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Abstract—In this paper, we propose a strategy to improve
the forecasting of traffic accidents in Concepción, Chile.
The forecasting strategy consists of four stages: embedding,
decomposition, estimation and recomposition. At the first stage,
the Hankel matrix is used to embed the original time series. At the
second stage, the Singular Value Decomposition (SVD) technique
is applied. SVD extracts the singular values and the singular
vectors, which are used to obtain the components of low and
high frequency. At the third stage, the estimation is implemented
with an Autoregressive Neural Network (ANN) based on Particle
Swarm Optimization (PSO). The final stage is recomposition,
where the forecasted value is obtained. The results are compared
with the values given by the conventional forecasting process. Our
strategy shows high accuracy and is superior to the conventional
process.

Index Terms—Autoregressive neural network, particle swarm
optimization, singular value decomposition.

I. INTRODUCTION

FORECASTING of time series with neural networks
has been widely implemented due to its capability

of approximation and universal generalization [1], [2] in
diverse areas of knowledge [3], [4]. Conventionally, the
neural networks show difference and improvement through
the adequate selection of transfer and activation functions [5],
[6], the variation in the input dimension and the time
delay [7], also changing the number of hidden nodes [8],
others researchers propose modifications in the learning
algorithms [9], is common also the use of explanatory
variables [10], there are works that implement hybrid
solutions reaching good performance [11], [12], whereas the
decomposition, disaggregation or aggregation of the time
series before the forecasting have demonstrated to be an
effective strategy [13], [14]. The combination ANN-PSO has
improved the forecasting over some classical algorithms [15],
[16], [17]

Based on these arguments, in this work we propose a
strategy of improving traffic accidents forecasting based on
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the decomposition of a time series in components of low and
high frequency from the singular values of the Hankel matrix.
The strategy is applied in four stages, embedding with Hankel
matrix, decomposing with SVD, estimation with ANN-PSO,
and recomposing with simple addition. The time series are the
traffic accidents of Concepción - Chile, sinister number and
injured, from year 2000 to 2012, with weekly sampling.

The paper is structured as follows. Section II describes
the time series forecasting strategy. Section III presents the
forecasting accuracy metrics. Section IV presents the results
and discussion. Section V gives conclusions.

II. TIME SERIES FORECASTING STRATEGY

Our forecasting strategy is presented in Figure 1. It consists
of four stages: embedding, decomposition, estimation, and
recomposition. Embedding means to map the time series in
a Hankel matrix, decomposition is developed with SVD, the
singular values are used to extract the components of low and
high frequency, the estimation of the found components is
based on an ANN based on PSO, and the recomposition is
developed with the simple addition of the ANNs outputs.

The original time series is represented with x, H is the
Hankel matrix, S, V , and U are the matrix elements obtained
with SVD, CL is the component of low frequency, CH is the
component of high frequency, ĈL, and ĈH are the estimated
components, x̂ is the forecasted time series, and er is the error
computed between x and x̂.

A. Embedding the time series

The time series is embedded in the Hankel matrix, the
process is illustrated as follows:

HM×L =


x1 x2 . . . xL
x2 x3 . . . xL+1
...

...
...

...
xM xM+1 . . . xN

 (1)

where H is a matrix of order M×L, x1 . . .xN , are the original
values of the time series, of length N. The value of L is
computed as

L = N−M+1. (2)

33 Polibits (51) 2015http://dx.doi.org/10.17562/PB-51-5 • pp. 33–38

IS
S

N
 2395-8618



Fig. 1. Time series forecasting strategy

B. Singular Value Decomposition

Let H be an M×n real matrix, then there exist an M×M
orthogonal matrix U , an n× n orthogonal matrix V , and and
M×n diagonal matrix S with diagonal entries s1 ≥ s2 ≥ . . .≥
sp, with p = min(M,n), such that UT HV = S. Moreover, the
numbers s1,s2, . . . ,sp are uniquely determined by H [18].

H =U×S×V T (3)

The extraction of the components is done by means of the
singular values si, the orthogonal matrix U , and the orthogonal
matrix V , for each singular value is obtained one matrix Ai,
with i = 1 . . .m:

Ai = s(i)×U(:, i)×V (:, i)T (4)

Therefore, the matrix Ai contains the i− th component, the
extraction process is:

Ci =
[

Ai(1, :) Ai(2,n : m)T ]
(5)

where Ci is the i−th component, the elements of Ci are located
in the first row and last column of Ai.

