
 

  

Abstract—More and more things that humans used to do can 
be automated on computer. In each case, complex tasks have 
been automated − not to the extent that they can be done as well 
as humans, but better. I will draw and develop parallels to 
education − showing how and why advances in the Structural 
Learning Theory (SLT) and the AuthorIT development and 
TutorIT delivery technologies based thereon make it possible not 
only to duplicate many of the things that human math tutors can 
do but to do them better. Specifically, I will show how and why 
TutorIT can now do a better job than most if not all human 
tutors in providing more effective and efficient tutoring on 
essentially any well defined skill. I also will show why this 
approach has the potential to also match or exceed human 
tutoring on ill-defined learning in the future. 
 

Index terms—Automation, instruction, computer-aided 
learning. 

I. INTRODUCTION 
Automation involves the use of control and information 

systems reducing the need for human intervention.  According 
to Wikipedia, automation is a step beyond mechanization. 
Whereas mechanization provided human operators with 
machinery to assist them with the muscular requirements of 
work, automation greatly reduces the need for human sensory 
and mental requirements as well. AI, for example, was 
founded on the claim that a central property of human 
intelligence can be so precisely described that it can be 
simulated by a machine.1  Proponents have long claimed that 
increases in computational power will eventually overtake the 
human mind.   IBM’s Big Blue beating Chess masters is often 
sighted to support this claim.  On the other hand, most AI 
research has become increasingly technical and specialized.   

Progress is being made in subfields, where solutions to 
specific problems can be automated.  This is a pattern that has 
been replicated in almost every software intensive application 
area.  Who today would compute taxes using paper and 
pencil?  Keep records on a rolodex?  …   Today, we have 
immediate access to almost any information in databases, 
instant communication throughout the world and the ability to 
quickly find information on almost any topic – at least if it 

 
Manuscript received August 1, 2010. Manuscript accepted for publication 

September 12, 2010. 
The author is Director of Research, MERGE Research Institute and 

Emeritus Professor, University of Pennsylvania, USA 
(JosephScandura@comcast.net).  

1 This definition derives from John McCarthy’s view of AI “the science 
and technology of making intelligent systems”.  Early researchers at Carnegie 
Mellon (Newell & Simon, 1972) tended to view AI more in terms of 
simulating human thought -- as trying to describe human cognition in precise 
terms similar to those required to program a computer, believing that doing so 
would help to reveal fundamental properties of human intelligence 

occurred or was documented after the advent of the world 
wide web. 

Intelligent behavior has not happened, however, except in a 
very special sense: More and more things that humans used to 
have to do themselves can be automated on computer.  In each 
case, increasingly complex tasks have been automated – not to 
the extent that they can be done as well as humans, but better.   

My goal today is to draw and develop parallels to 
education. Major attention is being given to immersive, often 
game-like environments.  Students are placed in various 
problem solving situations – and allowed to either explore on 
their own or with various kinds of hints (today typically called 
“scaffolding”).  The big questions here are what kinds of 
hints/scaffolding will be of (most) help and when should it be 
given?    

Other tools such as Texas Instrument’s TI-Nspire tackle the 
problem from the other end. Rather than hints, calculators 
serve as tools students can use to facilitate problem solving, 
serve as prerequisites – as more or less comprehensive 
foundational skills on which learners may build.  

Scaffolding and prerequisites both play a central role in all 
learning systems.  The main problem is that good tutoring 
systems difficult and expensive to build. Moreover, their 
educational benefits are difficult and expensive to evaluate.  
Determining effectiveness and efficiency invariably requires 
direct (and often expensive) empirical evaluation.  The results 
are rarely if ever as good as what a human tutor can do, and 
comparisons with classroom instruction are often hard to 
evaluate. 

Instructional design models help.  Among other things they 
help identify what must be mastered for success and what can 
be assumed on entry. Computer Based Instruction (CBI) 
systems build on assumed prerequisites and are directed at 
what must be learned.  After years of effort, beginning with 
Control Data’s work (under the leadership of William Norris) 
in the early 1960s, the best CBI is limited to providing pretests 
to identify areas of weakness, providing instruction aimed at 
deficiencies and following up with post tests to determine how 
much has been learned.   

ALEKS is one of the better commercially available CBI 
systems. In ALEKS and other advanced CBI systems (e.g., 
Paquette, 2007, 2009) to-be-acquired knowledge is 
represented in terms of relational models.   

ITS research goes further, attempting to duplicate or model 
what a good tutor can do – by adjusting diagnosis and 
remediation dynamically during instruction.  ITS focus on 
modeling and diagnosing what is going on in learner minds 
(e.g., Anderson, 1993; cf. Koedinger et al, 1997; Scandura et 
al, 2007).  Assumptions are made both about what knowledge 
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might be in learner minds and learning mechanisms 
controlling the way those productions are used in producing 
behavior and learning.  

Identifying the productions involved in any given domain is 
a difficult task. Specifying learning mechanisms is even 
harder.  Recognizing these complexities Carnegie Learning 
credits Anderson’s evolving ACT theories, but increasingly 
has focused on integrating ITS with print materials to make 
them educationally palatable (i.e., more closely aligned with 
what goes on in classrooms). 

The difficulties do not stop there. Ohlsson noted as early as 
1987 that specifying remedial actions – what to teach is much 
harder than modeling and diagnosis. As in CBI, pedagogical 
decisions in ITS necessarily depend on the subject matter 
being taught – on semantics of the content.  Each content 
domain requires its own unique set of pedagogical decisions.  
It is not surprising in this context that Ohlsson and Mitrovic 
found common cause in developing Constraint Based 
Modeling (CBM, 2007).  CBM is a simplified alternative to 
ITS based on production systems in which the focus is on 
constraints that must be met during the course of instruction – 
not on the cognitive constructs (productions) responsible (for 
meeting those constraints).  

