only focus on handling rectangular regions, while
lacking an efficient and scalable algorithm for other complex
region shapes. Motivated by that problem, we introduce
enhancements and additional components to the location
privacy aware nearest-neighbor query processor that provides
efficient processing of complex polygonal and circular cloaked
regions, namely the Vertices Reduction Paradigm and the
Group Execution Agent. We also provide a new tuning
parameter to achieve trade-off between answer optimality and
system scalability. Experiments show that our query processing
algorithm outperforms previous works, in terms of processing
time and system scalability.

Index Terms—Complex cloaked region, database security
and integrity, group execution, location-based service, location
privacy, nearest-neighbor query.

I. INTRODUCTION

TO PRESERVE the LBS user’s location privacy, the
most trivial method is to remove the direct private

information such as identity (e.g., SSID). However, other
private information, such as position and time, can also be
used to violate the user’s location privacy [1]. In preventing
that, the researchers have recently introduced the Location
Middleware [2]. It acts as a middle layer between the user and
the LBS Provider to reduce the location information quality
in the LBS request. The quality reduction is performed by the
obfuscation algorithm which transforms the exact location to
be more general (i.e., from a point to a set of points [3], a
rectilinear region [4], [5], [6], [7], or a circular region [8], [9],
etc.). The request is then sent to the LBS Provider to process
without the provider knowing the user’s exact location. Due to
the reduction in location quality, the LBS Provider returns the
result as a candidate set that contains the exact answer. Later,
this candidate set can be filtered by the Location Middleware
to receive the request’s exact answer for the LBS user.

Consequently, to be able to process those requests, the
LBS Provider’s Query Processor must be able to deal with
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the cloaked region rather than the exact location. In this
paper, we propose a new Privacy Aware Nearest-Neighbor
(NN) Query Processor that extends Casper* [10]. Our query
processor can be embedded inside the untrusted location-based
database server [10], [11], or plugged into an untrusted
application middleware [2]. The query processor is completely
independent of the location-based database server in the LBS
Provider (as long as it supports basic functions such as range
query) and underlying obfuscation algorithms in the Location
Middleware (as long as the output is a cloaked region of
n-gon shape). Moreover, it also supports various cloaked
region shapes, which allows more than one single obfuscation
algorithm to be employed in the Location Middleware [2].
In addition, we introduce a new tuning parameter to achieve
trade-off between candidate set size and query processing
time. Finally, we propose an additional component for the
Location Middleware, the Group Execution Agent, to strongly
enhance the whole system’s scalability. The Group Execution
Agent will group queries of the same filter parameters (POI
type, keywords, etc.) that have adjacent or overlapped cloaked
region into one to reduce the number of queries sent to and
executed by the LBS Provider.

The contributions in this paper can be summarized as
follows:

– We introduce an enhanced Privacy Aware Nearest-
Neighbor Query Processor. With its Vertices Reduction
Paradigm (VRP), complex polygonal and circular cloaked
regions are handled efficiently in reasonable query
processing time. In addition, the performance can be
tuned through a new parameter to achieve trade-off
between candidate set size and query processing time.

– We propose an additional component for the Location
Middleware, the Group Execution Agent (GEA) and its
Group Execution (GE) algorithm, to enhance the whole
system’s scalability. The basic idea of the GEA is that we
group several queries of same filter parameters that have
adjacent or overlapped cloaked region into one to reduce
computational and communicational cost in the system.

– The applications of both Vertices Reduction Paradigm
and Group Execution Agent are not limited to the
scope of Privacy Aware Nearest-Neighbor Query. In
fact, VRP is able to serve as enhancing component for
any algorithms that need to process irregular shapes as
general polygons and GEA can be applied to scale up
systems that process multiple regions concurrently.
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– We provide theoretical and experimental evidences
to prove that our Privacy Aware Query Processor
outperforms previous ones in terms of both processing
time and system scalability.

The rest of the paper is organized as follows. In Section
2 and 3, we highlight the related works and briefly
review the cloaked-region-based Casper* Privacy Aware
Nearest-Neighbor Query Processor. Section 4 is dedicated
for the underlying system architecture. In Section 5, we
present two versions of the the proposed Vertices Reduction
Paradigm. For the sake of clarity of the first version, we also
provide proofs of accuracy and running examples. The Group
Execution Agent is discussed in Section 6. Then we present
our experimental evaluations in Section 7. Lastly, Section 8
will finalize the paper with conclusion and future works.

II. RELATED WORK

A. Location Privacy Preservation

To protect user privacy in LBS is to protect the user’s
location information, includes: identity, position and path.
Based on this classification, researchers have proposed
algorithms to preserve LBS user’s privacy against attackers.
The most trivial approach is to remove the information that
directly reveals the personal and private information, such as
identity (e.g., SSID), but other information, usually location
and time, the so-called Quasi-Identifier [1] can also indirectly
reveal the user identity. Thus, more complicated and advanced
algorithms are introduced for more privacy protection. The
algorithms can be classified into four categories as follows:

– Anonymity: to make user indistinguishable among (k−1)
other users for user identity protection [2], [12], [5],
[7]. However, this category of algorithm has weaknesses
where k does not necessarily determine the privacy of
users [13]. In anonymous LBS (e.g., navigation), this
category of algorithms aims for the protection of identity
privacy.

– Obfuscation: to make user location imprecise or
inaccurate or generalize the location into a region [8],
[4], [3], [6], [14], [15]. Generally, this process is done
by the means of perturbation, adding dummies, reducing
precision or location hiding. In LBS that require user
identity (e.g., paid LBS), this category of algorithms aims
at position privacy.

– Transformation: to map user location into another
location and repeatedly issue queries to process proximity
services [16].

– Encryption: this class of algorithms is based on
cryptography, the database server cannot know the data
in the query and result [17].

Each privacy algorithm has its own characteristics and
application domains. Hence, depending on what kind of
objects needing to be protected, privacy algorithms should be
chosen carefully and wisely to give the best protection to LBS
users. In that manner, [2] proposes a framework that maximize

(a) Set of Points (b) Polygon (c) Circle

Fig. 1. Cloaked Region Classification

LBS users’ privacy level by considering the user and service
context factors. Among the algorithms above, obfuscation
algorithms have obtained much interest because of their
intuitive concepts and simple implementations. Obfuscation
algorithms aim at decreasing LBS users’ location quality to
protect their privacy. To achieve that, from the exact LBS user
location (position), the algorithms generate a more general
cloaked region, of which the region shape can be very various,
from a discrete set of points to a polygonal region or a
circular region. Furthermore, the state-of-the-art algorithms
deal with not only the geometry of the region, but also its
geographic and semantic features. Recently, semantic aware
obfuscation algorithm in the PROBE framework [4], or the
database level obfuscation algorithm Bob-Tree [6], [15] also
consider sensitive features and unreachable region area in the
obfuscation process.

B. Cloaked Region Classification

As discussed in previous subsection, to protect the LBS
user’s location privacy, various obfuscation algorithms have
been proposed in order to reduce the quality of the user’s
location. This is done by transforming the user’s exact location
as a point to a more general location as a region. In general,
the cloaked regions’ shapes can be categorized into 3 different
types as follows:

– A set of points: as depicted in Figure 1a, this kind of
cloaked regions is proposed by [3], in which the exact
location p is transformed to a set of n points {p1, p2,
p3, . . . , pn} based on the concept of imprecision and
inaccuracy. In case of inaccuracy, the set of points will
not include the original exact location p.

