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Abstract—Research on swarming has primarily focused on
applying swarming behavior with physics-derived or ad-hoc
models to tasks requiring collective intelligence in robotics and
optimization. In contrast, applications in signal processing are
still lacking. The purpose of this paper is to investigate the
use of biologically-inspired swarm methods for signal filtering.
The signal, in the case of images the grayscale value of the
pixels along a line in the image, is modeled by the trajectory
of an agent playing the role of the prey for a swarm of hunting
agents. The swarm hunting the prey is the system performing
the signal processing. The movement of the center of mass of
the swarm represents the filtered signal. The position of the
center of mass of the swarm during the virtual hunt is reverted
into grayscale values and represents the output signal. We show
results of applying the swarm-based signal processing method to
MRI mammographies.

Index Terms—Swarm intelligence, nonlinear signal filter, MRI,
mammography, image processing.

I. INTRODUCTION

SWARMING behavior is widely encountered in
populations in nature, where the collective intelligence

of the swarm has the advantage of better performing tasks
such as escaping from predators, exploring terrain in quest of
nutrients, or hunting. Swarming is the collective, aggregated,
corroborated behavior of a set of individuals (agents) of
similar or identical structure, each of them able to sense,
move, and make decisions of their own while communicating
with the other agents or while observing the other agents’
movements. A swarm is said to possess a collective
(distributed) intelligence because a specific behavior occurs
at the group level. While each agent potentially has full
autonomy and decision-making capability, their individual
behaviors are aggregated through the coupling of the
movements of neighbor agents. This new behavior results
from the aggregation of individual movements. Consequently,
the displacement of an individual is largely decided at the
group level, allowing a swarm to accomplish tasks that would
be unreachable to a single agent, or to better accomplish
such tasks. Artificial swarms mimic the behavior of groups
of insects, fish schools, or herds of animals.

The purpose of this paper is to introduce and demonstrate a
novel method of nonlinear filtering based on swarm dynamic.
We apply the method to MRI images with the goal of testing
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the capabilities of swarm processing. The method we propose
transforms an image into a surrounding relief that directly
modifies the swarming behavior during hunting. The swarm
views the image as a ‘ground surface’ it flies over. Each
agent in the swarm sees the closest pixels as constraints of
the movement. We model the signal (process) to be filtered
by the dynamic (trajectory) of an agent playing the role of
prey. A swarm comprising several hunting individuals hunts a
prey, according to a modified swarm procedure. Thus, when
the prey follows a line in the image, the swarm averaged
trajectory processes a line of the image, filtering the image
line and re-morphing it. The resulted filters will be generically
named swarm filters. The number of individuals in the swarm
and various parameters of the swarm constitute the parameters
of the filter. The output (filtered) signals are obtained as the
average accelerations of the swarm in the x, y, and z directions
of motion. The model we adopted is motivated by the need to
create a direct interaction between the swarm and the image,
still preserving the main concepts in the swarming theory and
a reasonable resemblance with the natural swarming processes.
Our hypothesis, which is verified by the preliminary results,
was that the swarm ‘smoothes’, that is, filters and morphs the
relief underneath it. At this stage, we manually optimized the
type of interactions between the agents and the image ‘relief’.

The swarm signal processing pertains to the larger class
of nonlinear methods. The nonlinearity of the swarming is
produced by the nonlinear terms in the swarm movement
equations we use, in the first place the distance-dependent
terms, as presented in Section 2. The swarm processing has a
different mechanism of operation than other nonlinear signal
processing systems, such as neural networks, statistical filters,
and dynamic range compression filters. The swarm processing
can be thought of as a nonlinear procedure based on a set of
nonlinear, second order coupled equations, each describing the
movement of an element of the swarm under the constraints
imposed by the signal impersonated by the prey.