From their inceptions, the Holy Grail in CBI and ITS is to 
duplicate what good teachers do. As shown by Bloom (1984) 
the best human tutors can improve mastery in comparison to 
normal instruction by 2 sigmas.  This goal has been broadly 
influential but never achieved through automation.  The 
limited success of CBI, combined with the complexities and 
cost inefficiencies of ITS have reduced effort and research 
support for both CBI and ITS.  

I will show that these trends are premature.  Advances in 
SLT and AuthorIT and TutorIT technologies based thereon 
make it possible not only to duplicate human tutors in 
many areas but to do better. Today, for example, few doubt 
we can build tutoring systems that teach facts as well or better 
than humans.  “Flash cards”, for example, could easily be 
replaced by computers – with more efficiency and certain 
results.   

Today, I will go further: 
a) I will show that AuthorIT makes it possible to create 

and that TutorIT now makes it possible to deliver 
highly adaptive (and configurable) tutoring systems 
that can do as good or better job on well-defined math 
skills.  

b) I will show why and in what sense TutorIT tutorials 
can guarantee mastery of such skills.   

c) I will show why TutorIT tutorials can be developed 
cost effectively – at half the cost of traditional CBI 
development.  

d) I will show how TutorIT tutorials can gradually be 
extended to support the development and delivery of 
higher as well as lower order knowledge.   

e) I will show why TutorIT tutorials can be expected to 
produce as good or better learning than most human 
tutors. 

My paper is organized as follows: 
1) I provide some background and summarize recent 

advances in knowledge representation and Structural 
Learning Theory (SLT) offering a theoretically 
rigorous, empirically sound foundation for building 
highly adaptive tutoring systems.  

2) I first show why these advances make it possible to 
exceed human tutoring on well defined knowledge.  

3) I then show how AuthorIT makes it possible to develop 
highly effective TutorIT tutorials at greatly reduced 
cost – even less than commercial development.  I will 
also demonstrate how TutorIT math tutorials work and 
explain why they can do as good if not better job than 
most human tutors, how they can be configured at no 
additional cost to meet alternative needs – e.g., to serve 
as diagnostic systems, and how they can be used to 
reliably compare alternative pedagogies. 

4) Finally, I talk about the future: What needs to be done 
to support ill-defined domains where higher order 
knowledge plays a central role?  I show how AuthorIT 
and TutorIT can be extended to support adaptive 
tutoring on higher order learning – and why such 
tutoring systems may be expected to do as well, to even 
supersede human tutors. 

II. BACKGROUND 
In the 1960s, there was a disconnect in educational research 

and research in subject matter (math) education.  Educational 
research focused on behavioral variables: exposition vs. 
discovery, example vs. didactic, demonstration vs. discussion, 
text vs. pictures, aptitude-treatment interactions, etc. (cf. 
Scandura, 1963, 1964a,b).  Subject matter variables were 
either ignored or limited to such things as simple, moderate, 
difficult.  Little attention was given to what makes content 
simple, moderate or difficult.  Conversely, research in subject 
matter (e.g., math) education, focused primarily on content 
(reading, writing, arithmetic skills, algebraic equations, proof, 
etc.).  

In same time period, instructional design focused on what 
was to be learned and prerequisites for same.  Task analysis 
focused initially on behavior – on what learners need to do 
(Miller, 1959; Gagne, 1966).  In my own work, this focus 
morphed into cognitive task analysis – on what learners must 
learn for success (e.g., Scandura, 1970, 1971, Durnin & 
Scandura, 1973). My parallel work in experimental 
psychology (Greeno & Scandura, 1966; Scandura & 
Roughead, 1967) in the mid 1960s added the critical 
dimension of behavior to the equation.   

Structural Learning grew out of this disconnect, with the 
goal of integrating content structure with human cognition and 
behavior.  Structural Learning Theory (SLT) was first 
introduced as a unified theory in 1970 (published in Scandura, 
1971a).  SLT’s focus from day one (and the decade of 
research on problem solving and rule learning which preceded 
it) was on what must be learned for success in complex 
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domains, ranging from early studies of problem solving and 
rule learning (Roughead & Scandura, 1968; Scandura, 1963, 
1964a,b, 1973, 1977) to Piagetian conservation (Scandura & 
Scandura, 1980), constructions with straight edge and 
compass, mathematical proofs and critical reading (e.g., 
Scandura, 1977).   

This research was focused on the following four basic 
questions [with their evolution from 1970  Now]: 
− Content: What does it mean to know something? And 

how can one represent knowledge in a way that has 
behavioral relevance?  
[1970: Directed graphs (flowcharts)  Now: Abstract 
Syntax Trees (ASTs) & Structural Analysis (SA)]  

− Cognition: How do learners use and acquire knowledge? 
Why is it that some people can solve problems whereas 
others cannot?  
[1970: Goal switching  Now: Universal Control 
Mechanism (UCM)] 

− Assessing Behavior: How can one determine what an 
individual does and does not know?   
[1970: Which paths are known  Now: which nodes in 
AST are known (+), -, ?] 

− Instruction: How does knowledge change over time as a 
result of interacting with an external environment?  
[1970: Single level diagnosis & remediation  Now: 
Multi-level inferences about what is known and what 
needs to be learned] 

Higher order and lower order knowledge played a central 
role in this research from its inceptions – with emphasis on the 
central role of higher order knowledge in problem solving 
(Scandura, 1971, 1973, 1977).  Early SLT research also 
focused heavily on indentifying what individual learners do 
and do not know relative to what needed to be learned (e.g., 
Durnin & Scandura, 1974; Scandura, 1971, 1973, 1977).   

Deterministic theorizing was a major distinguishing feature 
of this research (Scandura, 1971).   I was focused, even 
obsessed with understanding, predicting and (in so far as 
education is concerned) controlling how individuals solve 
problems. Despite considerable training in statistics and 
having conducted a good deal of traditional experimental 
research (e.g., Greeno & Scandura, 1966; Scandura & 
Roughead, 1967; Scandura, 1967), I found unsatisfying 
comparisons based on averaging behavior over multiple 
subjects.  I wanted something better – more akin to what had 
been accomplished in physics centuries earlier (cf. Scandura, 
1974a).2   

SLT was unique when introduced, and raised considerable 
interest both in the US and internationally (Scandura, 1971a, 
1973, 1977).  Literally hundreds of CBI programs based on 
SLT were developed later in the 1970s and early 1980s, and 
many sold for decades.  
 