– A polygonal region: this kind of cloaked regions is
generated by most of the obfuscation algorithms. The
exact location p will be generalized to a polygon
represented by an ordered list of points {p1, p2, . . . , pn,
p1}, which are the vertices of the polygon’s outer ring.
The polygonal region can be as simple as a rectangular
region [5], [14], [7] or as complex as an n vertices
rectilinear region [4], [6], [15]. For example, in Figure 1b,
the complex rectilinear cloaked region (solid black area)
is generated by Bob-Tree [15], a database level and
geographic aware cloaking algorithm, which considers
some parts of the map are unreachable (hatched area)
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such as lakes, mountains, etc. So the cloaked regions
will not include the unreachable parts, leads to their
indeterminate rectilinear shape.

– A circular region: as depicted in Figure 1c. In the works
of [8], the authors propose various obfuscation algorithms
to generalize an exact location p to a (c, r) circle, in which
c is the center and r is the radius. The radius r then can
be reduced, enlarged and the center c can be moved to
achieve better obfuscation for LBS user. Or in the works
of [9], the authors also provide an obfuscation algorithm
to generate a circular cloaked region from the LBS user’s
exact location with a random method.

C. Location Privacy Aware Nearest-Neighbor Query Proces-
sor

To support the privacy aware queries, recent research efforts
have been dedicated to deal with cloaked area processing. The
location privacy aware query processor is either embedded
directly into an untrusted location-based database server or
application middleware to process queries from LBS users
or a trusted third party (e.g., the Location Middleware). In
addition, to reinforce a higher level of user location privacy,
the query processor must support four basic types of query [10]
as follows:

– Public Query over Public Data.
– Private Query over Public Data.
– Public Query over Private Data.
– Private Query over Private Data.
In these circumstances, public query or data refers to objects

or their information that everyone knows or are willing to
be revealed (e.g., the position of POIs, the position of patrol
police car, ambulance or public services) while private query
or data mentions those whose access is limited (e.g., the user’s
exact position or private places).

Recently, [3] have proposed an obfuscation algorithm that
transforms an exact user location to a set of points in
a road network based on the concepts of inaccuracy and
imprecision. They also provide a nearest-neighbor query
processing algorithm. The idea is that the user will first send
the whole set of points to the server, the server will send back
a candidate set of nearest-neighbors. Based on that candidate
set, the user can either choose to reveal more information
in the next request for more accurate result or terminate the
process if satisfied with the candidate set of nearest-neighbors.
The other works by [11] and [9] respectively propose
algorithms to deal with circular and rectilinear cloaked regions.
Those works find the minimal set of nearest-neighbors based
on continuous nearest-neighbor search [18]. In a different
approach, Casper* only computes a superset of the minimal set
of nearest-neighbors that contains the exact nearest-neighbor,
in order to achieve trade-off between query processing time
and candidate set size for system scalability [10]. In addition,
Casper* also supports two more query types: Private Query
over Public Data and Public Query over Private Data.

TABLE I
CASPER* QUERY PROCESSING ALGORITHM NOTATIONS

Cloaked region A. Vertex v (v1, v2, . . . , vi, . . .vn).
Public
Object

Filter (NN) of vi ti
Distance viti dist(vi, ti)

Private
Object

Filter (NN) of vi Ati
Distance viAti min−max− dist(vi, Ati)

Among previous works, only Casper* supports Query over
Private Data, while the others either only support Query over
Public Data [3] or lack the trade-off for system scalability [11],
[9]. Moreover, Casper* keeps the exact location of LBS
users secret from the LBS Providers. However, Casper* is
only efficient in dealing with rectangular regions. While it
can handle polygonal cloaked regions, the application into
these cases needs evaluations and modifications. Moreover,
in case of systems like OPM [2], the Query Processor must
have the ability to deal with various kinds of cloaked region
because the system supports more than one single obfuscation
algorithm. Motivated by those problems, our proposed Privacy
Aware Nearest-Neighbor Query Processor offers the ability
to efficiently handle complex polygonal and circular cloaked
regions with its Vertices Reduction Paradigm and a new tuning
parameter for system scalability. Furthermore, we provide an
addition component for the Location Middleware, the Group
Execution Agent, to strongly enhance the whole system’s
scalability. Simply saying, the GEA groups several queries that
have adjacent or overlapped cloaked region into one to reduce
computational and communicational cost in the system.

III. THE CASPER* PRIVACY AWARE NEAREST-NEIGHBOR
QUERY PROCESSOR

In this section, let us briefly review the Casper* algorithm,
start with its terms and notations (Table I). For each vertex
vi of the cloaked region A, its nearest-neighbor is called a
filter, denoted as ti if that nearest-neighbor is a public object
(public nearest-neighbor) (Figure 2b, t1, t2 of v1, v2). In case
the nearest-neighbor is private, it is denoted as Ati. A private
object is considered as a private nearest-neighbor if it has the
minimum distance from its cloaked region’s furthest corner to
vi (Figure 2d, At1). The distance between a vertex and its
filter is denoted as dist(vi, ti) (= viti) (Figure 2b, distance
v1t1 and v2t2 in case of public nearest-neighbor) or min −
max−dist(vi, Ati) (= viAti) (Figure 2d, distance from v1 to
the furthest corner of At1, in case of private nearest-neighbor).
For each edge eij formed by adjacent vertices vi, vj , a split−
point sij is the intersection point of eij and the perpendicular
bisector of the line segment titj (Figure 2b, s12). For the
purpose of the Casper* Nearest-Neighbor Query Processing
algorithm [10], given a cloaked region A, it is to find all the
nearest-neighbors of all the points (1) inside A and (2) on
its edges. The algorithm for Query over Public Data can be
outlined in the three following steps below.

STEP 1 (Filter Selection): We find the filters for all of
cloaked region A’s vertices.
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(a) Trivial Edge (b) Trivial Split-Point

(c) Stopping Criterion (d) Private Data

Fig. 2. The Casper* algorithm

STEP 2 (Range Selection): For each edge eij of A,
by comparing vi, vj’s filters ti and tj , we consider four
possibilities to find the candidate nearest-neighbors and range
searches that contain the candidate nearest-neighbors:

– Trivial Edge Condition: If ti = tj (Figure 2a, t1 = t2),
ti (tj) is the nearest-neighbor of all the points on eij , so
we add ti (tj) into the candidate set.

– Trivial Split-Point Condition: In this case, ti 6=
tj , but split-point sij of eij takes ti, tj as its
nearest-neighbors (Figure 2b). This means ti and tj are
the nearest-neighbors of the all points on visij and sijvj
respectively. So we add ti, tj into the candidate set.

– Recursive Refinement Condition: If two conditions above
fail, we will consider to split the edge eij into visij
and sijvj , then we apply STEP 2 to them recursively.
A parameter refine is used to control the recursive
calls for each edge. It can be adjusted between 0 and
∞ initially in the system. For each recursive call, refine
will be decreased by 1, and when it reaches 0, we will
stop processing that edge. In this case, refine > 0, we
decrease it by 1 and process visij and sijvj recursively.

– Stopping Criterion Condition: When refine reaches 0,
we add the circle centered at sij of a radius dist(sij , ti)
as a range query into the range queries set R and stop
processing current edge (Figure 2c).