The optimal number of components (M) is given by the
maximum peak of differential energy ∆E of each pair of
sequential components, and it computation is

∆Ei = Ei−Ei+1 (6)

where Ei is the energy of the i− th component, and i =
1, . . . ,M− 1. The energy of each singular is computed with

Ei = s2
i /(

M

∑
i=1

s2
i ) (7)

where si is the i − th singular value of the Hankel
matrix obtained before. The first component extracted is
the component CL and the second is the component CH (if
M = 2). When the optimal number of components M > 2,
the component CH is computed with the summation of the
components from 2 to M− th, as follows

CH =
M

∑
i=2

Ci (8)

C. Estimation of components with an Autoregressive Neural
Network based on PSO

The ANN is based on the algorithm PSO, it performs the
estimation to obtain ĈL, and ĈH . The ANN inputs are the
lagged terms of CL and CH . The ANN has a common structure
of three layers [19], at the hidden layer the sigmoid transfer
function is applied, and at the output layer the estimated value
is obtained. The ANN output is

x̂ = φ(net)×b (9)

where x̂ is the estimated value, net is the output of the
hidden layer, b is the vector that contains the weights on the
connections from the hidden layer to the output layer, net is
computed with

net = x×w (10)

where x is the data input matrix, with order N×P, N is the
sample length, and P is the number of input variables (lags
terms), w is the weight matrix of order P×Nh, with Nh hidden
units. The sigmoid transfer function is applied at hidden layer
with

φ(net) = 1/(1+ e−net) (11)

The weights of the ANN connections, w and b are adjusted
with PSO learning algorithm. In the swarm the Np particles
has a position vector Xi = (Xi1,Xi2, . . . ,XiD), and a velocity
vector Vi = (Vi1,Vi2, . . . ,ViD), each particle is considered a
potential solution in a D-dimensional search space. During
each iteration the particles are accelerated toward the previous
best position denoted by pid and toward the global best
position denoted by pgd . The swarm has NpxD values and
is initialized randomly, D is computed with P×Nh +Nh; the
process finish when the lowest error is obtained based on the
fitness function evaluation, or when the maximum number of
iterations is reached [20], [21].

V l+1
id = Il×V l

id + c1× rd1(pl
id +X l

id)+

c2× rd2(pl
gd +X l

id) (12)

X l+1
id = X l

id +V l+1
id (13)

Il = Il
max−

Il
max− Il

min
itermax

× l, (14)

where i = 1, . . . ,Np, d = 1, . . . ,D; I denotes the inertia weight,
c1 and c2 are learning factors, rd1 and rd2 are positive
random numbers in the range [0,1] under normal distribution,
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l is the lth iteration. Inertia weight has linear decreasing, in
equation 14, Imax is the maximum value of inertia, Imin is the
lowest, and itermax is total of iterations.

The particle Xid represents the optimal solution of the set
of weights in the neural network, therefore Xid contains the
ANN connections weights w and b.

D. Recomposing the time series

The recomposition of the time series is done with the
addition of the estimated components, then the forecasted time
series is obtained using

x̂ = ĈL +ĈH . (15)

III. FORECASTING ACCURACY METRICS

The number of lags for the ANN is determined with the
metric: Generalized Cross Validation (GCV), this determines
the best number based on the accuracy of the forecasting
probing a determined range of values. The evaluation of the
forecasting is computed with the metrics: Mean Absolute
Percentage Error (MAPE), Coefficient of determination R2,
Root Mean Squared Error (RMSE), and Relative Error (RE).

RMSE =

√√√√ 1
Nv

Nv

∑
i=1

(xi− x̂i)2 (16)

GCV =
RMSE

(1−K/Nv)2 (17)

MAPE =

[
1

Nv

Nv

∑
i=1
|(xi− x̂i)/xi|

]
×100 (18)

R2 = 1− σ2(er)
σ2(x)

(19)

RE =
Nv

∑
i=1

(xi− x̂i)/xi (20)

where Nv is the validation (testing) sample size, xi is the i-th
observed value, x̂i is the i-th estimated value, and K is the
number of lagged values.

IV. RESULTS AND DISCUSSION

The applied data are available from the CONASET web
site [22], and they represent the number of accidents and the
injured of Concepción-Chile, from year 2000 to 2012 with
weekly sampling. The training data set contains the 70% of
the sample, consequently the testing data set contains the 30%
In the next subsections are evaluated the time series forecasting
strategy presented in Fig. 1.

A. Embedding and Decomposition

The time series is embed in a Hankel matrix, the optimal
number of components M was determined using and initial
number M = N/2 components. Once obtained the number the
components, the differential energy ∆E, of each component

was computed, this is shown in the Fig. 2, the maximum
peak represents the optimal M. The embedding and the
decomposing is executed again with the optimal M, for time
series number of accidents the optimal was M = 6, and for
the time series injured people the optimal found was M = 4.
The component of low frequency extracted and estimated for
the time series number of accidents is shown in the Fig. 4a,
while the component of high frequency the same time series
is shown in the Fig. 4b. The component of low frequency
extracted and estimated for the time series injured people is
shown in the Fig. 5a, while the component of high frequency
the same time series is shown in the Fig. 5b.