2 The deterministic philosophy I am proposing represents a major departure 
in thinking about how to evaluate instruction – in particular, it calls into 
question the usual measures used in controlled experiments.  After 
understanding how TutorIT works, please see my concluding comments on 
this subject.  

Nonetheless, ITS largely ignored this research and focused 
on later work in cognitive psychology (Anderson et al, 1990, 
1993) and especially the Carnegie school of artificial 
intelligence based on production systems (esp. Newell & 
Simon, 1972).   

By the mid-1970s, cognitive psychology also discovered 
the importance of content, often equating theory with 
alternative ways of representing knowledge.  Research 
focused largely on what (productions or relationships) might 
be in learner minds and comparing fit with observable 
behavior.  Experimental studies followed the traditional 
statistical paradigm. 

Similarly, most CBI development was heavily influenced 
by Gagne’s work in instructional design (1965), along with 
that of Merrill and his students, 1994).  The restricted focus of 
Reigeluth’s (1983, 1987) influential books on Instructional 
Design largely eliminated or obscured some of SLT’s most 
Important features, most notably its focus on precise diagnosis 
and higher order learning and problem solving. With essential 
differences requiring significant study, the long and short of it 
is that other than our own early tutorials (which made small 
publisher Queue one of Inc Magazine’s 100 fastest growing 
small businesses), SLT failed to significantly inform on-going 
research in either CBI or ITS.  After the interdisciplinary 
doctoral program in structural learning I developed at Penn 
was eliminated in the early-mid 1970s, SLT became a little 
understood historical curiosity.  

With recent publications in TICL, depth of understanding in 
ITS, CBI and SLT has increased in recent years (Mitrovic & 
Ohlsson, 2007; Paquette, 2007; Scandura, 2007), including 
their respective advantages and limitations (Scandura, 
Koedinger, Mitrovic & Ohlsson, Paquette, 2009).  Advances 
in the way knowledge is represented in SLT has the potential 
of revolutionizing the way tutoring systems are developed, 
both now and in the future. SLT rules3 were originally 
represented as directed graphs (e.g., Scandura, 1971a, 1973).  
Directed graphs (equivalent to Flowcharts) make it possible to 
assess individual knowledge.  They have the disadvantage, 
however, of forcing one to make a priori judgments about 
level of analysis. They also make it difficult to identify subsets 
of problems associated with various paths in those graphs.  

Having spent two decades in software engineering (e.g., 
Scandura, 1991, 1994 1995, 1999, 2001), it became increasingly 
apparent that a specific form of Abstract Syntax trees (ASTs) 
offered a long sought solution.  ASTs are a precise formalism 
 

3 I used the term “rule” rather extensively in behavioral research during the 
1960s.  Adopting the term “production” from the logician Post in the 1930s, 
Newell & Simon (1972) introduced the term “production rule” in their 
influential book on problem solving.  Anderson later used of the term “rule” in 
ITS as synonymous with “production rule” (in production systems).  
Accordingly, it ultimately seemed best to introduce the term “SLT rule” to 
distinguish the two.   Distinctive characteristics of SLT rules became even 
more important with my introduction of ASTs into SLT.  In this context, ASTs 
represent a long sought solution to my early attempts at formalization in SLT 
(see Scandura, 1973, Chapter 3).  The importance of ASTs in SLT, however, 
only gradually became clear to me after using the concept for some time in 
developing our software engineering tools -- despite the fact that ASTs had 
played a central role for years in compiler theory.   

The Role of Automation in Instruction



 

derived from compiler theory and that are widely used in 
software engineering.  To date, ASTs have had almost no 
impact on knowledge representation, ITS or CBI.  However, 
we will see that they do indeed have very significant 
advantages in SLT. 

I have recently documented the current form of SLT in 
some detail (Scandura, 2007). Readers are encouraged to 
review the material therein on Knowledge Representation 
along with the published dialog on the subject which followed 
(Scandura, Koedinger, Mitrovic & Ohlsson and Paquette, 
2009). 

I focus in the next section on what is most unique about 
knowledge representation in SLT along with why and how it 
offers major advantages in developing adaptive tutoring 
systems. 

III. THEORETICAL ADVANCES: WELL-DEFINED KNOWLEDGE 
There have been three fundamental advances in SLT in 

recent years.  First is in the way knowledge is represented.  
SLT rules were originally represented as directed graphs 
(Flowcharts).  They are now represented in terms of Abstract 
Syntax Trees (ASTs). Second is formalization of a key step in 
Structural (domain) Analysis (SA), enabling the systematic 
identification of higher order SLT rules that must be learned 
for success in ill-defined domains.  Third is the complete 
separation of SLT’s control mechanism from higher order 
knowledge. These advances distinguish knowledge 
representation in SLT from all others, and have fundamental 
implications for building adaptive tutoring systems.   

In this section we consider the first advance:  SLT rules 
have long been used to represent to-be-acquired knowledge in 
well-defined domains.  While retaining the advantages of 
directed graphs, representing SLT rules in terms of Abstract 
Syntax Trees (ASTs) offers a number of critically important 
benefits.  

Not only do they offer a way to assess individual 
knowledge (as did directed graphs), but AST-based SLT rules 
also provide a perfectly general way to automatically both 
generate test problems and the solutions to those test 
problems.  As we shall see, they also make it possible to 
simultaneously represent knowledge at any number of levels 
of analysis.   

Precision.– The major reason adaptive tutoring systems 
have been so difficult and expensive to develop is that 
pedagogical decision making has been so time consuming and 
expensive.  This is equally true whether tutoring systems are 
based on traditional CBI (cf. Paquette, 2007) or ITS (cf. 
Mitrovic & Ohlsson, 2007).   