The swarm model we propose for signal processing
combines features from several swarm models presented in the
literature and uses a few new constraints and characteristics.
Subsequently, we briefly recall several models on which ours
relies. Physics-derived models, as described by Elkaim et
al. [1], often focus on determining discrete models for the
positions and speeds of the particles, given close-contact forces
between swarm agents, such as spring-type forces in the
models of Elkaim [1], [2], and a stronger force to a leader.
Olshevsky et al. [3], and Olfati-Saber and Murray [4] describe



another set of models involving node-to-node interactions
on a graph network. A consensus in the literature is that
a constraint in swarm-type applications is communication
bandwidth; as a consequence, swarm agents have some form
of very elementary memory. Olfati-Saber and Murray [4], [5]
propose Markov type I and II models. In many previous
models, the accelerations of the swarm agents can have large
discontinuities. Some swarm models, illustrated by Elkaim’s
models in particular allows the swarm the possibility of
easily splitting into subgroups after avoiding an obstacle. The
use of the center of mass as a virtual leader, as well as
the use of the same type of spring force for interactions
member-member and member-obstacle contributes to this
behavior. We included in our proposed discrete models limits
for the allowed accelerations. Also, we use an equation for
acceleration that favors more the coherence of the swarm.

Swarming algorithms are strongly dependent on the
neighborhood concept and involve the distance between
agents. While there is substantial evidence in nature that
communication between swarm members is not only through
visual interaction, the implicit assumption in the modeling
literature is that the distance perception is Euclidean (as
in the works of Elkaim et al. [2], Murray et al. [4]).
Anstey et al. have shown in a recent Science article [6]
that the communication between swarm members that triggers
gregarization (or swarming behavior) is done through chemical
recognition (smell). Use of communication through odor is
also found in populations of wasps [7], of spiders [8], and of
bees [9]. Other forms of non-visual communication appear
in populations of fish (swarming communication through
odor, according to Todd et al. [10]) and frogs (evidence of
ultrasonic communication is shown in the works of Feng et
al. [11], and of Arch et al. [12]). Therefore, there is no
imperative requirement for the usage of Euclidean distance
for modeling perception for every application; consequently,
we used models based on both Euclidean and non-Euclidean
metrics.

Ant colony algorithms are a fundamentally different
approach than that of physics-derived swarming models
discussed above. Ant colony swarming occurs based on
evolution of pheromone fields based on trails left by individual
agents, as opposed to neighboring agent interactions. Recently,
Ramos et al. [13], [14], Huang et al. [15], [16], and Ma et
al. [17] applied ant colony algorithms to image processing for
medical images. These authors used the pheromone traces left
by the ants to create contour-like images superposed over the
initial images. Contour enhancement is not optimal for MRI
images due to the gradient variations between areas in the
image as opposed to sharper differences between neighboring
image areas and an alternate method to ant colony algorithms
has to be developed. In our approach, we prefer the swarming,
without feromone-like memory, as the model that implements
the signal processing.

The organization of the paper is as follows. In the second
section we present the details of the proposed swarming

model and of its implementation. We present a few image
processing results in the third section. The last section
comprises conclusions.

II. PROPOSED SWARMING MODEL

We propose a three-dimensional swarm dynamic based
on neighbor interactions dependent on nonlinear attraction
and repulsion forces. The forces are piece-wise functions
dependent on the vicinity criteria. The purpose of the attraction
and repulsion forces is to mediate swarm aggregation.
Literature models such as those of Elkaim et al. [1], [2]
propose elastic forces both for attraction and repulsion.

A. General Setting

We say that the vicinity of agent i is dynamic if the
neighbors j of i can change over time. The set of neighbors
Vi of agent i is recomputed for every timestep. We determine
the dynamic vicinity using a fixed-radius model in which the
neighbors j of i are determined based on the condition that the
distance between the two agents satisfies d(i, j) ≤ ρ where we
consider ρ to be the radius of a spherical vicinity having agent
i at its center. Neighbors who are closer to i than the distance
dmin are subject to a repulsion force; otherwise neighbors are
subject to an attraction force.