B. Estimation and Recomposition

The calibration of the number of lags of the ANN was
determined with the GCV metric, for the two time series was
found an optimal ANN(K,Nh,1), with K = 7 inputs for the
time series number of accidents and K = 5 for the time series
injured people as shown the Fig. 3, and the number of hidden
nodes was assigned in Nh = 6 for the two time series, this
value was computed with the natural logarithm of the training
data set length (normally used in our experiments).

The PSO learning algorithm was applied to determine the
weights of the ANN, after trial and error they were configured
with a swarm of Np×D dimension, Np = 40 particles, and D=
N p×Nh+Nh, inertia weight parameter I has linear decreasing
with a maximum value of 1 and a minimum value of 0.2, the
acceleration factors c1 and c2 were fixed in 1.05 and 2.95
respectively, the itermax is 2500.

The evaluation performed at the testing stage for the time
series number of accidents is presented in the Fig. 6 and
Table I. The observed values vs. the estimated values are
illustrated in the Fig. 6a, reaching a good accuracy, while the
relative error is presented in the Fig. 6b, which shows that the
98.5% of the points present an error lower than the ±10%.

The evaluation performed at the testing stage for the time
series number of injured people is presented in the Fig. 7
and Table II. The observed values vs. the estimated values are
illustrated in the Fig. 7a, reaching a good accuracy, while the
relative error is presented in the Fig. 7b, which shows that the
95.54% of the points present an error lower than the ±10%.

TABLE I
NUMBER OF ACCIDENTS FORECASTING

SVD-ANN-PSO ANN-PSO
Components 6 —

RMSE 0.0211 0.087
MAPE 3.17% 14.48%

R2 98.29% 70.71%
RE±10% 98.5% 48.76%

The results presented in Table I show that the major
accuracy of the forecasting of the time series number of
accidents is achieved with the model SVD-ANN-PSO(7,6,1),
with a RMSE of 0.0211, and a MAPE of 3.17%, the 98.5%
of the points have an relative error lower than the ±10%.
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Fig. 2. ∆E : (a) Number of Accidents, (b) Injured people

Fig. 3. Lags calibration (a) Number of accidents (b) Injured people

Fig. 4. Number of Accidents components (a) CL, (b) CH

TABLE II
INJURED PEOPLE FORECASTING

SVD-ANN-PSO ANN-PSO
Components 4 —

RMSE 0.0172 0.101
MAPE 3.58% 21.42%

R2 98.5% 46.08%
RE±10% 95.54% 40.59%

The results presented in Table II show that the major
accuracy of the forecasting of the time series injured people is
achieved with the model SVD-ANN-PSO(5,6,1), with a RMSE
of 0.0172, and a MAPE of 3.58%, the 95.54% of the points
have an relative error lower than the ±10%.

V. CONCLUSIONS

The proposed forecasting strategy is based on the time
series decomposition using the singular values of the Hankel
matrix. The strategy consists of four stages: embedding,
decomposition, estimation, and recomposition. The embedding
consists in mapping the time series in a Hankel matrix. The
decomposition is based on SVD technique, SVD extracts the
components of low and high frequency of the time series, the
estimation is executed with an ANN based on PSO, while the
recomposition is made with the single addition of the estimated
components.

For evaluation of this strategy, we implemented a
conventional ANN based on PSO. The best result was obtained
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Fig. 5. Injured people components(a) CL, (b) CH

Fig. 6. SVD-ANN-PSO(7,6,1) (a) Observed vs. Estimated (b) Relative Error

Fig. 7. SVD-ANN-PSO(5,6,1) (a) Observed vs. Estimated (b) Relative Error

with the proposed strategy for the two time series analyzed,
SVD-ANN-PSO shows superiority regards the conventional
implementation. For the time series number of accidents,
SVD-ANN-PSO reaches an RMSE of 0.0211, and a MAPE of
3.17%, in front of the conventional ANN-PSO that reaches an
RMSE of 0.087, and a MAPE of 14.48%. For traffic accidents
reaches an RMSE of 0.0172, and a MAPE of 3.58%, in front
of the conventional ANN-PSO that reaches an RMSE of 0.101,
and a MAPE of 21.42%.

In the future, this strategy will be evaluated with data of
traffic accidents of other regions of Chile, other countries, and
with time series of other engineering fields.
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