In CBI the focus is on what must be learned.  Better CBI 
systems invariably are based on some combination of 
hierarchical and/or relational analysis.  Hierarchical 
representations have an important advantage: Hierarchies 
inherently arrange content in the order in which content must 
be learned.  Content higher in a hierarchy necessarily 

incorporates lower order content, a fact that has direct and 
important implications for both testing and teaching.   

The problem is twofold:  
(1) not everything can be represented hierarchically using 

current decomposition methods  (Scandura, 2007) and  
(2) informal hierarchical representation is not sufficiently 

precise to automate decision making without direct attention 
to the meaning of the content.  

I don’t want to don’t have time to repeat here what has 
already been published.  On the other hand, I must call special 
attention to one key idea, an idea that makes it possible to 
develop adaptive tutoring systems that can both: a) be 
developed at lower cost and b) guarantee learning.  

Specifically, Structural (domain) Analysis (e.g., Scandura, 
2007) makes it possible not only to represent all behavior 
hierarchically, but to do so precisely that inherent 
relationships are exposed.   

It is well know known that many ideas can be refined into 
components or categories.  Components and categories are 
fundamental:  Component refinements involve breaking sets 
into to their elements. Category refinements involve breaking 
sets into subsets.  For example, the set of animals can be 
refined into elements – individual animals in the set.  The set 
of animals also can be refined into categories: dogs, cats, 
whales, etc.  

Consider column subtraction: We begin with a subtraction 
problem.  Subtraction problems typically are refined first into 
elements, the columns that make up a subtraction problem.  
(Because the number of columns in a subtraction problem may 
vary, I have called this variation a “prototype” refinement, 
wherein each prototype, or column, has the same structure.)  
Columns, in turn, may be refined into categories, columns 
where the top number is greater than or equal to the bottom 
number and columns where the top number is less than the 
bottom number.  

The same idea applies generally: Consider a “house”.  
Houses consist of sets of rooms, room elements.  Rooms in 
turn can be categorized by their size, or their use, or by any 
number of other distinctions. 

As detailed below, component and category refinements 
have direct counterparts in corresponding solution procedures.  
Again, consider column subtraction. Here, the initial 
procedural refinement is a Repeat-Until loop. Loops in 
procedures correspond precisely to Prototype refinements in 
data: Compute the answer to each column in turn until there 
are no more columns.  The next procedural refinement is an 
IF..THEN selection.  Selection refinements in procedures 
correspond to Category refinements in data. In subtraction, 
different processes are required when the top number is 
greater than or equal to the bottom number and when this is 
not the case.  

Unfortunately, component and category refinements are not 
sufficient.  Other kinds of “refinements” involve (more 
general) relationships – for example, whether the top digit is 
greater than or equal to the bottom digit.  Mating involves a 
relationship between two animals – male and female.   
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Simple relationships are fine when they are immediately 
understandable and unambiguous.  In many cases, however, 
they are not.  None of us, for example, would any problem 
writing the numeral “5”.  Ask most four or five year olds, 
however, and the story is likely to be very different.  Writing 
the numeral “5” requires a precise set of constructions 
involving straight and curved line segments.   

Relational models can easily represent the relationships 
between such line segments. Indeed, everything can be 
represented in terms of relationships.  The problem is twofold.  
The number of relationships increases rapidly as domains 
become increasingly complex.  In complex domains, 
relationships on relationships can extend geometrically 
without bound.   

Relational representations suffer from an additional 
problem (beyond the sheer number of relationships). Whereas 
component and category refinements may be repeated 
indefinitely, this is not possible with (non-unary) 
relationships.  Every relationship (relational refinement) must 
be considered anew.  There is no systematic way to represent 
given (non-unary) relationships in terms of simpler elements. 

Knowledge representation using ASTs solves this problem.  
There is a fundamental mathematical equivalence between 
relations and functions. Each and every relationship can be 
represented by at least one function, or procedure, having its 
own inputs and outputs. For example, relationships between 
straight and curved line segments comprising the numeral “5” 
can be viewed as a procedure operating on such segments. 
These procedures in turn can be refined as the originals.   

Why is this important?  Consider the following.  If we 
subject Column Subtraction to Structural Analysis, we are 
going to end up with terminal elements requiring such things 
as the child’s ability to write the numeral “5” (and “0”, “1”, 
“2”, …). No matter what is being learned there will always be 
things that learners must know on entry.  Young children, for 
example, learn early on to do such things as write the numeral 
“5”.  What is being learned here is not a relationship.  Rather, 
it is an SLT rule that takes line segments as input and 
generates the numeral “5”. 

Prerequisite SLT rules, in turn, can be refined as any other.  
The refinement process can be repeated indefinitely.  No 
matter how complex the subject matter, or how naïve the 
target population, it is always possible to represent the 
knowledge necessary for success in hierarchical form.   The 
introduction of what I have called “dynamic” refinements, 
along with component and category refinements, closes the 
loop.  It is now possible to represent what needs to be learned 
in any domain in whatever detail may be necessary (and 
desirable).  

NOTE 1: It is worth noting incidentally that representing 
relationships as functions is equivalent in software 
engineering to introducing the notion of a “callback”. Just as 
one may introduce functions operating on parameters in a 
dialog box, one can introduce functions generating outputs 
from inputs in a relationship.   

NOTE 2: It might appear that arbitrary refinement may be 
as, if not more demanding than knowledge engineering in ITS.  
Identifying possible (correct and/or error) productions, 
however, not to mention learning mechanisms, can be very 
challenging and open ended.  On the other hand, the process 
of Structural Analysis (SA, is highly systematic with a 
definitive end point. In addition to learning how to perform SA 
using AuthorIT’s AutoBuilder component (see below), the 
main requirements for an author are the ability to perform the 
skill in question and reasonable insight into what must be 
learned for success.  Working under my direction a single 
programmer familiar with AuthorIT and TutorIT has been 
making TutorIT tutorials ready for field testing at a rate of at 
least one per month.  Only a small portion of this time has 
involved representing to-be-acquired knowledge.  Most has 
been devoted to laying out interfaces and associated media. 