STEP 3 (Range Search): we execute all the range queries in
R, and add the objects into the candidate set. As a result, the
candidate set contains nearest-neighbors for all the points (1)
inside cloaked region A and (2) on its edges. After that, the
candidate set will be sent back to the Location Middleware to
filter the exact nearest-neighbor for the LBS user.

For Query over Private Data, STEP 2 is similar to Query
over Public Data, with some modifications. Instead of adding
Ati directly into the candidate set, we will have to add a circle
centered at vi of a radius min−max−dist(vi, Ati) as a range
query into the range queries set R (Fig. 2d, center v1 and the
radius of distance from v1 to the furthest corner of At1). The
same behavior is applied to vj and sij of edge eij .

IV. SYSTEM ARCHITECTURE

Our underlying system architecture consists of two main
components, (1) the Location Middleware and (2) the LBS
Provider, as depicted in Figure 3.

The Location Middleware manages users’ exact positions
and their privacy profiles. Upon joining the system, the
user agrees to entrust the Location Middleware with the
user’s precise positions. To preserve the user’s location
privacy, the user will specify a privacy profile which indicates
the desired privacy requirements in interacting with other
untrusted components (e.g., the LBS Provider). This privacy
profile may include some information such as k (k-anonymity),
the minimum and the maximum area of the cloaked regions, or
other parameters required by the privacy protection algorithm
and the context (time, place, component, etc.) to activate
the corresponding profile, etc. In our system, the Location
Middleware, according to the privacy profile, will transform
the user’s precise position into a cloaked region. More than one
spatial cloaking algorithm can be employed at the Location
Middleware to provide the user with context aware spatial
cloaking [2], which selects the best cloaking algorithm given
current context of the user. When the user sends an LBS
request to the Location Middleware, the request will be
forwarded to the LBS Provider with the cloaked region as
the input. The LBS Provider will calculate a candidate set of
answers based on the cloaked region and send the set back
to the Location Middleware. The Location Middleware will
then filter the above set for the exact answer and send it
to the user. Besides, our Location Middleware also include
an additional component, the Group Execution Agent, which
will group the LBS queries before sending them to the LBS
Provider to strongly enhance the whole system’s scalability.

The LBS Provider provides LBS query answers for the
Location Middleware. Its main component is the Location
Privacy Aware Query Processor. The processor accepts the
cloaked region as input instead of the precise position. It will
compute a candidate set of answers using the cloaked region
and the spatial objects in the database. After that, the LBS
Provider will send the set back to the Location Middleware.
In this manner, the LBS Provider receives only the cloaked
regions, not the exact positions of LBS users. Thus, even
if the adversaries gain control over the LBS Provider, they
still cannot compromise the LBS users’ location privacy. Our
Privacy Aware Query Processor is an extended version of
the state-of-the-art location privacy aware query processor
Casper*. Besides the ability to deal with the four privacy aware
query types, it can also efficiently handle complex polygonal
cloaked regions, by utilizing the Vertices Reduction Paradigm.
Our processor also supports one more type of cloaked region,
the circular cloaked region, by transforming it into a polygonal
cloaked region. Moreover, the performance of the processor
can be tuned through a new parameter, to achieve a trade-off
in system scalability, in terms of both query processing time
and query candidate set size.
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Fig. 3. System Architecture

TABLE II
QUERY PROCESSING ALGORITHM RUNTIME COMPLEXITY UTILIZING

VERTICES REDUCTION PARADIGM

Rectangle (4Qt4 + 4(2refine − 1)Qt4) (1)
Polygon (nQtn + n(2refine − 1)Qtn) (2)

VRP (mQtm +m(2refine − 1)Qtm) (3)
# of vertices (4, m, n) 4 ≤ m ≤ n
Query runtime (Qt∗) Qt4 ≤ Qtm ≤ Qtn

In our system, only the Location Middleware and the users
themselves are trusted with the exact location information. The
LBS provider only receives cloaked regions, which will ensure
the users’ location privacy. Furthermore, to simplify the system
architecture, we assume that the networks between parties are
secured and all the pre-processes (including service and user
profile registration, trade-offs between participating parties,
pay-offs, validation, authentication, authorization, etc.) are
already well prepared. It is also worth noting that our proposed
enhancements do not affect (not improve and not worsen)
the security and privacy aspect of the underlying privacy
protection algorithms and query processing processor as we
mainly focus on improving the performance and scalability of
the system.

V. VERTICES REDUCTION PARADIGM

A. The Polygonal Cloaked Region Problem

As discussed previously, among the polygonal cloaked
regions, there are cloaked regions that are complex, which
means they have much more than 4 vertices. They can either
(1) come directly from the semantic and geographic aware
obfuscation algorithms, or (2) they are the group queries’
regions that the Group Execution Agent of the Location
Middleware sends to the LBS Provider.

For a rectangular cloaked region, the Casper* private
query processing algorithm’s runtime complexity can be
calculated as follows. (1) STEP 1 needs to run exactly 4
nearest-neighbor queries to find 4 filters for the 4 vertices
of the rectangular cloaked region, so the runtime is 4Qt4
(with Qt4 is the time of a nearest-neighbor query). (2) In
STEP 2, for each edge of the rectangular cloaked region,
we need (2refine − 1) nearest-neighbor queries to find the
candidates and range searches for STEP 3, so the runtime
is 4(2refine − 1)Qt4. Hence, the total algorithm runtime
is (4Qt4 + 4(2refine − 1)Qt4) (worst case). Accordingly,

to process a polygonal cloaked region with n vertices, the
algorithm’s runtime complexity is (nQtn+n(2refine−1)Qtn).

Although the Casper* Privacy Aware Query Processor can
deal with polygonal cloaked region A that has n vertices
(n-gon), its runtime significantly depends on A’s number of
vertices (STEP 1) and edges (STEP 2). As shown in Table II’s
formula 1 and 2, to process an n-gon, Casper* suffers from
two aspects. (1) Under the same number of objects in the
spatial database and the same access method, the processing
time of STEP 1 increases. Because the algorithm has to
find n filters for n vertices of the n-gon, it needs to run
more nearest-neighbor queries (4Qt4 ≤ nQtn). Besides, the
calculation of min − max − dist(vi, Ati) in Query over
Private Data also increases the nearest-neighbor query runtime
for the n-gon because we have to process n vertices of
the targets before we can determine their furthest corners
(Qt4 ≤ Qtn). (2) With the same refine value, the processing
time of STEP 2 increases as it has to process more edges
(4(2refine − 1)Qt4 ≤ n(2refine − 1)Qtn).

B. The Vertices Reduction Paradigm
To ease the polygonal cloaked region problem, we introduce

the Vertices Reduction Paradigm, in which we simplify the
polygon so that it has as fewer vertices as possible before
processing it with the Casper* algorithm. For that purpose, the
Ramer-Douglas-Peucker (RDP) algorithm is employed [19],
[20]. For each private object (n-gon) in the database, we
maintain only a vertices reduced version (VRV, m-gon, m ≤
n) of that private object. The vertices reduced version is
generated by the Ramer-Douglas-Peucker algorithm and it
will be stored inside the database until invalidated, e.g. the
user gets a new original cloaked region. For nearest-neighbor
query processing, we will use the vertices reduced versions
instead of the original ones to reduce processing time (m ≤ n
and Qtm ≤ Qtn, as depicted in formula 3 of Table II).
Accordingly, in the Vertices Reduction Paradigm, the query
processing time is only (mQtm + m(2refine − 1)Qtm). By
using the Vertices Reduction Paradigm, we can achieve at most
(nQtn/mQtm) speedup in query processing time. In Query
over Public Data, Qtn = Qtm so the speedup is at most
(n/m). In Query over Private Data, Qtn/Qtm = n/m, so
the maximum speedup is (n/m)2.