While attraction and repulsion forces are responsible for
the internal cohesion of the swarm, the swarm is not driven
across the input image by the internal forces. An external
force is necessary to drive the swarm across the input image.
Unlike literature models such as those of Murray et al. [4] and
Elkaim et al. [1] where the purpose of the swarm dynamic is
given by a constant bias in the velocity of the swarm agents,
our model is a predator-prey model in which the swarm of
predator agents is attracted to a prey by an agent-prey force
that acts independently on every agent in the swarm. This
is a forcing factor in the equations of motion of the swarm.
We also consider a friction force that depends on the speed
of the agent. Therefore, in the model we propose there are
three types of forces that act upon a given swarm agent i:
internal swarm attraction/repulsion forces between i and all
its neighbors j, external force acting upon agent i from the
prey p, and friction forces. The force, Fx(i), acting on agent
i in the x direction of motion is the result of:

~Fx(i) = ~Ffriction,x(i)+

+
∑
j∈Vi

~Finternal,x(i, j) + ~Fexternal,x(i, p) (1)

where the notation j ∈ Vi signifies that we take the
contributions from all neighbors j in the vicinity Vi of agent
i and the notation (i, j) signifies that the force depends on
agents i and j. The general equation above holds also for the
y and z directions of motion.

The internal cohesion of the swarm is managed by
agent-to-agent attraction and repulsion forces which act

Horia Mihail H. Teodorescu and David J. Malan



upon neighboring agents. In order to prevent collisions
among neighboring agents, a repulsion force acts upon two
neighboring agents if the distance between them is less
than a threshold dmin < ρ. An attraction force acts upon
neighboring agents otherwise. We chose the following internal
cohesion force, where the coefficient of the repulsion force is
β and the coefficient of the attraction force is α:

~Finternal(i, j) =

{
β·(~ri−~rj)
(ri−rj)3 if |~ri − ~rj | ≤ dmin
α·(~ri−~rj)
(ri−rj)4 if dmin < |~ri − ~rj | ≤ ρ

(2)

where ~ri denotes the position vector of the agent i. The
overall swarm cohesion force acting on agent i due to its
neighborhood is

∑
j∈Vi

~Finternal(i, j). Note that the distance
function d(i, j) = |(~ri−~rj)| may be chosen as non-Euclidean.
In this section we only treat the Euclidean distance case.
In subsection 2.5 we briefly discuss a non-Euclidean
distance example. The force acting on agent i in the x, y,
and respectively z directions due to the neighborhood of i are:

~Fneighborhood,x(i, t) =
∑
j∈Vi

~Finternal(i, j)·

· xi(t− 1)− xj(t− 1)

d(i, j)

~Fneighborhood,y(i, t) =
∑
j∈Vi

~Finternal(i, j)·

· yi(t− 1)− yj(t− 1)

d(i, j)

(3)

~Fneighborhood,z(i, t) =
∑
j∈Vi

~Finternal(i, j)·

· zi(t− 1)− zj(t− 1)

d(i, j)

where by the notation (i, t) we refer to the agent i at current
moment of time t.

We choose the following velocity-dependent friction force
that acts on agent i at time t:

~Ffriction,x(i, t) = −µ · ẋi(t− 1)

~Ffriction,y(i, t) = −µ · ẏi(t− 1) (4)

~Ffriction,z(i, t) = −µ · żi(t− 1)

where we consider the friction coefficient µ to be a constant
and the same for all agents in the swarm and is in the range
0 ≤ µ ≤ 1. A higher value of µ implies a faster damping of
the movement. Physically the choice of the friction force is
appropriate for the motion of the agent in an idealized fluid
of low viscosity and with no turbulence.

B. Interaction with the Image
The external force acting on every agent of the swarm is

an elastic force that sets the goal for the swarm to follow
the trajectory of the prey p. From a physical point of view,
this agent-prey force ensures that every agent is attracted
to the prey. We choose a prey-agent force of the following
expression:

~Fexternal,x(i, p, t) = λx · (xp(t− 1)− xi(t− 1))

~Fexternal,y(i, p, t) = λy · (yp(t− 1)− yi(t− 1)) (5)

~Fexternal,z(i, p, t) = λz · (zp(t− 1)− zi(t− 1))

where λx, λy, λz are coefficients. The use of the prey-agent
force in the image processing algorithm is discussed in sect.
2.6.

