
 

 

Abstract—This work proposes a genetic algorithm for 

optimization of the cell formation problem with alternative 

routings. A series of test problems were generated and used to 

evaluate the performance of the proposed Genetic Algorithm and 

a Simulated Annealing algorithm as well. The novelty of the 

proposed work lies in the representation technique and the 

transformations that allow treating the original multidimensional 

problem as a two-dimensional one. That simplified the 

programming tasks and the resolution method. 

 
Index Terms—Manufacturing systems design, manufacturing 

cells, computational intelligence, genetic algorithms, simulated 

annealing. 

I. INTRODUCTION 

ellular manufacturing is an organizational approach based 

on group technology (GT) that structures a plant as a set 

of manufacturing cells. Each cell consists in a set of 

production equipment that process similar components. 

Cellular based organizations provide considerable cost and 

productivity benefits to practical manufacturing environments. 

A list of advantages derived of grouping machines into cells 

can be found in [1]. The main challenge in the design of 

manufacturing cells is the identification of machines and 

components that will make part of a cell. This identification 

process requires an effective approach to form part families so 

that similarity within a part family can be maximized. 

Clustering analysis is the most frequently used method for 

manufacturing cell design. However, there is still the 

challenge of creating an efficient clustering method because 

the cellular formation problem (CFP) is a NP-complete 

problem. Additional difficulties arise if one considers that 

many components could have alternative processing methods 

or routings. This last aspect increases significantly the 

complexity of this type of problems. 

 
Manuscript received on August 16, 2014, accepted for publication on 

September 22, 2014, published on November 15, 2014. 

Orlando Durán A. (corresponding author) is with the Pontificia 

Universidad Católica de Valparaíso, Chile (e-mail: orlando.duran@ucv.cl).  

Luis Pérez P. is with the Universidad Técnica Federico Santa María, Chile 

(e-mail: luis.perez@usm.cl). 

Felipe Olmos de Aguilera is with the Universidad Técnica Federico Santa 

María, Chile (e-mail: felipe.olmosdeaguilera@gmail.com). 

 

A manufacturing cell is an organizational structure that 

groups similar machines that have similar design features or 

processing capabilities to constitute more efficient production 

systems. Each cell is composed of a number of machines so 

that they can produce and maintain continuous production 

flows in order to reduce the time lost in transfer between 

workstations. In Figure 1, a basic outline of a manufacturing 

cell is shown, where the input of a part, its processing 

sequence, and its output are displayed.  

 

 

Fig. 1. Magnetization Schematic representation of a manufacturing cell 

 

The most used structure to represent a set of machine-

workpiece relationships is the incidence matrix. Figure 2 

represents a binary incidence matrix; in which each one of the 

1S correspond to the machines that a certain workpiece uses in 

its production process. 

 

 

Fig. 2.  The incidence matrix 

 

From the incidence matrix in Figure 2 it can be said: 

 Workpiece 1 pass through machines 3 and 4. 

 Workpiece 2 will go through machines 1 and 2. 

 Workpiece 3 will pass through machines 3 and 5. 

 Workpiece 4 pass through machines 1 and 2. 

 Workpiece 5 pass through machines 3 and 4. 

 Workpiece 6 will pass through machines 5 and 6. 
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To form manufacturing cells it is necessary to apply some 

clustering method to detect which are the machines and parts 

to be grouped so as to obtain all the advantages mentioned 

above. Figure 3 shows how it is an incidence matrix made 

after the grouping. 

 

Fig. 3. An illustrative example after the clustering process. 

 

Many works related to manufacturing cell formation assume 

that each piece has a unique sequence. This is far from reality 

because any operation on a given workpiece can be performed 

on alternative machines. This introduces new variables to the 

cell formation problem. In Figure 4, alternative manufacturing 

sequences are shown for the same parts and machines of 

Figure 2. 

 

 

Fig.4. Alternative manufacturing sequences. 

