

Abstract—In CAD/CAM modeling, objects are represented

using the Boundary Representation (ANSI Brep) model. Detection

of possible intersection between objects can be based on the

objects’ boundaries (i.e., triangulated surfaces), and computed

using triangle-triangle intersection. Usually only a cross

intersection algorithm is needed; however, it is beneficial to have a

single robust and fast intersection detection algorithm for both

cross and coplanar intersections. For qualitative spatial reasoning,

a general-purpose algorithm is desirable for accurately

differentiating the relations in a region connection calculus, a task

that requires consideration of intersection between objects. Herein

we present a complete uniform integrated algorithm for both cross

and coplanar intersection. Additionally, we present parametric

methods for classifying and computing intersection points. This

work is applicable to most region connection calculi, particularly

VRCC-3D+, which detects intersections between 3D objects as well

as their projections in 2D that are essential for occlusion detection.

Index Terms—Intersection detection, classification predi-

cates, spatial reasoning, triangle-triangle intersection.

I. INTRODUCTION

HERE are relatively few software applications supporting

qualitative spatial reasoning. In part, this may be due to

the complexity in determining the intersection between 2D/3D

objects. Yet the ability to detect the existence of a possible

intersection between pairs of objects can be important in a

variety of problem domains such as geographic information

systems [1], CAD/CAM geometric modeling [2], real-time

rendering [3], geology [4], networking and wireless

computing.

In qualitative reasoning, it is not necessary to know the

precise intersection between pairs of objects; it is sufficient to

detect and classify the intersection between objects. Typically,

the boundary of each object is represented as a triangulated

surface and a triangle-triangle intersection is the

computational basis for determining intersection between

objects. Since an object boundary may contain thousands of

triangles, algorithms to speed up the intersection detection

process are still being explored for various applications,

sometimes with a focus on innovations in processor

architecture [5, 6, 7].

For pairs of triangles, there are three types of intersections:

zero dimensional (single point), one-dimensional (line

segment), and two dimensional (area) intersection. In the past,

almost all attention has been devoted to determining the cross

intersections, which resulted in an absence of analysis in two-

dimensional intersections. Coplanar triangle intersections are

unique because an intersection may be any of the

aforementioned three types. If the triangles cross-intersect,

only zero or one-dimensional intersection is possible. If the

planes are parallel and distinct, the triangles do not intersect.

If the triangles are coplanar, then there is a possibility of

intersection. Even when the cost of intersecting a triangle pair

is constant, the cost of intersecting a pair of objects A and B is

order O(TA × TB) where TA is the number of triangles in object

A, and TB is the number of triangles in object B.

In qualitative spatial reasoning, spatial relations between

regions are defined axiomatically using first order logic [8] or

the 9-Intersection model [9]. Using the latter model, the

spatial relations are defined using the intersections of the

interior, boundary, and exterior of one region with those of a

second region. It has been shown in [10] that it is sufficient to

define the spatial relations by computing 4-Intersection

predicates, (namely, Interior–Interior (IntInt), Boundary–

Boundary (BndBnd), Interior–Boundary (IntBnd), and

Boundary–Interior (BndInt)) instead of 9-Intersections.

Since IntBnd and BndInt are the converse of each other,

only three algorithms are necessary for these predicates. In

order to implement these algorithms, we must first solve the

triangle-triangle intersection determination, as it is a lower

level problem that must be solved in order to determine the 4-

Intersection predicates that, in turn, determine the qualitative

spatial relation between two objects.

This paper is organized as follows: Section II briefly

reviews the background and related cross intersection

framework. Section III discusses motivation and conceptual

classification of intersections, whereupon Section IV develops

the overall main algorithm for triangle-triangle intersection.

Section V describes the area intersection algorithm for general

Triangle-Triangle Intersection Determination

and Classification to Support Qualitative

Spatial Reasoning

Chaman L. Sabharwal, Jennifer L. Leopold, Douglas McGeehan

Manuscript received May 25, 2013. Manuscript accepted for publication

September 30, 2013.

The authors are with the Missouri University of Science and Technology,

Rolla, Missouri, 65409, USA (email: {chaman, leopoldj, djmvfb}@mst.edu).

T

13 Polibits (48) 2013ISSN 1870-9044; pp. 13–22

triangles, and predicates for classifying the intersection

between pairs of triangles, after which Section VI discusses

the applications to qualitative spatial reasoning.

II. BACKGROUND

A. The Traditional Algorithm

Many papers have been written on the intersection between

a pair of triangles [3, 11, 12, 13, 14, 15]. Interestingly, most of

them simply reinvent the algorithm and implement it slightly

differently and more efficiently, with no innovation. A recent

paper [7] surveyed various approaches for determining the

cross intersection detection, and developed a fast vector

version of the cross intersection detection, as well as

classification of the type of intersection. Our approach is

exhaustive, integrating both cross and coplanar intersection,

and analytically more rigorous than the previous approaches

[3, 11]. It is described in the next section where we follow the

approach similar to the techniques used in [7] for cross

intersection. The cross-intersection standalone algorithm is

described as follows:

boolean triTriCrossInt (tr1 = ABC, tr2 = PQR)

input: two triangles whose planes cross intersect

output: true if the triangles intersect, else false

The vector equations for two triangles ABC and PQR are

R1(u, v) = A + u U + v V, 0 ≤ u, v, u + v ≤ 1

R2(s, t) = P + s S + t T, 0 ≤ s, t, s + t ≤ 1,

where U = B – A, V = C – A, and S = Q – P, T = R – P.