For those not mathematically inclined, all this may seem 
like a technical truism with little practical significance.  In 
fact, however, this technical truism has fundamental practical 
significance. AST hierarchies provide a perfectly general way 
to define pedagogical decisions.  All pedagogical decisions in 
SLT can be based entirely on the structure of to-be-learned 
SLT rules. This can all be done independently of content 
semantics.   

Indefinite refinement makes it possible to define what needs 
to be learned with whatever precision may be necessary to 
make contact with knowledge available to any population of 
learners, no matter how naïve they might be initially.   

Full hierarchical representation makes it possible to quickly 
determine the status of any individual’s knowledge at each 
point in time (relative to a SLT rule hierarchy), and to provide 
the instruction necessary to advance.  Given full analysis, 
empirical research (e.g., Scandura, 1970, 1971, 1973, 1974a, 
1977’ Durnin & Scandura, 1973) demonstrates that testing on 
a single test item is sufficient to determine whether a learner 
has mastered any given sub tree in an SLT rule. 

It is not always feasible, however, nor necessary to 
undertake complete analysis.  Nonetheless, even incomplete 
hierarchical analysis is better than none.  Incomplete 
hierarchies provide a beginning – a starting point that can be 
improved incrementally as time, resources and the importance 
of any particular tutoring system demands.   

NOTE: Curriculum standards specifying prerequisites, 
concepts to be learned and the order in which they should be 
acquired may serve as a starting point.  Generally speaking, 
however, our experience is that they do not normally go 
nearly far enough in identifying what must be learned for 
success. 

It is always possible to build effective tutoring systems by 
introducing a safety factor (Scandura, 2005) – as engineers do 
in designing a bridge.  Instead of requiring a single success 
corresponding to any terminal node (in an SLT rule hierarchy) 
one can require any number of successes.  This makes it 
possible in principle to guarantee learning. 

Efficiency of Development.–  A major limitation of adaptive 
tutoring systems is that they have been hard to build.  
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Identifying knowledge is only one part of the process.  
Defining (and implementing) pedagogical decisions in 
traditional ITS – what to test or teach and when – is the most 
expensive, time consuming and error prone tasks required 
(Mitrovic & Ohlsson, 2007; Koedinger & Ohlsson, 2009).  
This perhaps is the primary reason so few truly adaptive 
tutoring systems exist despite many years of university and 
federal support.  

By way of contrast, I will show how TutorIT makes all 
pedagogical decisions automatically –based entirely on the 
hierarchical structure of SLT rules representing what is to be 
learned.   

Hierarchical representation has a further not 
inconsequential benefit.  It is easy to define any number of 
pedagogical theories as to how best to promote learning.  
Specifically, I will show how TutorIT can easily be 
configured to deliver instruction in accordance with a variety 
of pedagogical philosophies.  In all cases, TutorIT effectively 
eliminates the need to program pedagogical decisions 
(Scandura 2005, 2007, 2009).  Cost savings have been 
estimated at between 40 and 60% (cf. Foshay & Preese, 2005, 
2006; Scandura, 2006a,b).  

In short, guaranteed results at lower cost – a combination 
that should be hard to resist. 

IV. CURRENT STATUS OF TUTORIT:  
GUARANTEED LEARNING AND LOWER COST 

Our AuthorIT authoring and TutorIT delivery systems 
currently support the development and delivery of well 
defined knowledge (Scandura, 2005).  The long term goal, 
however, is to realize the full potential of SLT (Fig. 1).   
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Fig. 1. Technologies based on Structural learning theory. 
 

A. Given a well defined problem domain, AuthorIT 
includes the following: 

1) AutoBuilder, a tool for systematically representing 
knowledge as an SLT rule, including both the 
procedural Abstract Syntax Tree (AST) and the AST 
data structure on which it operates.  Procedural ASTs 
in AutoBuilder are visually represented as Flexforms 
(below). Each node in a Flexform represents a specific 
part of the to-be-acquired knowledge. 

2) Blackboard Editor, a tool for creating and laying out 
schemas representing problems in the domain.  
Blackboard serves as the interface through which 
learners and TutorIT interact. 

3) AutoBuilder also is used to assign instruction, 
questions, positive feedback and corrective feedback to 
individual nodes in the Flexform.  This information 
may include text, graphics, sound and/or other 
supporting media. 

4) Options, a dialog (tool) used to define how TutorIT is 
to interact with learners. Options include variations on 
delivery modes ranging from highly adaptive to 
diagnostic, to simulation to practice. 

 
B. TutorIT takes the above produced with AuthorIT and 

interacts with learners as prescribed in the Options Tool.  I 
will show how TutorIT’s adaptive mode works below. But, 
first let’s review the development process.  

Representing Well defined Knowledge.− TutorIT 
development begins by representing to be learned knowledge 
as an SLT rule.  As required by SLT (Scandura, 2005), 
AutoBuilder makes it possible to represent knowledge with 
arbitrary degrees of precision.   

Each node in the Flexform represents to-be-acquired 
knowledge at a specific level of abstraction. For example,  

A. “Borrow_and_subtract_the_current_column” to the 
right of the first “ELSE” in Fig. 2 (Appendix A) 
represents the knowledge necessary for computing the 
difference in any column when the top digit is less than 
the bottom digit.   

B. Subordinate nodes like “Borrow_from_next_column” 
provide increasingly more specific information.   

Parameters of these operations representing data on which 
these operations act also are arranged hierarchically.  
Operation A, for example, operates on “Prob” and 
“CurrentColumn”.  “Prob” represents an entire subtraction 
problem.  “CurrentColumn” represents columns in such 
problems. Operation B also includes “ReducedTop”, 
“Slashtop”, “CurrentBorrowColumn” and “BorrowedDigit”. 