 

From the incidence matrix in Figure 4, it can be said: 

 Workpieces 1, 4 and 5 have no alternative routes. 

 Workpiece 2 can be processed by machines 1 and 2, or 2 

and 4. 

 Workpiece 3 can be processed by machines 3 and 4, or 1 

and 2. 

 Workpiece 6 can be processed by machines 1 and 2, or 1 

and 4. 

II. METAHEURISTICS AND MACHINE GROUPING 

In recent years, different metaheuristic methods have been 

used to solve the cell-formation problem. An extensive review 

of the use of metaheuristics in cellular manufacturing is 

presented by [2]. From the point of view of alternative 

routings fewer works have been reported in literature. 

Rodrigues and Weller [3] considered alternative routing to 

minimize extra-cellular processing of task applying a Tabu 

search combined with a branch and bound based strategy.  

Caux et al. [4] proposed a method that considers alternative 

routings and machine capacity constraints. The proposed 

algorithm simultaneously deals with the cell formation 

problem and the part-routing assignment problem where one 

of problems was then solved from the solutions of the other. 

Jayaswal and Adil [5] proposed a SA-based heuristic 

methodology considering operational sequence, machine 

replication, alternative process routings to minimize the inter-

cell movements and machine investments and operating costs. 

Wu et al. [6] proposed a hybrid SA method with genetic 

operation considering alternative process routing and insertion 

move was utilized in solution improvement stage in order to 

speed up solution search and to escape from local optima.  

Chan et al. [7] presented a multi-objective optimization 

model using a GA approach to solve the proposed model. Hu 

and Yasuda [8] addressed the cell formation problem with 

alternative process routes developing a GA methodology with 

new chromosome representation, separating crossover 

heuristic and special mutation technique which produced 

efficient and optimal solution. Kao and Lin [9] proposed a 

PSO based algorithm for cell definition. The proposed 

approach considers a twofold procedure: machine partition 

and part-routing assignment. Experimental results 

demonstrated that the algorithm found equal or fewer 

exceptional elements than existing algorithms for most of the 

test problems selected from the literature. 

III. CHROMOSOME REPRESENTATION 

To model the problem we used a set of vector and matrices 

that we describe in the following: 

 An incidence matrix,(aij). 

 A multilayer matrix where the third dimension is 

associated to alternative routings for each one of the 

component (oijn). 

 Machine matrix (yik). 

 Component matrix (zjk). 

The multilayer matrix (oijn) represents the union of a series 

of alternative routings for every component that make part of 

the problem, where each layer (n: number of layers) represents 

an alternative way of manufacture each one of the 

components. Therefore, the number of layers will be equal to 

the maximum number of alternative routings that any 

component has. Figure 5 shows a multilayer matrix with three 

alternative routings for each component.  

 
Fig. 5. A three-layer incidence matrix. 

 

The algorithm works with a 2-dimension matrix (MxP), 

thus the initialization process consists in selecting for each one 

of the component one of the alternative routings from oijn to 

construct a 2-dimensional matrix (aij) that takes part of the 
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optimization process. Considering, for instance, Figure 5, the 

matrix shown in Figure 6 is obtained according to the 

following process: the first row indicates that the component 1 

is using the second alternative routing; the component 2 uses 

the first alternative routing and the components 3 and 4 uses 

the third alternative routing. The Machine matrix (yik) 

represents, with a 1, where each one of the machines 

(indicated by the row i) is assigned to a specific cell (indicated 

by the column k). Component matrix (zjk) represents, with a 1, 

where each one of the components (indicated by the row j) is 

assigned to a specific cell (indicated by the column k). 
 

 
Fig.6. An incidence matrix resulting from the initial transformation. 

 

Therefore, the machine and the component matrices will 

have many columns as manufacturing cells will be defined. 

For instance, the representation of a random solution with 2 

cells (columns), 4 machines, and 6 components is shown in 

Figure 7.  
 