The purpose of the Ramer-Douglas-Peucker algorithm,
given an n-gon (ABCDEFGHIJ in Figure 4a), is to find a
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(a) Polygon (b) Circle

Fig. 4. The Polygonal and Circular Vertices Reduction Versions

subset of fewer vertices from the n-gon’s list of vertices. That
subset of vertices forms an m-gon that is simpler but similar
to the original n-gon (m ≤ n). The inputs are the n-gon’s list
of vertices and the distance dimension ε > 0. First, we find
the vertex that is furthest from the line segment with the first
and last vertices as end points. If that furthest vertex is closer
than ε to the line segment, any other vertices can be discarded.
Otherwise, given the index of that vertex, we divide the list
of vertices into two: [1..index] and [index..end]. The two lists
are then processed with the algorithm recursively. The output
is the m-gon’s list of vertices (Figure 4a, ACFJ).

In next subsections, we will discuss two different
approaches to utilize the vertices reduced versions. The first
one is to use the vertices reduced version directly. The
second one, which is better than the first, is to use the
bounding polygon of the vertices reduced version. In both
approaches, the Ramer-Douglas-Peucker algorithm’s overhead
in computing the vertices reduced versions is insignificant
compared to the total processing time of the query. As depicted
in Figure 4a, the dotted polygon ABCDEFGHIJ is the
original n-gon while ACFJ and KLMN is the m-gon of the
first and second approach respectively. For a circular region,
the vertices reduced version is its regular bounding polygon
(Figure 4b, ABDEF ) and we use the distance from another
vertex to its center plus the radius as min−max− dist of it
and that vertex in private nearest-neighbor search (SC + r in
Figure 4b, where S is the processing vertex, C is the center of
the processing private target object and r is the private target
object’s radius).

C. The Direct Vertices Reduction Paradigm

In this approach, by using the m-gons as the cloaked regions
of the query and the private objects, we reduce the query
processing time in STEP 1 and STEP 2 of the Casper*
algorithm (Table II, formula 3). However, since we use an
approximate version of the original cloaked region, we need
some modifications in STEP 2 to search for nearest-neighbors
of the parts of n-gon that are outside the m-gon (e.g., ABC
in Figure 4a). During the Ramer-Douglas-Peucker algorithm’s
recursive divisions, for each simplified edge, we maintain the
distance of the furthest vertex that is not inside the m-gon (B,
E and H in Figure 4a). The list’s size is at max m. We denote

(a) Trivial Condition (+d) (b) +ε for Query over Private Data

(c) Range searches

Fig. 5. The Query Processing algorithm modifications

those distances as d (Figure 4a, distance from H to FJ). The
modifications (Table III) make use of the distance d and only
apply to the simplified edges that the discarded vertices are
not all inside the m-gon, e.g. AC, CF and FJ in Figure 4a.

1) Modifications for query over public data: They can be
summarized as follows:

– Trivial Edge (TE) and Split-Point (TSP) Condition:
using the corresponding distance d maintained above,
we add two range queries centered at vi, vj of radii
dist(vi, ti) + d, dist(vj , tj) + d into the range queries
set R. As in Figure 5a, given t is the nearest-neighbor of
simplified edge v1v2, d is the distance of the furthest
discarded vertex of edge v1v2, we need to add two
range queries center at v1, v2 with respective radius of
v1t + d and v2t + d. For Trivial Split-Point Condition,
we add one more range query centered at sij of a radius
dist(sij , ti) + d into R. As shown in Figure 5c, given
that E is the nearest-neighbor of the simplified edge AB
(from edge AC and AB), the nearest-neighbor E′ of
any point H on BC (C is a discarded vertex outside
the m-gon) must be inside the hatched circle centered at
H of radius HE (HE′ ≤ HE), which is always inside
the two bold circles created by the enlarged (+d) range
queries. It is also the same for any points in ABC.

– Stopping Criterion Condition (SC): similarly, we increase
the range query’s radius by d to ensure including the
nearest-neigbors of the outside parts of the original n-gon.

2) Modifications for query over private data: Because the
private objects are also simplified, we will increase the search
radius by d + ε for not missing them as candidate nearest-
neigbors. As depicted in Figure 5b, consider that other private
objects are also vertice-reduced versions, regarding vertex v
of the m-gon in the query processing phase, the range query
(+d + ε) reaches the simplified edge AB of another private
object while the range query (+d) does not.

3) Proof of accuracy: Let us consider a simplified edge as
in Figure 6a, where the set of vertices A,B,C,D,E is reduced
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TABLE III
ALGORITHM MODIFICATIONS SUMMARY

Cases Ranges (center, radius)

Public
Data

TE (vi, vit+ d), (vj , vjt+ d)
TSP (vi, viti + d), (vj , vjtj + d), (sij , sijti + d)
SC (vi, viti + d), (vj , vjtj + d), (sij , sijti + d)

Private
Data

TE (vi, viAt+ d+ ε), (vj , vjAt+ d+ ε)
TSP (vi, viAti + d+ ε), (vj , vjAtj + d+ ε), (sij , sijAti + d+ ε)
SC (vi, viAti + d+ ε), (vj , vjAtj + d+ ε), (sij , sijAti + d+ ε)

to edge AE. The box AFGE (AF = EG = furthest −
distance− d) contains all the outside parts of the simplified
edge in this case. If the nearest-neighbors are inside the m-gon,
they are already included in the candidate set in STEP3. So
we only prove the correctness of STEP2, to find the candidate
outside.

Query over Public Data In the trivial edge condition,
where there is only one nearest-neighbor T for edge AE, we
show that if T is not the nearest-neighbor of all the points in
AFGE, the real nearest-neighbor Y must also be included
in the range searches. There are three possibilities of T ’s
position:

– On the edge AE (1).
– Inside the box AFGE (2).
– On the edge FG or outside the box AFGE (3).
First of all, in three cases, the range searches always cover

the whole box AFGE, so we only prove that for edge FG,
if T is not the nearest-neighbor, the real nearest-neighbor Y
must be included in the range searches.

For vertex F , if there is another nearest-neighbor Y , it must
satisfy FY < FT . Thus, the point Y is included in the range
search centered at A, radius AF +AT .

As shown in Figure 6a, A, F , T2 and T3 are aligned, given
AT3 = AT1, FT2 = FT, TT1 = AF , the segment FT2 is
always in the segment AT3. We can see that the circle center
at A, radius AT3 always contains the circle center at F , radius
FT2, which always contains the circle center at F , radius FY .
Hence, for any point Y that is closer to F than T , it will always
be included in the circle center at A, radius AT1.

It is similar to vertex G and all the points on edge FG. So
if there is another nearest-neighbor Y of edge FG, it must be
included in the range centered at A, radius AT +AF and the
range centered at E, radius ET + EG.