 Let N1 = U×V, N2 = S×T be normals to the planes

supporting the triangles directed away from the objects.

The triangles intersect if there exist some barycentric

coordinates (u, v) and (s, t) satisfying the equation

A + u U + v V = P + s S + t T

Since N1xN2 ≠ 0 for cross intersecting triangles, and S

and T are orthogonal to N2, the dot product of this

equation with N2 eliminates S and T from the above

equation to yield

u U•N2 + v V•N2 = AP•N2

This is the familiar equation of a line in the uv-plane for

real variables u, v. The vector equation using real

parameter becomes

),(
),(

),(
222

2

2

2

22

2
NUNV

NVNU

NVNU
NAPvu

Then parameter values u, v are explicitly written as

)(
)(

222

2

2

2

22

2

22

2

2

2

2

2

22

2

2

2

2

2

NUNV

NVNU

NVNU
NAPvu

NU

NVNU

NV
NAPv

NV

NVNU

NU
NAPu

If there is a in these three equations such that 0 ≤ u, v, u

+ v ≤ 1, the triangles are ensured to intersect. The range

of values of is bounded by m and M. This detects

whether the two triangles cross intersect only.

 In fact, for precise intersection, using m, M, as

parameter values, we compute (um, vm) and (uM, vM) for

the segment of intersection on ABC. Similarly the values

(sm, tm) and (sM, tM) represent the segment of intersection

on PQR. The precise intersection between the two

triangles is the common segment of these two segments.

If the segment degenerates into a single point, the

parameter values also can be used to classify the

intersection as a vertex, an edgeInterior point or

triangleInterior point in the triangle ABC.

III. CLASSIFICATION OF TRIANGLE INTERSECTIONS

For spatial reasoning, we detect intersection between pairs

of 2D/3D objects and classify pairwise intersection predicates

IntInt, IntBnd, BndInt, and BndBnd, without computing the

extent of intersections. The cross intersection can be

characterized into seven categories [7]. When cross

intersection is insufficient to determine tangential intersection,

some applications such as RCC8 and VRCC-3D+ [6] resort to

coplanar intersection to support relations such as externally

connected (EC) and tangentially connected (TPP, TPPc).

The precise intersection of coplanar triangles is a little more

complex because it can result in area intersection as well; the

coplanar triangles intersection can be classified as: Single

Point Intersection (vertex-vertex, vertex-edgeInterior), Line

Segment Intersection (edge-edgeCollinear), Area Intersection

bounded by 3, 4, 5, 6 edges, (Fig. 4, Fig. 5(a, b, c)). A triangle

may be entirely contained in the other triangle (Fig. 5(d)). In

this paper, we present a detailed analytical study of the

intersection of coplanar triangles, which has not been

previously presented.

The intersection between a pair of triangles can be

abstracted as Cross (C) intersection or Parallel (P) coplanar

triangles intersection. For taxonomy of cross and parallel

coplanar triangles, the conceptual intersections are supported

with figures presented here. The specific cases are as follows:

No intersection

disjoint (C, P) (see Fig. 1)

Single Point Intersection

vertex-vertex Intersection (C, P) (see Fig. 2(a))

vertex-edgeInterior Intersection (C, P) (see Fig. 2(b))

14Polibits (48) 2013 ISSN 1870-9044

Chaman L. Sabharwal, Jennifer L. Leopold, Douglas McGeehan

vertex-triangleInterior Intersection (C) (see Fig. 2(c))

edgeInterior-edgeInteriorCross Intersection (C) (Fig. 2(d))

Line intersection

edge-edgeCollinear Intersection (C, P) (see Fig. 3(a))

edge-triangleInterior Intersection (C) (see Fig. 3(b))

triangleInterior-triangleInterior Intersection (C) (Fig. 3(c))

Area Intersection

vertex-triangleInterior Intersection (P) (see Fig. 4, Fig. 5(a,

b, d))

edgeInterior-edgeInterorCross Intersection (P) (Fig. 4, Fig.

5(a, b, c))

edge-triangleInterior Intersection (P) (see Fig. 5(d))

triangleInterior-triangleInterior Intersection (P) (see Fig. 4,

Fig. 5(a, b, c, d))

It is possible that two triangles cross intersect in a line

segment even when a triangle is on one side of the other

triangle. In that case, it may be desirable to know which side

of the other triangle is occupied. In Fig. 3(b), the triangle PQR

(except QR which is in ABC) is on the positive side of

triangle ABC. So PQR does not intersect the interior of object

of triangle ABC. We will use this concept in Section VI.

Section VII concludes, followed by references in Section VIII.

It should be noted that the vertex-edge intersection

encompasses vertex-vertex, vertex-edgeInterior intersection,

whereas the vertex-triangle intersection encompasses vertex-

vertex, vertex-edgeInterior, and vertex-triangleInterior. Thus

1D JEPD cross intersection between ABC and PQR can be

one of the three possibilities: (1) collinear along edges, (2) an

edge of PQR lying in the plane of triangle ABC, or (3)

triangles “pierce” through each other yielding an intersection

segment.

IV. THE OVERALL ALGORITHM

(INTERSECTION BETWEEN TRIANGLES)

In this section, we describe the overall structure of the

triangle-triangle intersection. In Section IV.A, we develop

sub-algorithms that support the main algorithm at its

intermediate steps. In addition to existence or nonexistence of

an intersection, this algorithm also supports other auxiliary

computations, (e.g. classification of intersection and the

calculation of 3D intersection points, segment or area) which

are necessary for some applications.