 

Fig 7. a) Machine matrix; b) Component matrix. 

 

Figure 7a shows the machine cell and Figure 7b shows the 

component matrix with 6 components and the same 2 cells. To 

obtain the incidence matrix (aij) the union of matrices yik and 

zjk is generated. Following, to perform the genetic operators 

we transformed the matrix into a vector shown in Figure 8.  

 

 

Fig.8. Partial chromosome representation 

 

In addition, to the end of the vector a sequence is added 

with the information corresponding to the columns that were 

taken of the multilayer matrix to form the incidence matrix. 

Thus, the starting point will be a vector of length (M + P + P). 

It will contain the machines and parts locations along with the 

information of the layer (alternative routing) that it was 

considered for each one of the workpieces (Figure 9). 

Concerning the incidence matrix, columns 1, 2 and 5 were 

taken from the first layer, and the 3, 4 from the second. 

 

 

Fig.9. Final chromosome representation 

IV. OPTIMIZATION MODEL 

The fitness function is designed to deliver the number of 

items that were outside the cells. For this, the incoming vector 

virtually divided into three parts (see Figure 13) is taken, and 

from the first M components (M: Number of machines) matrix 

y is formed (M  C). With the following P components (P: 

Number of workpieces) the z matrix is formed (P  C), and the 

last M components determine which columns are taken from 

the multilayer matrix to form the incidence matrix A. 

The cell formation problem with alternative routings can be 

formulated as follows: 

 M be the number of machines, 

 P, the number of parts, 

 C, the number of cells, 

 i, the index of machines (i = 1, … ,M), 

 j, the index of parts (j = 1, …, P), 

 k, the index of cells (k = 1, …, C), 

 A = [aij], M  P binary machine-part incidence matrix, 

 Mmax, the maximum number of machines per cell. 

 

                         if machine i  cell k; 

                         otherwise. 

                         if part j  family k; 

                         otherwise. 

 

We selected as the objective function to be minimized the 

number of times that a given part must be processed by a 

machine that does not belong to the cell that the part has been 

assigned to. The problem is represented by the following 

mathematical model: 

 

Minimize N: 
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V. NUMERICAL ILLUSTRATION 

The purpose of this section is to show, through numerical 

examples, how the proposed formulation can be used to design 

a cellular manufacturing system with alternative routings. To 

test the performance of the proposed model, we randomly 
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generated a set of problems with 16 machines, 30 components, 

and 2 alternative routings. 

The genetic algorithm was applied to four randomly 

generated problems. A set of multilayer matrices filled with 

20%, 40%, 60% and 80% of 1s respectively was generated; 

where 0% represents an empty matrix without operations, and 

100% represents a saturated matrix, where each workpiece 

should go through every machine in the manufacturing system. 

A set of tests were performed using the Genetic Algorithm 

and a Simulated Annealing with the same solution 

representation. The following control parameters were set to 

the Simulated Annealing algorithm: Initial Temperature: 8; 

The logarithmic function was used as the temperature 

reduction function. In addition, we used the following 

annealing intervals: 50, 100, 150, y 200. For the Genetic 

Algorithm, a traditional crossover operator was chosen by 

which the two parents produce two children and are replaced 

by them. For the mutation operator, it is applied randomly to 

10% of the individuals. Finally, the GA stops when one of two 

conditions is met: (i) the fitness value of the best individual 

does not improve after P iterations, or (ii) the total number of 

iterations exceeds a maximum number (P  P). The use of the 

number of parts (P) in the stopping criteria draws from the fact 

that the size of the search space is directly dependent of that 

number. 

 
TABLE I 

COMPARISON OF THE AVERAGE VALUES OBTAINED BY THE GA AND SA. 