C. Discretizing the Movement Equations
We will discretize the equations of motion of the swarm

agents with a timestep parameter, δ, which we vary in the
simulations section. The equations of motion in the x, y, and
respectively z direction for agent i are:

{xi(t) = xi(t− 1) + δ · ẋi(t), yi(t) = yi(t− 1) + δ · ẏi(t),

zi(t) = zi(t− 1) + δ · żi(t)}

where the equations of the speeds in the directions of motion
are:

{ẋi(t) = γ · ẋi(t−1)+δ · ẍi(t), ẏi(t) = γ · ẏi(t−1)+δ · ÿi(t),

żi(t) = γżi(t− 1) + δ · z̈i(t)}

where the term in the coefficient γ was introduced by
Olfati-Saber and Murray [5] and represents a form of
elementary memory of the agents (Markov I type relationship
in the speed variation equations). The acceleration of the
agent i depends on the neighborhood force (3) acting on i,
the agent-to-prey force (5) on i, and the friction force (4) of
i:

ẍi(t) = (γ − 1) · ẋi(t− 1)+

+
∑
j∈Vi

~Finternal(i, j) ·
xi(t− 1)− xj(t− 1)

d(i, j)
+

+ λx · (xp(t− 1)− xi(t− 1))− µ · ẋi(t− 1)

ÿi(t) = (γ − 1) · ẏi(t− 1)+

+
∑
j∈Vi

~Finternal(i, j) ·
yi(t− 1)− yj(t− 1)

d(i, j)
+

+ λy · (yp(t− 1)− yi(t− 1))− µ · ẏi(t− 1)

z̈i(t) = (γ − 1) · żi(t− 1)+

+
∑
j∈Vi

~Finternal(i, j) ·
zi(t− 1)− zj(t− 1)

d(i, j)
+

+ λz · (zp(t− 1)− zi(t− 1))− µ · żi(t− 1)
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D. Remarks on Movement Equations

We recognize that the equations of motion of the agent i
are forced second-order nonlinear differential equations where
the forcing term is given by the trajectory of the prey. Since
the equations depend on the agent index i, the dynamic of the
swarm is that of a coupled system of nonlinear differential
equations of the following form:

{ẍi + ϕ(ẋi) + Ψ(xi, xj) = λx · xprey(t)

ÿi + ϕ(ẏi) + Ψ(yi, yj) = λy · yprey(t)

z̈i + ϕ(żi) + Ψ(zi, zj) = λz · zprey(t)}1≤i,j≤N
(6)

where the coupling is done by the term Ψ(xi, xj) (the
swarm cohesion forces) and N is the number of agents
in the swarm. We take as initial conditions the positions,
speeds, and accelerations of all swarm agents at timestep
t = 0. The average of the accelerations ẍi, ÿi, z̈i for every
timestep t represent the pixels of the three output images.
The image-swarm interaction is discussed in detail in the
following section. Notice that linearizing the coupled system
of differential equations (6) we would obtain a system of
coupled linear, damped, oscillators. The local behavior would
be similar to that of the model by Elkaim et al. [1] in that
locally the forces would be elastic.

