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Abstract—This paper proposes a hybrid multi-step-ahead
forecasting model based on two stages to improve pelagic
fish-catch time-series modeling. In the first stage, the Fourier
power spectrum is used to analyze variations within a time
series at multiple periodicities, while the stationary wavelet
transform is used to extract a high frequency (HF) component
of annual periodicity and a low frequency (LF) component
of inter-annual periodicity. In the second stage, both the HF
and LF components are the inputs into a single-hidden neural
network model to predict the original non-stationary time series.
We demonstrate the utility of the proposed forecasting model
on monthly anchovy catches time-series of the coastal zone of
northern Chile (18oS-24oS) for periods from January 1963 to
December 2008. Empirical results obtained for 7-month ahead
forecasting showed the effectiveness of the proposed hybrid
forecasting strategy.

Index Terms—Neural network, wavelet analysis, forecasting
model.

I. INTRODUCTION

IN order to develop sustainable exploitation policies,
forecasting the stock and catches of pelagic species off

northern Chile is one of the main goals of the fishery
industry and the government. However, fluctuations in the
environmental variables complicate this task. To the best of our
knowledge, few publications exist on forecasting models for
pelagic species. In recent years, linear regression models [1],
[2] and artificial neuronal networks (ANN) [3], [4] have been
proposed for forecasting models. The disadvantage of models
based on linear regressions is the supposition of stationarity
and linearity of the time series of pelagic species catches.
Although ANN allow modeling the non-linear behavior of
a time series, they also have some disadvantages such as
slow convergence speed and the stagnancy of local minima
due to the steepest descent learning method. To improve
the convergence speed and forecasting precision of anchovy
catches off northern Chile, Gutierrez [3] proposed a hybrid
model based on a multilayer perceptron (MLP) combined
with an autoregressive integrated moving average (ARIMA)
model.This forecaster obtained a coefficient of determination
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R2 of 82%, which improved slightly when combining the MLP
model with the ARIMA model, reaching an R2 of 87%.

In this paper, the proposed forecasting model is
based on single-hidden neural network combined with
Haar stationary wavelet transform (SWT). The stationary
wavelet decomposition was selected due to its popularity
in hydrological [5], [6], electricity market [7], financial
market [8] and smoothing methods [9]–[11]. This SWT
technique is based on the discreet wavelet transform (DWT) or
the stationary wavelet transform (SWT) [12]. The advantage
of these wavelet transforms in non-stationary time series
analysis is their capacity to separate low frequency (LF) from
high frequency (HF) components. On the one hand, the LF
component reveals long-term trends, while the HF component
describes short-term fluctuations in the time series. Being able
to separate these components is a key advantage in proposed
forecasting strategies since the behavior of each frequency
component is more regular than the raw time series.

In this paper, Haar stationary wavelet decomposition is
applied to build a hybrid multi-step-ahead forecasting model to
achieve more accurate models than conventional single-hidden
neuronal network. Our proposed multi-step-ahead anchovy
catches forecasting model is based on two phase. In the
first phase,the Fourier power spectrum is used to analyze
variations within a time series at multiple periodicities, while
the stationary wavelet transform is used to extract a high
frequency (HF) component of annual periodicity and a low
frequency (LF) component of inter-annual periodicity. In the
second stage, both the HF and LF components are the inputs
into a single-hidden neural network model with Ni input
nodes, Nh hidden nodes and two output nodes to predict the
original non-stationary time series.

This paper is organized as follows. In the next section,
we present hybrid multi-step-ahead forecasting model. The
simulation results are presented in Section 3 followed by
conclusions in Section 4.

II. PROPOSED FORECASTING MODEL

This section presents the proposed forecasting model for
one-month-ahead anchovy catches in northern Chile, which is
based on the Haar stationary wavelet transform and single-
hidden neural network model.

A. Stationary wavelet decomposition
A signal x(n) can be represented at multiple resolutions

by decomposing the signal on a family of wavelets and
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scaling functions [9]–[11]. The approximation (scaled) signals
are computed by projecting the original signal on a set of
orthogonal scaling functions of the form:

φjk(t) =
√

2−jφ(2−jt− k) (1)

or equivalently by filtering the signal using a low pass filter
of length r, h = [h1, h2, ..., hr], derived from the scaling
functions. On the other hand, the detail signals are computed
by projecting the signal on a set of wavelet basis functions of
the form

ψjk(t) =
√

2−jψ(2−jt− k) (2)

or equivalently by filtering the signal using a high pass filter
of length r, g = [g1, g2, ..., gr], derived from the wavelet basis
functions. Finally, repeating the decomposing process on any
scale J , the original signal can be represented as the sum of
all detail coefficients and the last approximation coefficient.