A. Description of the Overall Algorithm

The general structure of the overall triangle-triangle

intersection algorithm is presented here. The description is in

Python style so that it can be easily transported to

programmable code. Here is the traditional approach to the

algorithm, whereas our approach is presented in Section V.

Fig. 1. Disjoint triangles: Planes supporting the triangles may be

crossing or coplanar. The triangles do not have anything in common.

Fig. 2. Triangles intersect at a single point. The intersections

between triangles ABC and PQR are JEPD (Jointly Exhaustive and

Pairwise Distinct) cases of Single Point intersection between

triangles. (a) vertex-vertex and (b) vertex-edgeInterior can occur in

both cross and coplanar intersections. However, (c) vertex-

triangleInterior and (d) edgeInterior-edgeInterior intersection point

can occur in cross intersection only.

Fig. 3. Triangles intersect in a line segment. (a) edge-edgeCollinear

intersection can occur in both cross and coplanar intersections.

However, (b) edge-triangleInterior and (c) triangleInterior-

triangleInterior intersection segment occur in cross intersection only.

15 Polibits (48) 2013ISSN 1870-9044

Triangle-Triangle Intersection Determination and Classification to Support Qualitative Spatial Reasoning

Fig. 4. Triangles intersect in an area. (a) One edge of triangle PQR

and two edges AB and AC of triangle ABC intersect, vertex A is in

the interior of PQR. (b) One edge of triangle PQR with three edges

of ABC, and vertex A in the interior of PQR. The common area is

bounded by three edges. The intersections vertex-triangleInterior,

edge_triangle, edgeInterior-triangleInterior hold.

Fig. 5. Triangles intersect in an area (continued). The coplanar

triangle intersections are bounded by four, five, and six edge

segments. (a) Two edges of triangle PQR and two edges AB and AC

of triangle ABC intersect, vertex A is in the interior of PQR, vertex

R is in the interior of triangle ABC. The intersection area is bounded

by four edges. (b) Two edges of triangle PQR and three edges of

triangle ABC intersect; vertex C is in the interior of PQR. The

intersection area is bounded by five edges. (c) Three edges of

triangle PQR and three edges of triangle ABC intersect; every vertex

of one triangle is outside the other triangle. The intersection area is

bounded by six edges. (d) No edge of triangle PQR intersects any

edge of triangle ABC; vertices P, Q, R are in the interior of triangle

ABC. The intersection area is the triangle PQR.

boolean triTriInt(tr1 = ABC, tr2 = PQR)

Input: two triangles ABC and PQR

Output: Boolean value whether the triangles intersect or

not.

Let ABC and PQR be two triangles. The triangles are

represented with parametric vector equations where u, v are

parameters for triangle ABC, and s, t are parameters for

triangle PQR.

R1(u, v) = A + u U + vV with 0 ≤ u, v, u + v ≤ 1

R2(s, t) = P + s S + tT with 0 ≤ s, t, s + t ≤ 1

where

U = B – A, V = C – A, are directions of the edges at A;

S = Q – P, T = R – P are the directions of edges at P.

Let N1 = UxV, N2 = SxT be the normals to planes supporting

the triangles ABC and PQR.

if N1xN2 ≠ 0 // planes supporting triangles are not parallel

 if triTriCrossInt (tr1, tr2) // cross intersect the triangles

 return true

 else

 return false

elseif N1xN2 = 0, // triangles planes are parallel

 if AP•N1 = 0, //the triangles are coplanar

 if triTriParInt (tr1, tr2)// implicit in Section V.

 return true

 else

 return false

 elseif AP•N1 ≠ 0, // the triangles are not coplanar,

 no Intersection

 return false

 endif

endif

/*end of algorithm*/

Here, we give all the supporting algorithms for

implementation and classification of all special case

intersections in the main algorithm. There are three broad

categories for intersections of triangles: zero dimensional

(single point), one-dimensional (line segment), and two

dimensional (area) intersection.

A.1 Single Point Intersection (0D).

We first analyze the vertices of the triangle PQR with

respect to triangle ABC to determine if a vertex P or Q or R is

common to the ABC triangle and conversely.

vertex-triangleTest (X, tri = ABC)

Input: X is a vertex of one triangle and tri another triangle.

Output: boolean value determining whether X is a vertex,

edgeInterior, triangleInterior point of the triangle.

To determine the relation of X {P, Q, R} to the triangle

ABC, we solve

A + u U + v V = X for 0 ≤ u, v, u + v ≤ 1,

Rearranging the equation, we get

u U + v V = AX .

16Polibits (48) 2013 ISSN 1870-9044

Chaman L. Sabharwal, Jennifer L. Leopold, Douglas McGeehan

To eliminate one of the parameters u, v to solve this, we dot

product the equation with vectors (UxV)xU and (UxV)xV.

Let

)()(

)(

VUVU

VUAX

then u = – •V and v = •U

if 0 ≤ u, v, u + v ≤ 1,

 return true // X of PQR, intersects the triangle ABC.

else

 return false

/*end of algorithm*/

The vector
)()(

)(

VUVU

VU

 is computed only once and used

repeatedly. As a result
)()(

)(

VUVU

VUAX

 is calculated

with one cross product, and u, v are calculated with one dot

product. The parameters u, v naturally lend themselves to

classification of intersections. Similarly,
)()(

)(

TSTS

TSPX

 .

A.2 Classification of Intersection.