In the cases of Split-Point or Stopping Criterion Condition,
the problems can be considered as the case of Trivial
Edge Condition above, by dividing the problem into two
sub-problems of edges AS and SE.

Query over Private Data We will provide two proofs in
this part, (1) the real nearest-neighbor is included in the range
searches and (2) the vertices-reduced private target objects will
not be missed in comparison to the original ones.

For the first proof, similarly, the cases of Split-Point or
Stopping Criterion Condition can also be considered as the
case of Trivial Edge condition. Thus, we only show this case
to prove the correctness of the modifications:

(a) Public Data (b) Private Data: Case 1

(c) Private Data: Case 2

Fig. 6. Proof of accuracy: Query over Public/Private Data

– On the edge AE (1).
– Inside the box AFGE (2).
– On the edge FG or outside the box AFGE (3).
Similar to the proof of query over public data, the range

searches cover the whole box and for both vertex F and
G. As shown in Figure 6b, the real nearest-neighbor Y is
always included in the range searches. So there is no candidate
missing in the algorithm.

For the second proof, given the private target object OPRS,
which is a vertice-reduced version of OPQRS. As the set
Q,R, S is simplified to edge QS. Let us consider two cases,
as shown in Figure 6c:

– Without the enlargement +ε, originally, the private target
OPQRS will intersect with this range search. But the
vertice-reduced version OPQS will not.

– With the enlargement +ε, both the private target
OPQRS and the vertice-reduced version OPQS will
intersect with this range search.

4) Running example: Let us briefly go through a simple
running example to illustrate the algorithm more clearly. First,
as depicted in Figure 7a, given an n-gon ABCDEFG, we
process it with RDP, the result is the m-gon ADFG. Among
all the edges (AD, DF , FG and GA) of the new m-gon,
only AD and DF are simplified edge. Hence, the Casper*
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(a) RDP Algorithm (b) Public Objects

(c) edge AD (d) edge DF

Fig. 7. Running Example: Private Query over Public Data

algorithm can be applied normally to edge FG and GA. The
modifications will only be applied for edge AD and DF .

Query over Public Data Figure 7b shows the public objects
related to the m-gon ADFG. In STEP1, the filters are found
as follows.
A gets the filter T1 and T5 (AT1 = AT5), D gets the filters

T2 and T3 (DT2 = DT3), F gets the filter T3 and T4 (FT3 =
FT4) and G gets the filter T4 and T5 (GT4 = GT5).

Figure 7c depicts the processing result of edge AD in
STEP2. The distance from B to edge AD is used as distance
d for this edge processing step. As A and D get different
filters (T1 and T2), a split-point S is found. We add 3
search ranges (1) centered at A, radius AT ′

1, (2) centered
at D, radius AT ′

2 and (3) centered at S, radius AT ′
S , where

T1T
′
1 = T2T

′
2 = T1T

′
S = d. Figure 7d depicts the processing

result of edge DF . Similarly, distance d is the distance from
E to edge DF . As D and F get the same filter T3, we add 2
search ranges centered at D, radius DT ′

3 and centered at F ,
radius FT ′′

3 , where T3T ′
3 = T3T

′′
3 = d.

For edge FG and AG, as the two vertice of both edges
get the same filters (T4 and T5), T4 and T5 are added into
candidate set.

In STEP3, we add all objects inside ADFG (T6, T7, T8)
into the candidate set. We also find all the objects inside the
range searches found in STEP2.

Query over Private Data Figure 8a shows the private
objects related to ADFG. The filters found in STEP1 are
(At1 and At4 for A), (At1 and At2 for D), (At2 and At3 for
F ) and (At3 and At4 for G).

Figure 8b shows the range searches added in STEP2 for
edge AD and DF . We add 2 range searches for each edge,
(centered at A, radius AT ′

1, TT ′
1 = d + ε) and (centered at

D, radius DT ′
2, TT ′

2 = d + ε) for edge AD, (centered at D,
radius DT ′

3, TT ′
3 = d + ε) and (centered at F , radius DT ′

4,
TT ′

4 = d+ ε) for edge DF .

(a) Private Objects

(b) Enlarged radius

Fig. 8. Running Example: Private Query over Private Data

For edge FG and GA, as shown in Figure 8b, we process
them normally with Casper* and gets another 2 range searches
for each edge, (centered at F , radius FT5) and (centered at
G, radius GT6) for edge FG, (centered at G, radius GT7) and
(centered at A, radius AT8) for edge GA.

In STEP3, we add all private objects that intersect with the
range searches added in STEP2 into the candidate set.

D. The Bounding Vertices Reduction Paradigm

One characteristic of the m-gon generated by the
Ramer-Douglas-Peucker algorithm is that it may not
contain the original n-gon. In this approach, we want to
ensure the m-gon contains the original one. During the
Ramer-Douglas-Peucker algorithm’s recursive divisions, for
each simplified edge (m edges), we maintain the furthest
vertex that is not inside the m-gon (B, E and H in Figure 4a).
After that, we calculate the m lines that are parallel to the
respective edges of the m-gon and through the respective
furthest vertices in the list (e.g., KL, LM , MN and NK
in Figure 4a). The intersection of those lines forms a new
m-gon that contains the original n-gon inside it (Figure 4a’s
KLMN ). Therefore, the candidate set of the simplified m-gon
is a superset of the original n-gon without directly modifying
the Casper* query processing algorithm.

Although the first approach reduces the query processing
time much, it suffers from the moderate increase of the
candidate set size. Differently, the second approach achieves
both better candidate set size and query processing time
than the first one. Firstly, we can add the filters directly
into the candidate set without the risk of missing the exact
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nearest-neighbor because the simplified m-gon contains the
original n-gon (no outside parts). Secondly, although the range
query’s radius is indirectly enlarged through the enlargement
of the original n-gons to the bounding m-gons, it is kept
minimum as +d + d, an indirect +d of the cloaked region
and another +d of the private object. Thus the number of
results for each range query is also reduced in comparison to
the first approach. Furthermore, the reduction in number of
range queries also leads to a slight reduction of processing
time.

E. The Distance Dimension ε as Vertices Reduction Paradigm
Tuning Parameter

The Total Processing Time (T) of a query consists of three
components. (1) The Query Processing Time (TQ), which is
for the Query Processor to compute the candidate set. In the
Vertices Reduction Paradigm, TQ also includes the overhead of
the Ramer-Douglas-Peucker algorithm to simplify the query’s
cloaked region. (2) The Data Transmission Time (TX ), which
is for the candidate set to be read from the objects database and
transmitted to the Location Middleware for nearest-neighbors
filtration. (3) The Answers Filtration Time (TF ), which is for
the candidate set to be filtered for the exact nearest-neighbor
of the query request. TQ is monotonically decreasing with
the decrease of the number of vertices, while TX and TF are
monotonically decreasing with the decrease of candidate set
size. Thus, we can utilize the distance dimension ε as a tuning
parameter for Vertices Reduction Paradigm since it affects the
number of vertices in the vertices reduced versions and the
search radius of range queries in the range query set R. As a
result, a large value of ε leads to less number of vertices and
less query processing time, but larger candidate set size. We
will consider two cases in respect to the ε value: (1) TQ >
TX+TF . Initially, the ε is too small that query processing takes
too much time. To resolve this, we must increase ε for fewer
vertices and edges in query processing. (2) TQ < TX + TF .
This indicates the candidate set size is too big because the
range searches’ radius is too large that (TX + TF ) is longer
than TQ. We have to decrease ε to reduce the radii. Thus, in
order to find an optimal value of ε for the best T , we increase
ε until it reaches the optimal point O (Figure 9a).