In time series analysis, discrete wavelet transform (DWT)
often suffers from a lack of translation invariance. This
problem can be tackled by means of the un-decimated
stationary wavelet transform (SWT). The SWT is similar to
the DWT in that the high-pass and low-pass filters are applied
to the input signal at each level, but the output signal is never
decimated. Instead, the filters are up-sampled at each level.

Consider the following discrete signal x(n) of length N
where N = 2J for some integer J . At the first level of SWT,
the input signal x(n) is convolved with the h1(n) filter to
obtain the approximation coefficients a1(n) and with the g1(n)
filter to obtain the detail coefficients d1(n), so that:

a1(n) =
∑
k

h1(n− k)x(k) (3a)

d1(n) =
∑
k

g1(n− k)x(k), (3b)

because no sub-sampling is performed, a1(n) and d1(n) are
of length N instead of N/2 as in the DWT case. At the next
level of the SWT, a1(n) is split into two parts by using the
same scheme, but with modified filters h2 and g2 obtained by
dyadically up-sampling h1 and g1.

The general process of the SWT is continued recursively
for j = 1, ..., J and is given as:

aj+1(n) =
∑
k

hj+1(n− k)aj(k) (4a)

dj+1(n) =
∑
k

gj+1(n− k)aj(k), (4b)

where hj+1 and gj+1 are obtained by the up-sampling operator
inserts a zero between every adjacent pair of elements of hj
and gj ; respectively.

Therefore, the output of the SWT is then the approximation
coefficients aJ and the detail coefficients d1, d2, ..., dJ ,
whereas the original signal x(n) is represented as a
superposition of the form:

x(n) = aJ(n) +

J∑
j=1

dj(n) (5)

The wavelet decomposition method is fully defined by the
choice of a pair of low and high pass filters and the number
of decomposition steps J . Hence, in this study we choose a
pair of haar wavelet filters [12].

B. Neural network forecasting model

In order to predict the future value x̂(n − h), we can
separate the original time series x(n) into two components
by using Haar stationary wavelet decomposition. The first
extracted component xH of the time series is characterized
by slow dynamics, whereas the second component xH is
characterized by fast dynamics. Therefore, in our forecasting
model a time series is considered as nonlinear function of
several past observations of the components xL and xH as
follows:

x̂(n+ h) = f
(
xL(n−m), . . . xH(n−m)

)
; (6)

the h value represents forecasting horizon and m denotes
lagged values of both the LF and HF components.

A single-hidden neural network with two output nodes is
used to estimate the nonlinear function f̂(·), which is defined
as

yk(n) =

Nh∑
j=1

bjφj(ui, vj), k = 1, 2 (7a)

x̂(n+ h) = y1(n) + y2(n), (7b)

where Nh is the number of hidden nodes, u =
[u1, u2, . . . u2m] denotes the input regression vector contain-
ing 2m lagged values, [b1, . . . bNh

] represents the linear output
parameters, [v1, v2, . . . vNh

] denotes the nonlinear parameters,
and φj(·) are hidden activation functions, which are derived
as

φj(ui) = φ
( m∑

i=1

vj,iui

)
(8a)

φ(u) =
1

1 + exp(−u)
. (8b)

In order to estimate both the linear and nonlinear
parameters of the MLP, we use the Levenberg-Marquardt
(LM) algorithm [13]. The LM algorithm adapts the θ =
[b1, . . . bNh

, vj,1, . . . vj,m] parameters of the neuro-forecaster
minimizing mean square error, which is defined as:

E(θ) =
1

2

Ns∑
i=1

(
x(n+ h)− x̂(n+ h))

)2
. (9)

Finally, the LM algorithm adapts the parameter θ according
to the following equations:

θ = θ + ∆θ (10a)

∆θ = (ΥΥT + µI)−1ΥTE, (10b)

where Υ represents the Jacobian matrix of the error vector
evaluated in θi and the error vector e(θi) = di − yi is the
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Fig. 1. Monthly anchovy catches time series
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Fig. 2. Fourier power spectrum of catches time series

error of the MLP neural network for i patter, I denotes the
identity matrix and the parameter µ is increased or decreased
at each step of the LM algorithm.