In order to determine whether the vertex X of triangle PQR

is a vertex of ABC, or on the edge of ABC, or an interior

point of triangle ABC, no extra computational effort is

required now. Logical tests are sufficient to establish the

classification of this intersection. Since 0 ≤ u, v, u + v ≤ 1, we

can classify X relative to ABC in terms of the following

predicates:

vertex ((u, v)): If (u, v) { (0, 0), (0, 1), (1, 0)}, then X is

one of the vertices of ABC.

edgeInterior ((u, v)): If (u = 0, 0 < v < 1) or (v = 0, 0 < u <

1) or (u + v = 1, 0 < u < 1)), then X is on an edge of ABC,

excluding vertices.

triangleInterior ((u, v)): If (0 < u < 1 and 0 < v < 1 and 0 <

u + v < 1), X is an interior point (excluding boundary) of the

triangle ABC.

Similarly, as above we can classify vertex X of triangle

ABC as vertex, edgeInterior, or triangleInterior point of

triangle PQR. Single point intersection may result from cross

intersection of edges as well. An edge point may be a vertex

or an interior point of the edge.

A.3 The Edge-edge Single Point Intersection.

If two triangles cross intersect across an edge, the edge-to-

edge intersection results in a single point. The edge-edge cross

intersection algorithm is presented below.

edge_edgeCrossIntersection (edge1, edge2)

Let the two edges be AB and PQ. Then the edges are

represented with equations

 X = A + u U with U = B – A, 0 ≤ u ≤ 1

 X = P + s S with S = Q – P, 0 ≤ s ≤ 1

if U×S•AP≠0, return false // non-coplanar lines

elseif U×S = 0, return false // lines are parallel

else U×S ≠0, // lines cross

/* solve for uP, sA values for the intersection point*/

 A + uP U = P + sA S

uP = S•PA×(U×S)/(U×S•U×S)

)()(

)(

SUSU

SUPAS
u
P

if (uP < 0) or (uP > 1), return false // no cross intersection,

)()(

)(

SUSU

SUAPU
s
A

if (sA < 0) or (sA > 1),

 return false //no cross intersection,

else

 return true //there is edge-edge cross intersection.

endif

/* end of algorithm*/

A.4 Composite Classification Of Single Point Intersection.

Let Am, Pm, be the pair of bilinear parametric coordinates of

the 3D intersection points R1(um,vm) and R2(sm,tm) with

respect to triangles ABC and PQR respectively. When there is

no confusion, we will refer to the points as Am and Pm instead

of 3D points R1(um,vm) and R2(sm,tm). From vertex-triangle

intersection (Section 3) we have

Pm is a vertex of PQR, and Am = (um, vm), where um and vm

are um = –•V, vm = •U or Am is a vertex of ABC, and Pm =

(sm, tm), where sm and tm) are sm = –'•T, tm = '•S.

From edge-edge intersection (Section B.3) we have

Am = (0, uP) or (uP, 0) or (uP, 1 – uP) or (1 – uP, uP)

Pm = (0, sA) or (sA, 0) or (sA, 1 – sA) or (1 – sA, sA)

If (uP = 0 or 1) and (sA = 0 or 1), it is vertex-vertex

intersection. If (uP = 0 or 1) and not (sA = 0 or 1), it is vertex-

edgeInterior intersection. If not (uP = 0 or 1) and (sA = 0 or 1),

it is edgeInterior-vertex intersection. If not (uP = 0 or 1) and

not (sA = 0 or 1), it is edgeInterior-edgeInterior intersection.

This completes the discussion of single point intersection

classification and parameters for the corresponding 3D points.

B. Line Intersection (1D)

Besides edge-edge cross intersection, the edge-edge

collinear intersection is a possibility, independent of crossing

17 Polibits (48) 2013ISSN 1870-9044

Triangle-Triangle Intersection Determination and Classification to Support Qualitative Spatial Reasoning

or coplanar triangles. In this section, we discuss algorithms

that result in a segment (1D) intersection; see Fig. 3.

B.1 Intersection Algorithm And Parametric Coordinates.

Here we derive an edge-edgeCollinear intersection

algorithm. This algorithm is seamlessly applicable to both

cross-intersecting and coplanar triangles. The following

algorithm implements intersection of edges of the triangles

ABC and PQR.

boolean edge-edgeCollinearTest (edge1, edge2)

input: two line segments

output: true if the segments have a common intersection,

else false. First we compute the linear parameter coordinates

uP, uQ, sA, sB for intersection of X = A + u (B – A), for X = P,

Q and X = P + s (Q – P), for X = A, B. Similarly, we can

compute the intersection of other edges of triangle ABC with

any edge of triangle PQR. Then we update the parameters for

the common segment. This algorithm is standard,

straightforward and is omitted for the sake of limited space.

B.2 Classification of Edge-edge Intersection

Now we have the linear coordinates for intersection points

uP, uQ and sA, sB. We map the linear parameters for

intersection points to bilinear parameter coordinates (u, v) and

(s, t). If uP, uQ are known along an edge and the edge is AB,

let um = uP, uM = uQ, vm = 0, vM = 0;

Similarly for AC, let vm = uP, vM = uQ, um = 0, uM = 0; and

for BC, let um = uP, uM = uQ, vm = 1 – uP, vM = 1 – uQ;

Thus ABC triangle bilinear coordinates for the intersection

points are:

Am=(um, vm), AM=(uM, vM)

where vm = vM = 0 or um=uM =0 or um+vm=uM + vM = 1.