In this context, AuthorIT’s AutoBuilder component 
imposes consistency requirements on successive refinements.  
These requirements are designed to ensure that the behavior of 
children in each refinement is equivalent to the behavior of the 
parent.  Operation A, for example, operates on each current 
column without a computed difference and generates the 
current column with the correct difference.  The nodes 
immediately below Operation A provide more detail as to the 
intermediate steps and decisions.  Otherwise, however, they 
produce the same result.  The behavior is equivalent.   
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In general, higher level nodes may operate on more highly 
structured parameters. For example, CurrentColumn 
represents entire columns, including the column itself and the 
top, bottom, difference and borrow digits in that column.  
Corresponding lower level child nodes operate on simpler 
parameters, like BorrowedDigit.  The behavior of higher and 
lower level operations (i.e., nodes), however, is expected to be 
equivalent (to produce equivalent results). 

Defining Problem Schemas.– Once the Flexform has been 
fully implemented (and tested using AuthorIT’s build in 
Interpreter/Visual Debugger), the next major step is to define 
problem schemas that collectively exercise all nodes in the 
Flexform.  For example, a subtraction problem with all top 
digits greater than or equal to the bottom ones will not 
exercise Flexform nodes involving regrouping (or borrowing).   
Problem schemas are defined and laid out in AuthorIT’s  
Blackboard Editor as shown in Fig. 3 (Appendix A).  

TutorIT Options Tool.– The Tutor Options Tool, currently a 
dialog in AuthorIT, is used by authors to define/configure 
alternative learning modes.  The first decision an author must 
make is to decide which of the basic TutorIT Delivery Modes 
to include:  ADAPTIVE, INSTRUCTION, DIAGNOSTIC, 
SIMULATION or PRACTICE.  The Options Tool in Figure 5 
is set to ADAPTIVE mode.  Authors also can make 
DIAGNOSTIC, INSTRUCTION, SIMULATION, and 
PRACTICE modes available in TutorIT by selecting desired 
modes for TutorIT Delivery Mode in the dialog.  ALLOW 
LEARNER CONTROL also is an option.  In short, TutorIT 
makes it possible to compare different pedagogies on even 
terms. 

TutorIT.– The Flexform associated with a skill represents 
what is to be learned in an arbitrarily precise manner.  The 
Flexform design (in blue) also includes HLD code (in green) 
which is interpretable by TutorIT.  The design Flexform acts 
like a structured database, including all information needed by 
TutorIT to provide a wide variety of delivery modes. In 
addition to to-be-learned operations and decisions, Flexforms 
include: a) a modular executable implementation of each 
terminal (Fig. 2), b) questions, instruction, feedback and 
corrective feedback associated with specific nodes in the 
Flexform, c) problem schemas (which serve as input to the 
Flexform) problem schemas laying out the kinds of problems 
to solved (Fig. 3), and d) TutorIT options specifying how 
TutorIT is to make its decisions (Fig. 4).   

The way TutorIT operates depends on how it is configured 
in the Options Tool.  I concentrate here primarily on Adaptive 
mode. Other options, such as Diagnostic and Instruction, are 
special cases or restrictions. TutorIT in Adaptive mode 
automatically selects nodes that quickly pinpoint what a 
learner does and does not know at each stage of learning.   

Learner Model.– TutorIT takes the above Flexform files as 
input and first creates a Learner Model representing what the 
learner initially knows or is assumed to know about the to-be-
learned Skill.  The Learner Model is normally displayed in a 
tree view with each leaf marked with a “+”, “-“ or “?” 

corresponding to a (blue or actionable) node in the Flexform 
(e.g., see Fig. 5, in the Appendix A).   

The left side of Figure 5 shows the Blackboard interface 
through which TutorIT interacts with the learner.  The Learner 
Model for a student just beginning Column Subtraction is 
shown on the right side of Figure 5. 

 

 
Fig. 4. TutorIT Options Tool used by authors to define/configure alternative 
learning modes. Currently set to ADAPTIVE mode. Other choices allow for 
further customization.  
 

Given the above information, TutorIT operates as follows.  
All decisions are based entirely on the structure of the content 
to be learned, independently of content semantics. 

1. TutorIT selects a problem. 
2. TutorIT then selects a (blue) node in the Flexform (or 

Learner Model).  Only nodes that are exercised by the 
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selected problem are eligible for selection.  Selections 
otherwise are made according to priorities set in 
TutorIT’s Options Tool (Fig. 4).  

3. TutorIT executes the Flexform using its built in 
interpreter.  The subtree defined by the selected node 
(in the Flexform) automatically generates a sub-
problem of the problem schema and also its solution.   

NOTE: As below, we will want TutorIT to also support the 
case where TutorIT must generate (new) solution Flexforms 
from higher and lower order SLT rules.  SLT’s UCM will play 
a central role in this context.  Currently, TutorIT only 
supports chaining two or more SLT rules as in current expert 
systems.   

4. TutorIT displays the sub-problem on TutorIT’s 
blackboard (see the left side of Fig. 5).  

5. If a node is marked “-”, TutorIT provides instruction.  
If marked “?”, TutorIT presents a question to determine 
its status. TutorIT skips nodes marked “+” unless the 
node is an automation node.  Automation nodes require 
a faster response (higher level of expertise).   

NOTE: These questions and instructions, as well as positive 
and corrective feedback, may consist of simple text, voice 
and/or media consisting of Flash, audio-visual or other files.  

6. TutorIT compares the learner’s response with the 
correct answer, which is automatically generated by 
TutorIT.   

a. If the status was “?” and the learner gets the 
correct answer, positive feedback is given and 
the node is marked correct (assigned a “+”).  
If incorrect, TutorIT provides corrective 
feedback and the node is marked with a minus 
(“-“).  

b. If the status was “-”, instruction is given and 
the node is marked “?”.  After instruction, it is 
impossible for TutorIT to know for sure that 
the learner has actually learned what was 
taught.  

NOTE: The learner must meet timing requirements if the 
node is an automation node requiring a higher level of skill. 