III. EXPERIMENTS AND RESULTS

In this section, we apply the proposed hybrid model for
7-month-ahead anchovy catches forecasting. The data set used
corresponded to anchovy landings off northern Chile. These
samples were collected monthly from 1 January 1963 to 30
December 2008 by the National Fishery Service of Chile
(www.sernapesca.cl). The raw anchovy data set have been
normalized to the range from 0 to 1 by simply dividing the
real value by the maximum of the appropriate set. On the other
hand, the original data set was also divided into two subsets. In
the first subset the 70% of the time series were chosen for the
training phase (parameters estimation), whereas the remaining
data set were used for the testing phase.

The normalized raw time series and the Fourier power
spectrum are present in the Figures 1 and 2; respectively.
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Fig. 3. Low frequency anchovy catches time series
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Fig. 4. Fourier power spectrum of LF time series

From Figure 2 it can be observed that there are two peaks
of significant power. The first peak has an inter-annual
periodicities of 31 months, whereas the second peak has a
intra-annual periodicities of 6 months. After we applied the
Fourier power spectrum to the raw time series, we decided to
use 3-level wavelet decomposition due to the significative peak
of 31 months. Both the LF and HF times series are presented in
Figures 3 and 5; respectively, whereas the power spectrum of
both time series are illustrated in Figure 4 and 6; respectively.

In this study, three criteria of forecasting accuracy called
root mean squares error (RMSE), mean absolute percentage
error (MAPE) and ralative error (RE) were used to evaluate
the forecasting capabilities of the proposed hybrid forecasting
models, which are defined as

RMSE =
√
MSE, (11)

MAPE(%) =
1

Ns

Ns∑
i=1

∣∣∣Ai − Fi

Fi

∣∣∣× 100, (12)
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Fig. 5. High frequency anchovy catches time series
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Fig. 6. Fourier power spectrum of HF time series

RE(%) =
Ai − Fi

Fi
× 100, (13)

where Ai is the actual value at time i, Fi is the forecasted
value at time i, and Ns is the number of forecasts.

The MLP neural network was calibrated using 31 previous
months as input data plus one bias unit due to the periodicity
of 31 months of the raw time series (see Figure 2). Finding
the optimal number of hidden nodes is a complex problem,
but in all our experiments, the number of hidden nodes is set
as
√
Ni +No =

√
62 + 2 (number of input nodes and output

nodes). In the training process, overall weights were initialized
by a Gaussian random process with a normal distribution
N(0, 1) and the stopping criterion was a maximum number
of iterations set at 200. Due to the random initialization of the
weights, we used 50 runs to find the best MLP neural network
with a low prediction error.

The Figures 7 and 8 shows the results of testing data for
50 run and 200 iterations, whose best result was achieved in
the run 49. After the training-testing process, the architecture

5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Run Number

B
es

t F
itn

es
s 

(M
SE

)

Fig. 7. Run versus MSE
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Fig. 8. Iteration number for Best Run
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Fig. 9. Seven-month-ahead MLP(31,8,2) forecasting for test data set
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Fig. 10. Retative error for Seven-month-ahead MLP(31,8,2) forecasting during
test data set

was calibrated with 31 input nodes, 8 hidden nodes, and two
output node; this is denoted as MLP(31,8,2).

Figures 9 and 10 show the results obtained with the
MLP(31,8,2) forecasting model during the testing phase. Fig. 9
provides data on observed monthly anchovy catches versus
forecasted catches; this forecasting behavior is very accurate
for testing data with a MAPE of 10.87% and a RMSE of
0.0028. On the other hand, from Figure 10 it can be observed
that an important fraction (over 90%) of the predicted catches
values are acceptable with residuals ranging from 7% to −7%.

IV. CONCLUSIONS

In this paper was proposed a 7-month-ahead anchovy
catches forecasting strategy to improve prediction accuracy
based on Haar stationary wavelet decomposition combined
with a single-hidden neural network model. The reason of
the improvement in forecasting accuracy was due to use
Haar SWT to separate both the LF and HF components of
the raw time series, since the behavior of each component
is more smoothing than raw data set. It was show that
the proposed hybrid forecasting model achieves a MAPE of
10.87% and a RMSE of 0.0028. Besides, proposed forecasting
results showed that the 31 previous month contain valuable

information to explicate a highest variance level for anchovy
catches forecasting. Finally, hybrid forecasting strategy can be
suitable as a very promising methodology to any other pelagic
species.
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Católica de Valparaı́so.

REFERENCES

[1] K. Stergiou, “Prediction of the mullidae fishery in the easterm
mediterranean 24 months in advance,” Fisheries Research, vol. 9, pp.
67–74, 1996.

[2] K. Stergiou and E. Christou, “Modelling and forecasting annual fisheries
catches: comparison of regression, univariate and multivariate time series
methods,” Fisheries Research, vol. 25, pp. 105–138, 1996.
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