Similarly for the triangle PQR, the linear coordinates sA, sB

of intersection translate into bilinear coordinates

Pm = (sm, tm), PM = (sM, tM)

where tm = tM = 0 or sm = sM = 0 or sm+tm = sM+tM = 1.

Now we have the bilinear parametric coordinates u, v, s, t

for the intersection segment. The common 3D segment is

denoted by [R1(Am), R1(AM)] which is [R2(Pm), R2(PM)] or

[R2(PM), R2(Pm)]. It is possible that the intersection segment is

equal to both edges, or it overlaps both edges, or it is entirely

contained in one edge. Since the intersection is a part of the

edges, it cannot properly contain any edge.

B.3. Composite Classification of Line Intersection.

For collinear edge intersection Am, AM are normally distinct

and similarly Pm, PM may be distinct. Though the intersection

segment is given by [R1(Am), R1(AM)] = [R2(Pm), R2(PM)) or

[R1(Am), R1(AM)] = [R2(Pm), R2(PM)], it is not necessary that

parameter coordinates [Am, AM] = [Pm, PM] or [Am, AM] = [PM,

Pm]. The predicate for edge-edge collinear intersection

segment becomes:

edge-edgeCollinear (edge1, edge2) = edge ([Am, AM]) and

edge ([Pm, PM]) and [R1(Am), R1(AM)] == [R2(Pm), R2(PM)] or

[R1(Am), R1(AM)] == [R2(PM), R2(Pm)]

Also it may be noted that for a cross intersection triangle, an

edge-triangleInterior intersection may result in a segment

intersection (Fig. 3(b)). For cross intersecting planes we have

(cf. 3.A for vertex to triangle intersection and [7]) .

edge-triangle (edge, triangle) = edge ([Am, AM]) and triangle

([Pm, PM]) and [R1(Am), R1(AM)] == [R2(Pm), R2(PM)] or

[R1(Am), R1(AM)] == [R2(PM), R2(Pm)]

This completes the discussion of segment intersection (1D),

classification, 3D points for both cross and coplanar triangle

intersections.

V. AREA INTERSECTION

For coplanar triangles, there may be no intersection (Fig. 1),

a single point (Fig. 2(a, b)), a segment (Fig. 3(a)) or an area

(Fig. 4, Fig. 5(a, b, c)), including one triangle contained in

another, (Fig. 5(d)). An area can result from two edges of one

triangle and one, two, or three edges of another triangle, or

three edges from both triangles creating a star shaped figure.

The resulting area is bounded by 3, 4, 5, or 6 edges. All other

configurations are homeomorphic to the figures presented in

this paper. For qualitative spatial reasoning, in some cases

(when the knowledge of cross intersection is insufficient), we

resort to coplanar intersection to distinguish the externally or

tangentially connected objects.

A. General Purpose Algorithm

If a vertex of PQR is in the interior of ABC (or the converse

is true), then an area intersection occurs, (Fig. 4(a, b), Fig. 5(a,

b, d)). If no two edges intersect and vertex_triangleInterior

(vertex, triangle = tr2) for every vertex of a triangle tr1, then

the triangle tr1 is contained in tr2 and conversely. If no edge-

edge intersection takes place and no vertex of one triangle is

inside the other triangle (or the converse is true), then they are

disjoint.

Although this algorithm may look simple, it is a new

approach compared to previous approaches cited in the

background section. The existing methods may use alternate

edge-oriented techniques to determine the area of intersection;

however, those will be limited [11]. Our algorithm is more

comprehensive and analytically rigorous; it is implicitly

capable of handling any specific type of intersection

simultaneously, which may be a single point, a segment or an

area.

18Polibits (48) 2013 ISSN 1870-9044

Chaman L. Sabharwal, Jennifer L. Leopold, Douglas McGeehan

THE ALGORITHM: A NOVEL APPROACH

boolean triTriIntersection (tr1 = ABC, tr2 = PQR)

The triangles ABC and PQR are

X = A + u U + v V with U = B – A, V = C – A, 0 ≤ u, v, u + v

≤ 1

X = P + s S + t T with S = Q – P, T = R – P, 0 ≤ s, t, s + t ≤ 1

The general set up for detecting intersections is to solve the

equation

A + u U + v V = P + s S + t T

for u, v, s, t. If a solution exists satisfying the constraints 0 ≤

u, v, u + v, s, t, s + t ≤ 1, then there is an intersection, else

there is no intersection.

Rearranging the equation, we have

 u U + v V = AP + s S + t T (1)

For simplicity in solving (1), we use the following notation.

Let , , be vectors and be a positive real number. Then

for triangle ABC, let AP = P – A be a vector, =

(U×V)•(U×V),

)(
,

)(
,

)(VUAPVUTVUS

Similarly, let ', ', ' be vectors and d' be a positive real

number. Then for triangle PQR, let

 PA = A – P be a vector, ' = (S×T)•(S×T)

)(
,

)(
,

)(TSPATSVTSU

 .

For intersection between triangles ABC and PQR, on

dotting equation (1) with (U×V)×U and (U×V)×V, we quickly

get

u = – (•V + s •V + t •V)

v = •U + s •U + t •U

Adding the two equations,

u + v = • (U – V) + s • (U – V) + t •(U – V)

In order that 0 ≤ u, v, u + v ≤ 1, we get the following

inequalities for possible range of values for s and t

 (a) – •U ≤ •U s + •U t ≤ 1 – •U

 (b) – 1 – •V ≤ •V s + •V t ≤ – •V

 (c) – • (U – V) ≤ •(U – V) s + •(U – V) t ≤ 1 – •(U – V)

These linear inequalities (a) – (c) are of the form

m ≤ ax + by ≤ n

The solution to this system of inequalities is derived at the

end of this section. We apply the results of the algorithms here

in solving (a) – (c).