E. Non-Euclidean Swarm Distance Perception

We introduce a swarm dynamic with non-Euclidean distance
function instead of the Euclidean d(i, j) used in the previous
sections. While the use of Euclidean distance in literature
seems natural for determining agent interactions, this choice
is not justified by biological facts. In biological swarming, the
distances between individuals are determined through a means
of communication that allows swarm members to determine
their relative distance, based on a senses, such as odor, hearing,
and vision. Recent research on locust swarming showed
that odor was mediating neighbor interactions [6]. There
is no evidence that odor is producing measurements based
on an Euclidean distance. We departed from the biological
swarming models, that typically use Euclidean distance by
using non-Euclidean distance metrics might be valuable for
image enhancement using swarm processing algorithms. As
an example, we used a logarithmic distance function and
applied the resulting swarm filter to the two input images.
The logarithmic distance function we used is:

d(i, j) =

log

(
1 + η ·

√
(xi − xj)2 + (yi − yj)2) + (zi − zj)2

)
where we used values of η ranging from 1 to 10 in increments
of 1 per simulation. The output images using the logarithmic
distance did not show any improvement over the input images.
Nonetheless, we consider the analysis of non-Euclidean
distances for the swarm algorithm to be a direction for future
work, specifically designing distance functions that enable the
emphasis of desired features in the input images.

F. Image Processing Algorithm and Implementation Details

An image is represented by a matrix M indexed over
i, j ∈ N, where (i, j) represent the positions of the pixel
(range 0 ≤ i ≤ xmax, 0 ≤ j ≤ ymax), and the values in
the matrix represent grayscale levels (range 0 to 255). The
number of timesteps used in the simulation corresponds to the
number of pixels xmax·ymax in the input image. Each timestep
t corresponds to a different pixel in the image, as follows:
starting with the first horizontal line in the input image(i = 0),
traverse each line in the input image in order left-to-right j = 0
to j = ymax − 1 and store the graycale value of the current
pixel (i, j) corresponding to timestep t = i · ymax + j into the
prey’s x, y, and respectively z coordinate values:

{xp(t) = χx ·M(i, j), yp(t) = χy ·M(i, j),

zp(t) = χz ·M(i, j)} (7)

where M(i, j) denotes the grayscale value for pixel (i, j).
The use of different coefficients χx, χy, χz coefficients in
(7) allows the application of three different swarm filters on
the same input image. Computing the average of the swarm
agents’ accelerations at every timestep t for the x, y, and z
directions of motion allows the output of three images that are
obtained from converting the ẍ(t)avg , ÿ(t)avg , z̈(t)avg values
of the swarm into grayscale values. If the values are above
the grayscale value of 255 they are truncated to 255 in the
resulting image (the same holds for negative values which we
truncate to a grayscale value of 0). The resulting images varied
significantly based on the values of the χ coefficients.
The swarm’s positions, speeds, and accelerations are
pseudorandomly generated for t = 0 as initial conditions.
The values of all parameters in the algorithm are fixed at the
initialization step. Also in the initialization step all values of
xp, yp, and zp are computed and stored. As described in sect.
2.1, the accelerations of a given agent i depend on determining
the forces acting upon i from its neighbors j ∈ Vi. The
implementation has been done in C.

III. RESULTS

For determining the power and the limits of the swarm
image processing, we performed simulations on two abnormal
Mammographies from the NIH [18] (see Fig. 1). The area of
interest in the input images consists of the calcified deposits.
The calciferous deposits produced by cancer are depicted in
the input images by an arrow. The problem in mammography
imaging is to de-blur the image and to eliminate the
useless details for evidencing the micro-calcifications. Typical
image enhancement procedures, like contrast manipulation and
histogram equalization are only partly effective in this respect,
as they emphasize various useless details at the same time
with the micro-calcifications (see Fig. 4). In fact, histogram
equalizers may further mask the calcification into the details
of the scene, as in Fig. 5. In contrast, after the swarm filtering,
the elements of interest are shown over a flat, almost uniform
gray surrounding. The nonlinear filter emphasizes these Ca
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deposits as in Fig. 3. However, the swarm processing results
depend on the processed image and may produce results
similar to the ones obtained based on histogram manipulation.
The case is exemplified in Fig. 1 and Fig. 5.

During the simulations, we adjusted the parameters of the
algorithm in order to emphasize the deposits with respect to the
surrounding tissue. We produced output images either using
the acceleration of the center of mass of the swarm or the
speed of the center of mass of the swarm as the filter (see
Fig. 3, Fig. 1).