7. In addition to determining the learner’s status on 
individual nodes, TutorIT also infers what the leaner 
knows with respect to nodes dependent on the current 
one: 

a. If the learner gives an incorrect response, 
TutorIT reliably assumes that any (higher 
level) node dependent on it also should be 
marked unknown.  TutorIT marks such nodes 
accordingly.   

b. Conversely, if the learner gives the correct 
response, TutorIT reasonably assumes that the 
learner also knows those lower level nodes on 
which it depends.   In short, TutorIT not only 
compares learner responses on sub-problems 
corresponding to individual nodes but also 
quickly infers what the learner knows about 
nodes dependent on it. 

TutorIT can be configured with various “safety factors” to 
ensure learning.  For example, one can set the Options Tool to 
require learners to demonstrate mastery on every node, not 
just once but any specified number of times (see “Learning 
(No. successes/node”).  After learning, TutorIT can be set to 
require any specified level of success on practice problems.   

To date, we have developed TutorIT tutorials for Column 
Addition, Column Subtraction, Column Multiplication and 
Long and Short Division along with five levels for each of the 
Basic Facts: Addition, Subtraction, Multiplication and 
Division.  Operations on Fractions also are in progress.  
Please see www.TutorITmath.com for latest availabilities.   

In each case, TutorIT takes problem schemas as laid out in 
the Blackboard Editor as input.  It automatically generates 
problems, actually sub-problems, as needed for diagnosis and 
remediation.  Nodes are selected so as to enable TutorIT to 
quickly pinpoint what each individual does and does not know 
at each point in time, and to provide precisely the information 
(instruction) needed when needed to progress in optimal 
fashion.   

All this is done dynamically during the course of instruction 
as might a human tutor. The main difference is that TutorIT 
does this in a highly disciplined manner.  All decision making 
is done automatically based entirely on the structure of the to-
be-acquired knowledge.  Semantic independence dramatically 
reduces the effort required to create adaptive tutoring systems.   

The hierarchical representation of knowledge (in 
Flexforms) has important implications for both efficiency and 
effectiveness.  As above, TutorIT makes direct inferences not 
only with respect to individual nodes but to dependent nodes 
as well. For example, if a student gets a problem associated 
with one node correct, then TutorIT can reliably assume that 
the student also knows all of the lower level nodes on which it 
depends.  For example, if a child can subtract columns 
involving borrowing or regrouping, one can reasonably 
assume that the child can also subtract successfully when there 
is no regrouping.  On the other hand, if a child cannot subtract 
a column that does not involve regrouping, one can be quite 
certain, he or she cannot subtract when regrouping is required.  
In short, success on a node implies success on all subordinate 
nodes.  Failure implies failure on all superordinate nodes.  The 
result is very efficient diagnosis and instruction.   

Unlike most teachers, TutorIT can be unusually effective 
because it benefits from careful pre-analysis.  We have put a 
considerably amount of effort into our TutorIT Math skill 
tutorials – far more than what goes into writing a text book for 
example. The level of analysis in our current prototypes can 
and will be further improved as a result of field testing.  Even 
in their current state, however, TutorIT Math skill tutors 
benefit from considerably more analysis than most teachers 
are capable. And, this analysis can further be improved 
incrementally.   

On the other hand, of course, a good human tutor generally 
will be more attuned to motivational factors.  We expect 
TutorIT tutorials to get better and better over time as a result 
of feedback.  Nonetheless, they are designed for specific 
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purposes and may never achieve the flexibility of a good 
human tutor who has spent years both learning math and how 
to motivate children to learn in a wide variety of real world 
situations. In short, there likely will always be some things 
that a good human can do better than TutorIT – as well as the 
converse.  Having said this, the choice is not one of either or.  
Rather it is a question of how best to use both to maximize 
learning. 

Importance of Prerequisites.– One might argue that just 
because a student solve one subproblem (associated with a 
given node) does not necessarily imply that he or she can do 
this with all such subproblems.  Indeed, this is correct.  As 
pointed out in my earlier description of TutorIT (Scandura, 
2005) a single test will only be sufficient when analysis is 
complete – when all terminal nodes are as we say atomic.  
Success on one instance in this case implies success on all 
instances of the same type with unusually high degrees of 
reliability (cf. Scandura, 1971a, 1973, 1977).  Having said, 
this just as a good bridge designer builds in a safety factor, an 
author can easily do the same with TutorIT.  TutorIT can be 
required to demand a higher level of performance by simply 
changing a setting in the Options Tool to require any number 
of successes on each node (before mastery is assumed). 

Criteria may be set so as to actually guarantee learning.  
Any learner who enters with pre-specified prerequisites, and 
who completes a given TutorIT tutorial will be definition have 
mastered the skill in question.  There is no other way a student 
can complete a TutorIT tutorial.  He or she must meet pre-
specified criteria set by the author or TutorIT tutoring will 
continue until they are met.  

Notice that prerequisites play an essential role in the 
process.  Prerequisites correspond precisely to atomic or 
terminal nodes in Flexform knowledge representations.  Some 
prerequisites are so simple that they can safely be assumed on 
entry. For example, the ability to read and write numerals.  
Entry with respect to other prerequisites, however, may be 
less certain.  Any child presumed to be ready for long division 
would almost certainly have to know the multiplication tables 
and how to subtract.  Similarly, no would want to teach 
column subtraction unless a child already knew how to count.  

The basic question in this context is how one make contact 
with learner’s who have not mastered such prerequisites?  For 
example, how to teach column subtraction to a child who 
cannot write or recognize numerals (e.g., “5”, “3”).  SLT 
support for indefinite refinement offers a unique solution to 
this problem.  One is not forced to introduce non-
decomposable relationships.  Instead, each such prerequisite 
can be represented as an equivalent SLT rule with its own 
domain and range.  As above, for example, the numeral “5” 
can be viewed as an SLT rule for constructing the numeral 
from more basic line segments. Most important, SLT rules 
representing prerequisites can be refined further just as any 
other. 