If we solve_x (– •U, •U, •U, 1 – •U, – •V, •V, •V,

1 – •V, xm, xM)

 sm = max (0, xm), sM = min (1, xM)

If we solve_x (– •U, •U, •U, 1 – •U, – •(U – V), • (U

– V), •(U – V), 1 – •(U – V), xm, xM)

 sm = max (sm, xm), sM = min (xM, sM)

If we solve_x (– 1 – •V, •V, •V, – •V, – •(U – V),

•(U – V), •(U – V), 1 – •(U – V), xm, xM)

 sm = max (sm, xm), sM = min (xM, sM)

if sm > sM

 return false

else

 tM = 0; tm = 1

 for s[sm, sM] // we solve the inequalities for t

 if solve_y (– •U, •U, •U, 1 – •U, – •V, •V,

•V, 1 – •V, s, ym, yM)

 tm (s) = max (0, ym), tM (s) = min (1, yM),

 tm = min (tm (s), tm), tM = max (tM (s), tM) // extent of

overall t values

 if tm (s) > tM (s)

 Return false

 else

 tm (s) ≤ t ≤ tM (s)

 return true

/* end of algorithm */

We first solved the three inequalities pairwise for a range of

values for s, so that sm ≤ s ≤ sM holds good simultaneously

with three inequalities. Then from this range of s values, we

solved for t as a function of s such that tm (s) ≤ s ≤ tM (s), and

overall tm ≤ tM. If it succeeds, it ensures that there is a

solution. Similarly, we determine for u-parameter and v-

parameter values in terms of u to obtain the area enclosed by

the two triangles. This algorithm detects whether coplanar

triangles intersect, and we classify the intersection as in

Section V.B. Here we describe the two algorithms we applied

in the general-purpose algorithm. An auxiliary algorithm

solves inequalities of the form

 m ≤ ax + by ≤ n, and

 M ≤ Ax + By ≤ N

The brute force method for solving these inequalities may

lead to an erroneous solution as shown in the following

example. The general elimination of variables principle that

works well for equations does not directly translate into

solving inequalities. Such approach gives an inconsistent

solution to the two inequalities

19 Polibits (48) 2013ISSN 1870-9044

Triangle-Triangle Intersection Determination and Classification to Support Qualitative Spatial Reasoning

 (a) – 1 ≤ x + y ≤ 1 and

 (b) – 1 ≤ x – y ≤ 1

Since – 1 ≤ x – y ≤ 1 is equivalent to – 1 ≤ – x + y ≤ 1,

adding and subtracting the two inequalities (a) and (b), yields

an inaccurate answer –1 ≤ x ≤ 1, and – 1 ≤ y ≤ 1 which is the

area enclosed by dotted boundary in Fig. 6. But the accurate

solution is in the shaded area in Fig. 6, which is |x| ≤ 1, and |y|

≤ (1 – |x|).

Thus to accurately solve these two inequalities – 1 ≤ x + y ≤

1 and – 1 ≤ x – y ≤ 1, we first solve these for one variable x,

then use this variable value to solve for the other variable y as

– (1 – |x|) ≤ y ≤ (1 – |x|).

First, we solve two most general inequalities

 m ≤ ax + by ≤ n (1)

 M ≤ Ax + By ≤ N (2)

The following algorithm determines xm, xM such that for

each x in [xm, xM], the inequalities hold.

Fig. 6. Solution to a pair of inequalities: – 1 ≤ x + y ≤ 1 and – 1 ≤

x – y ≤ 1. Using brute force method of elimination of variables yields

the area enclosed by the dotted boundary, but the accurate solution is

enclosed by the shaded area.

boolean solve_x (m, a, b, n, M, A, B, N, xm, xM)

If a solution is found, it returns true, else it returns false.

First assume b and B are non-negative. If not, multiply them

by –1 to make them non-negative. Multiplying (1) by B and

(2) by b, subtraction leads to

(mB –Mb) ≤ (aB – Ab)x ≤ (nB – Nb),

which yields the range [xm, xM] for x values in addition to true

or false value for the algorithm.

Now once xm, xM have been determined, for each x in [xm,

xM] in the inequalities, we determine the range [ym(x), yM(x)]

for y. That is, after the range [xm, xM] is determined, only then

for each x in [xm, xM], the range for y is determined; in other

words, y is a function of x.

boolean solve_y (m, a, b, n, M, A, B, N, x, ym, yM)

Given that xm ≤ x ≤ xM are known, it solves the inequalities

for ym, yM . In the process, it may update the values of xm, xM

as needed.

If a solution is found, it returns true else it returns false.

Now for xm ≤ x ≤ xM, the inequalities become

 m –ax ≤ by ≤ n – ax and

 M – Ax ≤ By ≤ N – Ax.

These inequalities give the range [ym(x), yM(x)] of values

for y as function of x.

This completes the general-purpose algorithm discussion

for determining the triangle-triangle intersection algorithm

completely.