As discussed previously, by utilizing VRP, we can achieve
at most (n/m) speedup of Query Processing Time in Query
over Public Data and (n/m)2 speedup in Query over Private
Data. Thus, the total decrease in Query Processing Time TQ
is accordingly (1 − m/n)TQ (Query over Public Data) and
(1−m/n)2TQ (Query over Private Data).

Let us consider a uniform-distributed data set, if the distance
between public objects is u, the distance from a vertex to its
nearest public object is (u

√
2/2), we denote this distance as

dpub (dist). Accordingly, if the longest edge of the bounding
rectangle of the private objects is b, so the distance from
a vertex to its nearest private object is ((u + b)

√
2/2), we

denote this distance as dpri (min − max − dist). In the

(a) The tuning parameter ε

(b) The bound of candidate set

Fig. 9. Performance tuning

Vertices Reduction Paradigm, the increase in candidate set
size depends on the difference of the areas covered by itself
and the original Casper*. In the original Casper*, the area
covered is at least less than the inner bounding polygon of
the original polygon, as depicted in Figure 9b (ABCD).
Meanwhile, in the Vertices Reduction Paradigm, the area
covered is at most the polygon enlarged from the outer
bounding polygon of the original one, as depicted in Figure 9b
(EFGH). The reason of this enlargement is to cover the
area of the range queries in STEP 2. As the distance in the
respective parallel lines of the inner and the outer bounding
polygon is at most 2ε and the range query’s radius is at
most (dpub + ε) (for Query over Public Data) and (dpri +2ε)
(for Query over Private Data). Thus the area difference is at
most the difference between the two polygons above, which
is at least C(dpub + 3ε) for Query Over Public Data and
C(dpri + 4ε) for Query over Private Data, with C is the
perimeter of the enlarged polygon (EFGH in Figure 9b).
Therefore, for Query over Public Data, the total time increase
is (C/u+1)((d+3ε)/u+1)(tX+tF ), with tX and tF is time
to transmit and filter one candidate. Respectively, the total time
increase is (C/u + 1)((d + 4ε)/u + 1)(tX + tF ) for Query
over Private Data. By collecting the required information (u,
average of b, and average of C) of the formula above, we can
explain and consider the impact of the increase in candidate set
size of the Vertices Reduction Paradigm and adjust the distance
dimension ε for better system performance. In general, the
impact of the Vertices Reduction Paradigm is summarized in
Table IV.

It is worth noting that the Vertices Reduction Paradigm
works best when the query processing time is much longer
than the data transmission and data filtration time (TQ >>
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TABLE IV
SYSTEM PERFORMANCE IMPACT UTILIZING

VERTICES REDUCTION PARADIGM

Public (1−m/n)TQ -(C/u+ 1)((d+ 3ε)/u+ 1)(tX + tF ) (1)
d = dpub = (u

√
2/2)

Private (1−m/n)2TQ -(C/u+ 1)((d+ 4ε)/u+ 1)(tX + tF ) (2)
d = dpri = ((u+ b)

√
2/2)

Fig. 10. Effective grouping with R-Tree

TX + TF ), which means the system cannot provide high
computational power. In that case, the paradigm will simplify
the polygons to reduce the query processing time. But it will
also increase the candidate set size to ensure the inclusion of
the exact answer, leads to the increase in data transmission
and data filtration time. Hence, the best situation to apply
the Vertices Reduction Paradigm is that the system has fast
read access and high network bandwidth so the increase in
data transmission time will not cancel out the benefits of the
paradigm. The faster read access and the higher the network
bandwidth is, the better effect the Vertices Reduction Paradigm
can achieve.

VI. GROUP EXECUTION AGENT

As shown in Figure 10, there are many queries of same filter
parameters with adjacent and overlapped regions at a time (the
dotted regions), or even better, a query’s region is contained
inside another’s. Obviously, such queries share a part of or
the whole candidate set. To take advantage of that, we add
one additional component, the Group Execution Agent (GEA),
into the Location Middleware. We also propose the Group
Execution (GE) algorithm for the Agent. The Group Execution
Agent will group as many queries as possible for one query
execution before sending them to the query processor (group
N queries into K group queries, K ≤ N , i.e., group 9 queries
to 3 groups as shown in Figure 10, the bold G1,2,3 are used
as cloaked regions in nearest-neighbor queries). The query
processor will calculate the candidate set for the whole group
as one single query. After that, the Location Middleware will
filter the exact answer from the group query’s candidate set
for each query in the group.

TABLE V
QUERY PROCESSING ALGORITHM RUNTIME COMPLEXITY UTILIZING

GROUP EXECUTION AGENT

VRP N(TQ + TX) +NTF (1)
GEA K(TQ + T ′X) +NT ′F (2)

# of queries (N ,K) K ≤ N
Average TX time (TX , T ′X ) KT ′X ≤ NTX

Algorithm 1 Group Execution Algorithm (list region,
maxA)

1: list group← {}
2: for all region ri in list region do
3: min a←∞; min d←∞; min rj ← null
4: for all region rj 6= ri do
5: a← bound area(ri, rj);

d← intersect area(ri, rj)
6: if a < min a and a < maxA then
7: min a← a; min d← d; min rj ← rj
8: end if
9: end for

10: list group← list group∪{(ri,min rj , d,min a)}
11: end for
12: sort(list group) by d descending and a ascending
13: list grouped region← {}
14: for all group (ri, rj , d, a) in list group do
15: if ri is not grouped then
16: grouped region← null
17: if rj is not grouped then
18: grouped region← group(ri, rj);

mark grouped(ri); mark grouped(rj)
19: else
20: grouped region← ri; mark grouped(ri)
21: end if
22: list grouped region←

list grouped region ∪ {grouped region}
23: end if
24: end for
25: return list grouped region

The Group Execution algorithm is outlined in Algorithm 1.
Its purpose, given a list of query regions (of size N ) and a
parameter maxA, is to group the regions in the list into K
grouping regions (K ≤ N) of which areas are smaller than
maxA. First, we find the best region pairs (ri, rj) that have
the least enlargement in area when we group them together,
the area a of the grouping regions must be less than maxA.
For each pair, we also compute the intersection area d, and
put all of them into list(ri, rj , a, d). Then we sort the list by
d : descending, a : ascending and put the queries into group
queries accordingly. The main reasons for this list computation
and sorting are as follows. (1) a ≤ maxA. We want to control
the areas of the final grouping regions so that they will not
be too large, leads to a large candidate set for each group
query and long transmission time. (2) Sort list(ri, rj , a, d)
by d : descending, a : ascending. We want the cloaked
regions of the queries in a group has maximum overlapping
area since the larger intersection area, the larger number of
common candidates. If two or more groups have the same
intersection areas, we will prioritize the group that has smaller
union area, according to reason 1.

The grouping regions are the bounding regions of each
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group’s regions and will be used as the cloaked regions of
those group queries in nearest neighbor query processing. The
group query’s candidate set is a superset of the candidate
sets of the queries in the group (as the final region contains
all the regions in the group), so the Group Execution
Agent does not miss any exact nearest neighbor of those
queries. Thus, the Group Execution Agent does not affect
the accuracy of the query processing algorithm. To sum up,
from N queries (q1, q2, q3, ..., qn), we create K group queries
(g1, g2, g3, . . . , gk). Then we send the K group queries to the
query processor to compute their candidate sets. From each
group query’s candidate set, we calculate the exact answer for
each query in the group and send it back to the LBS user.