Fig. 1. Input Mammographic Images A and B, adapted from NIH [18], used
to demonstrate the nonlinear filter.

Fig. 2. Feature extraction for input image A using the z-acceleration (left
panel) and x-acceleration (right panel) of the center of mass of the swarm as
differentiator filters and χx = 30, χz = 10.

Fig. 3. Original input image B (left panel) versus filtered image using the
z-acceleration of the center of mass (right panel) using χz = 1.

We performed numerous simulations on the input images
to empirically determine ranges of values for the parameters
that resulted in usable output images. We varied the swarm

Fig. 4. Results obtained with histogram manipulation on the first
mammographic image (left panel) and contrast adjustment (right panel)

Fig. 5. Results obtained with histogram manipulation on the second
mammographic image

size between 5 agents, which we experimentally determined
to be the minimum size of swarm that would affect the input
image, and 50 agents in increments of 5. Maintaining all other
parameters constant, swarms larger than 25 agents had the
same effect on the input image as swarms of size 25 agents.
The parameter γ had a significant impact on the output image.
A value of γ larger than 1 resulted in a uniform gray image
(no features), while values of γ under 0.5 in decrements of
0.1 decreased the contrast of the image until no features were
visible for γ of 0.1. We obtained the best results regarding
emphasizing the features of interest in the image with values
of γ between 0.9 and 0.98. The friction coefficient µ also
had a significant impact on the result image. We varied µ in
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increments of 0.1 from 0 to 1.5. No features were obtained
for µ of 0 and for µ above 1. The neighborhood threshold
distance ρ variation from 1 to 150 had no significant impact
on image quality. The value of δ used in the output images Fig.
2 was of 0.15 and in Fig. 3 was of 0.0005 and the number
of agents in the swarm used for both figures was 25. The
coefficients λx, λy , λz , α, and β were set at the value of
1 throughout the simulations. A major impact on the output
images was due to the χx, χy, χz coefficients, which, when
distinct from each other, would generate three distinct output
images. An example of this effect is shown in Fig. 2, where
the two distinct images were obtained for the same set of
parameters and same input image, except for χx 6= χz and
resulted in different filtering applied in the swarm’s x and
respectively z directions of motion. Since the swarm dynamic
is highly nonlinear, changing one of the three χ coefficients
while keeping the other two constant as in a previous run will
change all three output images. The values used to illustrate
this difference between the x output image and the z output
image in Fig. 2 were χx = 30, χy = 5, and χz = 10. The
values of χx = 30, χy = 5, χz = 1 are used in Fig. 3.

IV. CONCLUSIONS

While image processing, including feature emphasis, has
recently benefited of many artificial intelligence techniques
such as neural networks and genetic algorithms, not to
mention various combinations of statistic filters, tasks like
mammographic image processing remained unsatisfactory
solved. In the research reported here, we devoted ourselves
to conceiving a method that could make use of the elementary
collective intelligence of the swarms to tackle image
processing. We introduced a novel nonlinear swarm dynamic
that incorporates non-Euclidean agent distance perception and
which we apply to image processing. While we exemplified
feature emphasis on MRI mammography images, the method
could be extended for feature emphasis in other classes of
images and be trained in view of feature recognition.
The interaction forces between the agents and the image relief
that we used in this paper may be somewhat unnatural for
a biological swarm, hence the research should continue in
identifying new types of interaction forces that, on one side,
are closer to the natural ones and, on the other side, preserve
or enhance the filtering results.
The research presented is incipient. Extensive tests must be
performed on a variety of images under a large spectrum of
noises to check the robustness of the filters proposed. Also,
the quality of the results was not the same for different classes
of processed images, each class requiring a trimming of the
swarm coefficients to perform well or at least acceptably. Thus,
we need to derive an automated optimization procedure of the
swarm processing system before the method can see extended
use. Future collaboration with experts in the medical field is
essential in determining the degree of utility of the swarm
signal processing in mammography and in other imaging
fields.
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