 B. Composite classification for area intersection

In this section, we summarize the algorithms in Section

V.A. The equations of the triangles ABC and PQR are

R1(u, v) = A + u U + v V,

 where U = B – A, V = C – A, 0 ≤ u, v, u + v ≤ 1

R2(s, t) = P + s S + t T,

 where S = Q – P, T = R – P, 0 ≤ s, t, s + t ≤ 1

These equations are independent of whether they are

supported by crossing planes or coplanar planes. The cross-

intersecting triangles discussion is well researched, see

Section II. Here we consider the general case, including

crossing or coplanar triangles. In this case, the intersection

may be an area in addition to a possible single point and a line

segment. We first determined [sm, sM] the range of s values,

then used the range on s to solve for [tm(s), tM(s)], the range of

t. If such a solution exists, it is ensured that the two triangles

intersect, which is sufficient for some qualitative spatial

reasoning applications. The uv values can be similarly derived

for the triangle ABC (e.g., first um, uM then vm(u), vM(u)). This

algorithm may be used with any application (e.g., qualitative

spatial reasoning, surface modeling, image processing etc.).

As described in Section III, an intersection can arise from

crossing or coplanar triangles. For example, vertex-vertex or

edge-edge intersection can occur regardless of triangles being

coplanar or crossing. The algorithm determines whether

intersection exists or not (i.e., it returns true or false). If true,

the parameter coordinates of intersection are readily available.

We can derive all the auxiliary information from the

parametric coordinates; only logical tests are sufficient for

classification of the intersections. It is not the intent of this

algorithm to determine whether the triangles are crossing or

coplanar.

This can be quickly determined as follows: if U×V•S×T ≠0,

then triangles cross, else triangle planes are parallel. If

AP•U×V = 0 or AP•S×T = 0, then the triangles are coplanar.

The bilinear parameter coordinates are denoted by Am = (um,

vm), AM = (uM, vM), Pm = (sm, tm), PM = (sM, tM). The

intersection points can be differentiated as follows.

20Polibits (48) 2013 ISSN 1870-9044

Chaman L. Sabharwal, Jennifer L. Leopold, Douglas McGeehan

If the algorithm returns false,

 No Intersection

Elseif (Am = AM) or (Pm = PM)

 Single Point Intersection

Elseif (sm = sM or tm = tM or um = uM or vm = vM)

 Line segment intersection common to two triangles

Else

 Area Intersection common to two triangles.

This will implicitly cover the case when a triangle is inside

the other triangle as well. If triangles do not intersect, then the

triangles are declared disjoint. This completes the discussion

of overall intersection between triangles.

VI. APPLICATION TO QUALITATIVE

SPATIAL REASONING

Qualitative Spatial Reasoning relies on intersections

between objects whose boundaries are triangulated. The

spatial relations are determined by the 9-Intersection/4-

Intersection model [9, 10]. That is, for any pair of objects A

and B, the interior-interior intersection predicate, IntInt(A, B),

has true or false value depending on whether the interior of A

and the interior of B intersect without regard to precise

intersection. Similarly IntBnd(A, B) represents the truth value

for the intersection of the interior of A and the boundary of B,

and BndBnd(A, B) represents the predicate for the

intersection of the boundaries of A and B. These four

qualitative spatial reasoning predicates are sufficient to define

the RCC8 spatial relations (see Table 1).

In the application VRCC-3D+, the boundary of an object is

already triangulated; that is, we will need to intersect pairs of

only triangles. To reduce the computational complexity, the

algorithm uses axis aligned bounding boxes (AABB) to

determine the closest triangles that may possibly intersect. For

example, for objects A and B, if bounding boxes for triangles

of A are disjoint from bounding boxes for triangles of B,

either A is contained in B (IntInt, BndInt is true) or B is

contained in A (IntInt, IntBnd is true) or A is disjoint from B.

The test for such containment of objects can be designed by

casting an infinite ray through the centroid of A. If the ray

intersects B an odd number of times, then B is contained in A.

Similarly, the test can be made if A is contained in B. If A is

not contained in B and B is not contained in A, then A and B

are disjoint (i.e., IntInt(A, B), IntBnd(A, B), BndInt(A, B),

and BndBnd(A, B) are all false).

If the triangles cross intersect (e.g., triangleInterior–

triangleInterior is true), then IntInt, IntBnd, BndInt, BndBnd

will be true. However if the triangles are coplanar and

intersect, only BndBnd(A, B) is true and IntInt(A, B),

IntBnd(A, B), BndInt(A, B) are false for the objects;

otherwise, BndBnd(A, B) is also false.

It is possible that two triangles cross intersect in a line

segment even when a triangle is on one side of the other

triangle, so edgeInterior–triangleInterior is true. In that case,

it may be desirable to know which side of the other triangle is

occupied. In Fig. 3(b), the triangle PQR is on the positive side

of triangle ABC. For example, if triangle1 of object A cross

intersects the negative side of triangle2 of object B, then

BndInt(A, B) is true.

Table 2 enumerates the outcome for triangle-triangle

intersection with respect to 3D objects. This is a

characterization of the intersection predicates, which

subsequently can be used to resolve the eight RCC8 relations.

Here we assume all normals are oriented towards the outside

of the object. Each characterization in Table 2 describes when

the associated predicate is true. If the truth test fails, then

other triangles need to be tested. If no pair of triangles results

in a true value, then the result is false.

TABLE I.

RCC8 RELATIONS AND INTERSECTION PREDICATES,

ONLY SHADED ENTRIES ARE NECESSARY.

TABLE II.

CHARACTERIZATION OF INTERSECTION PREDICATES

This characterizes the intersection predicates, which help in

resolving the RCC8 relations.

VII. CONCLUSION

For the 9-Intersection model used in qualitative spatial

reasoning, triangle-triangle intersection plays a prominent

role. Herein we presented a complete framework for

determining and characterizing the intersection of geometric

objects. In contrast to other algorithms, our approach is a

general technique to detect any type of intersection. It creates

classifications by applying logical tests rather than

computational arithmetic tests.