The system benefits from the Group Execution Agent as
shown in Table V. (1) The query processing time for each
group queries is the same as a single query (TQ) because we
only execute the group query once with the grouping region as
input. Thus, the sum of all queries’ processing time decreases
(KTQ ≤ NTQ). This also leads to the decrease of average
query processing time. (2) The group query’s candidate set
size increases because it is a superset of the candidate sets
of those queries in the group, but the average transmission
time decreases as we only transmit the common candidates
once (as KT ′

X ≤ NTX ). The average filtration time increases
(T ′

F ≥ TF ), but it is minor in comparison to the benefits above.
Furthermore, to achieve reasonable runtime, the algorithm’s

input list must satisfies two conditions: (1) the list’s regions
are adjacent to each other for easier grouping, (2) the list
size is small enough to avoid scalability problem because
the algorithm’s runtime complexity is O(N2). To find those
suitable lists, we maintain an R-Tree [21] in the Location
Middleware. The R-Tree is not the fastest spatial access
method, but its index criterion is that the directory rectangle’s
area is minimized which suits the Group Execution Agent the
best. When a query is sent to the Middleware, its cloaked
region is indexed by the R-Tree. By finding the R-Tree’s
nodes of which the directory rectangle’s area is smaller than
a predefined area value kmaxA, we will get the suitable lists
from those nodes’ regions. For example, in Figure 10, we
find two suitable lists from the nodes D2 and D3’s regions
(given D1’s area exceeds kmaxA). Later, the algorithm returns
grouping regions G1, G2 and G3, that reduces the number
of queries from 9 to 3. The runtime complexity is now only
O(n21+n

2
2+ . . .+n

2
d), with n1 to nd is the number of regions

in the directory rectangles. Because (n1 + . . .+ nd = N), so
O(n21 + n22 + . . . + n2d) < O(N2). In this case, we sacrifice
the actual best combinations because we only run the Group
Execution algorithm on each suitable list instead of all queries
in the system at that time. But by that trade-off, we achieve
reasonable runtime with nearly best results.

In fact, the Group Execution Agent’s speedup effect is
dependent of how much overlapped the regions are. The worst
case could be that we cannot group any query but still have the
overhead of the R-Tree and the Group Execution algorithm.
However, in most cases, when the number of queries is large

enough, the Group Execution Agent does strongly reduce
the system’s average query processing and transmission time
and improve the system scalability. Furthermore, it is also
worth noting that the grouping regions are complex polygonal
regions since they are the bounding of all cloaked regions
in each group. After the grouping regions are sent to the
query processor, to reduce total processing time, the Vertices
Reduction Paradigm will simplify them before calculating the
candidate set. In other words, the Group Execution Agent and
the Vertices Reduction Paradigm are complements for each
other. The Group Execution Agent eases the drawback of the
candidate set size of the Vertices Reduction Paradigm. The
Vertices Reduction Paradigm reduces the total processing time
when the query processor calculates the candidate set for the
grouping regions. Together, they strongly enhance the whole
system’s performance and scalability.

VII. EXPERIMENTAL EVALUATIONS

A. Overview

In this section, we evaluate both two Vertices Reduction
Paradigm approaches and the Group Execution algorithm for
the Private Query over Public and Private Data. The Vertices
Reduction Paradigm approaches are evaluated with respect to
the tuning parameter ε. For all two types of private query, we
compare our algorithms with the Casper*, the performance
evaluations are in terms of total processing time and candidate
set size. We will also examine the system’s average total
processing time speedup and candidate set size reduction ratio
in case of with and without the Group Execution Agent in the
Location Middleware.

TABLE VI
EXPERIMENTAL SETTINGS

Cell area 10000m2 GEA kmaxA 300000m2

Grid size 100x100 GEA maxA 100000m2

Circle radius 180m-200m Public Data 9801
Object size < 1KB Circular Private 3200
Mobile Network 14.4Mbits/s Polygonal Private 3200

Table VI summarizes our experimental settings. For all our
experiments’ private data, first we generate the private moving
objects’ precise positions using Siafu, a context simulator
and the map of the crowded district 1 in Ho Chi Minh city,
Vietnam. Siafu, the context simulator takes input of the map
(consists of reachable and unreachable regions) and a list of
moving objects (with start positions, target positions, etc.)
and simulates the movement of those objects over time. We
then capture the moving objects’ position at a certain random
time for uses in the experiments. The total number of private
moving objects is 6400, which is big enough to show the
effects of the improvements clearly. Then 50% of the precise
positions are cloaked into complex rectilinear regions with
Bob-Tree [15]. In our experiments, the map is divided into a
grid of 100x100 cells with each cell’s area is of 10000m2. All
the moving objects are obfuscated to reach a total of at least 10
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cells in their cloaked region. As a result, the complex cloaked
regions’ numbers of vertices are very high and all range from
15 to 30. The remaining 50% of the private moving objects are
cloaked into circular regions utilizing the works in [8] with the
radius size at least 180m and less than 200m so that the area of
the circle will be at least the area of the polygon of Bob-Tree.
For the public data, we distribute 9801 objects uniformly in all
our experiments (99x99, each at the center of the Bob-Tree cell
above). The sizes of both the public and private data objects
are at max 1KB. We consider the network between Location
Middleware and LBS Provider is optimistically high-speed of
1Gbits/s while the mobile network is HSPA 3G network of
14.4Mbits/s download rate.

B. Vertices Reduction Paradigm
We will investigate the effect of the tuning parameter ε in

this section. The baseline algorithm is the original Casper*
query processing algorithm. Since Casper* cannot process
circular regions, we only compare the total processing time
of the polygonal regions. The ε values are respectively 1 time
to 5 times of the Bob-Tree grid edge size.

For the charts, the x-axis shows the respective values of
the tuning parameter ε, as the ε increases from 1 time (1x) to
5 times (5x) of the Bob-Tree grid cell edge size. When the ε
exceeds 5x, the effects do not increase clearly since we cannot
make the cloaked regions simpler than the previous ones in
our experiments. The total processing times are measured in
milliseconds (ms) and the candidate sets’ sizes are measured
as the number of data in the result. The abbreviation VRP1
is for the Direct Vertices Reduction Paradigm, while VRP2 is
for the Bounding Vertices Reduction Paradigm and Casper*
for the original algorithm.

For Private Query over Public Data, as depicted in
Figure 11a, when the ε value increases, the total processing
time decreases. At best (5x), the total processing time is
only 32.19% of the original Casper* algorithm’s processing
time. As explained in Section 5, the main reason for this
improvement in total processing time to happen is that the
number of range queries is significantly reduced in Vertices
Reduction Paradigm. In our experiment, at max reduction (5x),
the number of vertices in Vertices Reduction Paradigm is only
24.85% of the original algorithm. Thus we can achieve at
most 4 times speedup in Query over Public Data and 16
times speedup in Query over Private Data. For Private Query
over Private Data, Figure 11b describes the effect of Vertices
Reduction Paradigm. Total processing time in this case is also
significantly improved. At best (5x), the total processing time
is only 7.34% of the original algorithm’s processing time.
Besides the reduction in the number of the range queries,
using the vertices reduced versions of the cloaked regions also
simplifies the process of determining the furthest corners in
finding the nearest private objects, thus the total processing
time decreases greatly.