 

 

Mmax = 6 Mmax = 8 Mmax = 10 Mmax = 12 

 

SA GA SA GA SA GA SA GA 

20% of 1s 31,65 25,62 29,65 17,88 26,28 14,3 21,03 8,66 

40% of 1s 90,05 82,76 71,4 60,4 58,08 52,86 35,63 33,12 

60% of 1s 151,18 144,8 116 108 92,83 89,26 59,65 58,3 

80% of 1s 214,4 204,4 163,5 156,7 123,3 125,1 82,4 82 

 
TABLE II 

COMPARISON OF THE BEST VALUES OBTAINED BY THE GA AND SA. 

 

 

Mmax = 6 Mmax = 8 Mmax = 10 Mmax = 12 

 

SA GA SA GA SA GA SA GA 

20% of 1s 29 22 24 13 19 10 14 0 

40% of 1s 85 77 63 56 52 49 32 33 

60% of 1s 146 137 110 104 90 86 58 58 

80% of 1s 210 202 159 154 125 125 82 82 

 

The first test consisted in defining 3 cells with varying the 

maximum number of machines per cell (Mmax= 6, 8, 10, and 

12). In addition, the number of 1s in each initial incidence 

matrix varied according to the following: 20%, 40%, 60% y 

80%; the population size was also tested according to the 

following: 1,000, 3,000, 5,000, 7,000 and 9,000 individuals. 

Each test was performed 100 times. In Table I, the average 

results obtained by both techniques are shown using 3,000 as 

the population size of the GA. Table II shows the best results 

obtained by the experiments detailed previously. It can be 

observed that in every test (except one) GA outperforms the 

results obtained by the use of SA. 

The second test consisted in obtain the arrangements 

varying the number of cells (2, 3 and 4 cells). In addition, the 

number of 1s in each initial incidence matrix varied according 

the same strategy of the first test; the population size was also 

tested according to the following: 1,000, 3,000, 5,000, 7,000 

and 9,000 individuals. Each test was performed 100 times. In 

Tables 3 and 4 the results obtained by both techniques are 

shown using 3,000 as the population size of the GA. It can be 

observed that in every test GA outperforms in average the 

results obtained by the use of SA (Tables III and IV). 

TABLE III 

COMPARISON OF THE AVERAGE VALUES OBTAINED BY THE GA AND SA 

IN THE 2ND TEST. 

  

2 cells 3 cells 4 cells 

  

SA GA SA GA SA GA 

20% of 1s Average 17,15 14,14 26,28 14,3 34,18 14,36 

40% of 1s Average 53,88 51,12 57,3 52,34 67,28 52,96 

60% of 1s Average 92,63 87,66 93,93 89,64 100,15 89,96 

80% of 1s Average 129,13 87,66 127,6 125,1 130,93 125,3 

 

TABLE IV 

COMPARISON OF THE BEST VALUES OBTAINED BY THE GA AND SA 

IN THE 2ND TEST (MMAX = 10). 

2 cells 3 cells 4 cells 

SA GA SA GA SA GA 

13 11 19 10 25 11 

50 48 51 48 61 48 

88 86 89 87 94 87 

125 125 125 125 125 125 

VI. CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

A novel representation scheme for solving the cell 

formation problem with alternative routes is proposed and 

tested. The proposed technique is feasible and simple. In 

addition, comparisons were performed. The SA proved that 

performs well, however the genetic algorithm outperforms the 

S.A. In addition, we can conclude that this behavior does not 

depend on the number of 1s in the incidence matrix, i.e. the 

density of operations or how intensive are the process 

routings, because in every tested scenario (number of 1s) GA 

surpasses the SA algorithm. We recommend using genetic 

algorithm, due to better explore the space on the basis of 

population, and along with that simulated annealing converges 

to local minima easily could be better.  
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The novelty of the proposed work lies in the representation 

technique and the transformations that allow treating the 

original multidimensional problem as a two-dimensional one. 

This simplified the programming tasks and the resolution 

method.  
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