Thus, our algorithm not only detects whether or not an

intersection exists, but also classifies intersections as a single

21 Polibits (48) 2013ISSN 1870-9044

Triangle-Triangle Intersection Determination and Classification to Support Qualitative Spatial Reasoning

point, a line segment, or an area. The algorithm provides more

information than required by spatial reasoning systems.

Consequently, we hope the new ideas and additional

information including classification of 3D intersection

presented herein will be useful in other related applications.

REFERENCES

[1] M. J. Egenhofer, R.G. Golledge, Spatial and Temporal

Reasoning in Geographic Information Systems, Oxford

University Press, USA, 1998.

[2] E.G. Houghton, Emnett R.F., Factor J.D. and Sabharwal C.L.,

“Implementation of A Divide and Conquer Method for Surface

Intersections,” Computer Aided Geometric Design, Vol. 2,

pp. 173–183, 1985.

[3] Oren Tropp, Ayellet Tal, Ilan Shimshoni. “A fast triangle to

triangle intersection test for collision detection,” Computer

Animation and Virtual Worlds, Vol. 17 (50), pp. 527–535, 2006.

[4] G. Caumon, Collon-Drouaillet P, Le Carlier de Veslud C, Viseur

S, Sausse J. “Surface-based 3D modeling of geological

structures,” Math. Geosci. 41:927–945, 2009.

[5] A.H. Elsheikh, M. Elsheikh, “A reliable triangular mesh

intersection algorithm and its application in geological

modeling,” Engineering with Computers, pp. 1–15, 2012.

[6] N. Eloe, J. Leopold, C. Sabharwal, and Z. Yin, “Efficient

Computation of Boundary Intersection and Error Tolerance in

VRCC-3D+”, Proceedings of the 18h International Conference

on Distributed Multimedia Systems (DMS’12), Miami, FL, Aug.

9–11, 2012, pp. 67–70, 2012.

 [7] C.L. Sabharwal, J.L. Leopold, “A Fast Intersection Detection

Algorithm For Qualitative Spatial Reasoning”, Proceedings of

the 19h International Conference on Distributed Multimedia

Systems (DMS’13), Brighton, UK, Aug. 8–10, 2013.

[8] D. A. Randell, Z. Cui, and A.G. Cohn. “A Spatial Logic Based on

Regions and Connection,” KR, 92, pp. 165–176, 1992.

[9] M.J. Egenhofer, R. Franzosa. “Point-Set topological Relations,”

International Journal of Geographical Information Systems 5(2),

pp. 161–174, 1991.

[10] C.L. Sabharwal, J.L. Leopold. “Reducing 9-Intersection to 4-

Intersection for identifying relations in region connection

calculus,” 24th International Conference on Computer

Applications in Industry and Engineering, pp. 118–123, 2011.

[11] P. Guigue, O. Devillers. “Fast and robust triangle-triangle overlap

test using orientation predicates.” Journal of GraphicsTools;

8(1): pp. 25–42, 2003.

[12] M. Held. “ERIT, A collection of efficient and reliable

intersection tests,” Journal of Graphics Tools; 2(4): pp. 25–44,

1997.

[13] T. Möller “A fast triangle-triangle intersection test,” Journal of

Graphics Tools, 1997; 2(2): 25–30.

[14] B. Didier, “An Efficient Ray–Polygon Intersection,” Andrew S.

Glassner, ed. Graphics Gems, Academic Press, pp. 390–393,

1990.

[15] C.L. Sabharwal, “Survey of implementations of cross intersection

between triangular surfaces,” MDC Report Q0909 (Now Boeing

at St. Louis, MO, USA), 1987.

22Polibits (48) 2013 ISSN 1870-9044

Chaman L. Sabharwal, Jennifer L. Leopold, Douglas McGeehan

http://link.springer.com/journal/366
http://www.graphicsgems.org/gems/RayPolygon.c

	Abstract—In CAD/CAM modeling, objects are represented using the Boundary Representation (ANSI Brep) model. Detection of possible intersection between objects can be based on the objects’ boundaries (i.e., triangulated surfaces), and computed using tri...
	Index Terms—Intersection detection, classification predicates, spatial reasoning, triangle-triangle intersection.
	I. Introduction
	HERE are relatively few software applications supporting qualitative spatial reasoning. In part, this may be due to the complexity in determining the intersection between 2D/3D objects. Yet the ability to detect the existence of a possible intersectio...
	II. Background
	III. Classification of Triangle Intersections
	IV. The Overall Algorithm (Intersection Between Triangles)
	V. Area Intersection
	VI. Application to Qualitative Spatial Reasoning
	VII. Conclusion
	References
	[1] M. J. Egenhofer, R.G. Golledge, Spatial and Temporal Reasoning in Geographic Information Systems, Oxford University Press, USA, 1998.

	[6] N. Eloe, J. Leopold, C. Sabharwal, and Z. Yin, “Efficient Computation of Boundary Intersection and Error Tolerance in VRCC-3D+”, Proceedings of the 18h International Conference on Distributed Multimedia Systems (DMS’12), Miami, FL, Aug. 9–11, 2012...
	[7] C.L. Sabharwal, J.L. Leopold, “A Fast Intersection Detection Algorithm For Qualitative Spatial Reasoning”, Proceedings of the 19h International Conference on Distributed Multimedia Systems (DMS’13), Brighton, UK, Aug. 8–10, 2013.