However, as a drawback, the candidate set sizes increase
in both cases of Private Query over Public Data and Private

(a) Total Processing Time (ms) of Private Query
over Public Data

(b) Total Processing Time (ms) of Private
Query over Private Data

(c) Candidate Set Size of Private Query over
Public Data

(d) Candidate Set Size of Private Query
over Private Data

Fig. 11. Vertices Reduction Paradigm

Data. In our cases, as illustrated in Figure 11c and Figure 11d,
at worst (5x), the candidate set sizes increase by 2.6 times
(Private Query over Public Data) and 2.1 times (Private Query
over Private Data). But this is not a big problem, since
the data size is small (less than 1KB) and the network
between Location Middleware and LBS Provider is high-speed
(100Gbits/s).
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To sum up, due to the application of the Vertices Reduction
Paradigm, as the tuning parameter ε increases, the total
processing time decreases significantly while the candidate set
size only increases slightly.

C. Group Execution Agent
We will examine the improvement when we integrate

the Group Execution Agent in the Location Middleware in
addition to the VRP included in the LBS Provider. In this
experiment, we investigate the effect of the Group Execution
Agent in the case of grouping 2 to 10 queries (the charts’
x-axis is the number of queries grouped), as well as the
average benefits in the whole system, in terms of average
total processing time and average candidate set size. Similar
to the Vertices Reduction Paradigm experiment, we perform
this experiment on two private query types, i.e. the Private
Query over Public Data and Private Query over Private Data.
The pre-defined system parameters maxA and kmaxA are
respectively 1.5 and 3 times of the minimum cloaked region
area. In other words, maxA = 150000m2 and kmaxA =
300000m2. Meanwhile, the concurrent query number is 500,
which means 500 users are issuing the same query content
(but with different cloaked regions) at the same time. In this
experiment, the total query processing time also includes the
overhead of the R-Tree indexing time and region grouping
time.

As depicted in Figure 12a and Figure 12b, the system
receives great speedup in average total processing. On average,
the speedups are 5.24 times (Private Query over Public Data)
and 3.84 times (Private Query over Private Data). In other
words, the average total processing time decreases at least
3.84 times when the Location Middleware is integrated with
the Group Execution Agent. The main reason for this benefit
is that the actual number of queries is reduced as we group
the queries before sending them to the Privacy Aware Query
Processor in the Location-based Database Server.

Figure 12c and Figure 12d illustrate the average candidate
set size reduction ratios when we apply the Group Execution
Agent in the Location Middleware. The reduction ratios are
at max the number of queries in a group, but this is not
always guaranteed, as the actual reduction ratio depends on
two main factors, (1) the data distribution and (2) the union and
intersection area of the cloaked regions. On average, the total
numbers of data to transmit are reduced by 5.12 times (Private
Query over Public Data) and 3.33 times (Private Query over
Private Data).

Generally speaking, when the Location Middleware is
included with the Group Execution Agent, the whole system
scalability increases and we gain speedups in average total
processing time and reduction ratios in average candidate set
size.

VIII. CONCLUSIONS AND FUTURE WORKS

This paper introduces an extended version of the
state-of-the-art Location Privacy Aware Query Processor, to

(a) Average Total Processing Time Speedup in
Private Query over Public Data

(b) Average Total Processing Time Speedup in
Private Query over Private Data

(c) Average Candidate Set Size Reduction Ratio
in Private Query over Public Data

(d) Average Candidate Set Size Reduction
Ratio in Private Query over Private Data

Fig. 12. Group Execution

efficiently deal with complex polygonal cloaked regions, by
proposing the Vertices Reduction Paradigm. We also support
one more type of cloaked region, the circular shape ones, by
transforming them into polygonal ones. The extended query
processor can be embedded inside a location-based database
server or an untrusted application middleware, allows users to
completely keep their exact locations private, by sending only
the cloaked regions to the server. In addition, the performance
of the query processor can be tuned through a new parameter,
to achieve a trade-off in system scalability, in terms of both
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query processing time and query candidate set size.
As the experimental results show, our works reduce the

query processing in both private queries over public and
private data for complex polygonal and circular cloaked
regions alike, while the increase in candidate set size is very
small, especially in private queries over private data. However,
the drawback of increase in candidate set size is insignificant
since both transmission time and filtration time is very small
in comparison to query processing time.

For further development, we are working on improving the
Vertices Reduction Paradigm and the Group Execution Agent,
i.e. faster algorithms and better effects, supports for continuous
queries. In addition, the support of k nearest-neighbor should
also be taken into account.

In LBS, location privacy aware query processing that
handles cloaked regions has become an essential part
in preserving user privacy. However, the state-of-the-art
cloaked-region-based query processors only focus on handling
rectangular regions, while lacking an efficient and scalable
algorithm for other complex region shapes. Motivated by
that problem, we introduce enhancements and additional
components to the location privacy aware nearest-neighbor
query processor that provides efficient processing of complex
polygonal and circular cloaked regions, namely the Vertices
Reduction Paradigm (VRP) and the Group Execution Agent
(GAE).

Generally, our processor provides better support for the
Application Middleware in systems that utilize more than one
single obfuscation algorithm, as it supports various cloaked
region shapes. Besides, as it provides efficient processing of
indeterminate rectilinear regions, this result also allows and
encourages the development of cloaking algorithms that utilize
the geographic, semantic and sensitive features to protect user
location privacy, e.g., Bob-Tree. The basic idea of the VRP is
that we only maintain a set of vertices-reduced (VR) regions
that are computed from the set of private objects’ original
cloaked regions. The processor will only use the VR versions
to reduce computational cost. However, that improvement in
total processing time also leads to the increase in candidate
set size. To ease that problem, we introduce a new tuning
parameter ε to achieve trade-off for total processing time
and candidate set size. On the other hand, the GAE groups
the queries before sending them to the Privacy Aware Query
Processor in Location-based Database Server. To achieve
that, the queries’ cloaked regions are first indexed with the
in-memory R-Tree. Then the GAE will scan the R-Tree
and perform the group operations. This component strongly
enhances the whole system’s scalability as it reduces the
number of queries to process.

As the experimental results show, our works reduce the
query processing in both private queries over public and
private data for complex polygonal and circular cloaked
regions alike, while the increase in candidate set size is very
small, especially in private queries over private data. However,
the drawback of increase in candidate set size is insignificant

since both transmission time and filtration time is very small
in comparison to query processing time.

The applications of both Vertices Reduction Paradigm and
Group Execution Agent are not limited to the scope of Privacy
Aware Nearest-Neighbor Query. In fact, VRP is able to serve
as enhancing component for any algorithms that need to
process irregular shapes as general polygons and GEA can
be applied to scale up systems that process multiple regions
concurrently.

For further development, we are working on improving
the Vertices Reduction Paradigm and the Group Execution
Agent, i.e., faster algorithms and better effects. In addition,
the support of k nearest-neighbor should also be taken
into account. Moreover, current private query processing
algorithms only focus on position privacy, however, more
attention and effort should be put into path privacy too, as
the privacy breach in user trajectory also does harms to the
development of LBS.
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