One further point.  Let’s turn this argument on its head.  
The difficulty of any task, or to be learned skill depends not 
on just the skill itself.  Rather, it depends on the nature of the 

prerequisites that may be assumed available.  We hear a lot, 
for example, about the benefits of using sophisticated 
calculators in education (e.g., TI’s Nspire family).  Clearly, if 
one has a calculator, computational issues take a back seat. It 
is far easier to learn to evaluate arithmetic computations with a 
calculator than without. 

NOTE: Along with most mathematics educators I would 
argue nonetheless that computational abilities are essential 
irrespective of the presence or absence of a calculator.   

On the one hand mastering Nspire can be can subjected to 
the same kind of analysis we are talking about here.  And, 
TutorIT could equally well be used to provide the necessary 
instruction. On the other side of the coin, one can start with 
the assumption that learners can already use of such tools as 
Nspire – as prerequisites on entry.  In this context, to-be-
analyzed problem domains will be very different.   

Instead of computational skills, the focus is more likely to 
be on problem analysis.  Given a description of a situation, for 
example, how can it be formulated in terms of mathematical 
expressions?  Having created such an expression, one can 
plug in the numbers and click to get the solution.  In a similar 
manner, the more comprehensive the skills one can assume 
the more sophisticated the knowledge one can teach.  The 
general truism to be taken from this analysis is not whether 
basic skills are important but rather that the more basic skills 
one has mastered, the more one has to build one. This is true 
whether in mathematics or in any other subject. 

NOTE: Representing reality in terms of mathematical 
expressions is one of six basic process abilities in 
mathematics.  These were first introduced in Chapter 1 of my 
book on Mathematics: Concrete Behavioral Foundations 
(Scandura, 1971b, pp. 3-64).  The six abilities were organized 
as three bidirectional pairs: Detecting regularities and its 
opposite of constructing examples of regularities, 
understanding mathematical representations (e.g., 
expressions) and its opposite of creating mathematical 
expressions and deduction and its opposite axiomatization.  

Configuring TutorIT.– The ease with which TutorIT can be 
customized adds another important dimension.  In addition to 
ADAPTIVE mode, the Options Tool also supports 
DIAGNOSTIC, INSTRUCTION, SIMULATION and 
PRACTICE modes.  Authors may also allow learner Control, 
in which case the learner may decide on which items to be 
questioned or to receive instruction. 

Each basic delivery mode comes with some mandatory 
settings.  Other options enable authors to better control the 
way content is delivered.   

At the most basic level, for example, a student might 
already have been exposed in varying degrees to the 
knowledge being taught.  In this case, TutorIT cannot know 
what the learner knows on entry.  In so far as TutorIT is 
concerned, the learner enters essentially as a blank slate.  
Conversely, if a student has had no exposure to the content, 
TutorIT might start with nodes marked “-““-”, or unknown.  
In this case, TutorIT will initially be biased toward 
instruction.   
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In this case, “Start all Nodes with the Learner Status” in 
AuthorIT’s Options Tool (see Fig. 4) might be set to “?” or “-
“ depending on prior student exposure to the content,.  The 
author also has the choice of allowing teachers or students to 
make the choice for individual students or to require it for all.  

In the undetermined state, TutorIT starts tutoring each child 
by marking each node in the Learner Model (see below) with 
a “?”.  This signifies that TutorIT does not (yet) know whether 
or not a learner has mastered the knowledge associated with 
that node. After the learner responds, TutorIT provides 
corrective or positive feedback as appropriate – and updates 
the Learner Model as above – “+” for success or “-“ for 
failure. 

Other options provide finer levels of control.  For example, 
an author might require that instruction be given only when 
ALL prerequisite nodes have been mastered (marked “+”).  
Alternatively, the author might want to place more emphasis 
on self-discovery.  Here, the author might choose the Ignore 
Prerequisites option for Tutor Strategy.  In this case TutorIT 
will provide hints/scaffolding (i.e., instruction) even when the 
learner’s status on lower level nodes is unknown.   

More generally, the author has a wide variety of options 
making it possible to accommodate a wide variety of 
pedagogical biases – or should I say “instructional theories”.  
Available options support a wide variety of instructional 
philosophies – ranging from highly directive instruction to 
open ended discovery including completely self directed 
learning. 

Comparison and Benefits.– Like other ITS or CBI, TutorIT 
Math tutors are highly reliable.  They never tire. They never 
make mistakes – excepting bugs one may have missed.  

Unlike other CBI (or ITS), however, TutorIT Math tutors 
are designed so that any learner who enters with pre-specified 
prerequisites and who completes a given tutorial will 
necessarily have mastered the skill in question.   

Whether these  results are realized with actual students 
depends on the  following assumptions: a) that we have in fact 
identified an SLT rule for correctly performing a ranges of 
basic math skills with sufficient precision to have identified 
essential prerequisite skills (terminals in Flexform used to 
represent SLT rules), b) that learners demonstrate mastery of 
those prerequisites on entry and c) that  students complete the 
TutorIT tutorial – the only way a student can do this is to have 
demonstrated mastery on the skill being taught to whatever 
criterion the author has prescribed (in the Options Tool). 

In effect, what the student learns and whether or not a 
student who completes a tutorial actually learns the skill is not 
a question to be determined empirically.  Rather, the proof 
will be in such things as how long it takes, whether students 
are sufficiently motivated to complete the tutorial, and 
generally what might be done to make the tutorial even better 
(e.g., more efficient and/or motivating for students, etc.).  
Given the way TutorIT tutorials are developed, improvement 
will occur incrementally as feedback suggests and as 
resources allow. 

Toward this end, we are just now beginning field testing by 
offering free trials.  Anyone, a school, tutoring center, or 
home can get free individualized tutoring on whatever skills 
are currently available (now 5 levels for reach of the basic 
facts and the basic whole number algorithms for addition, 
subtraction, multiplication and division).   

At the same time, the AuthorIT/TutorIT system 
dramatically reduces development costs.  As above, we have 
already developed a range of TutorIT tutorials at a fraction of 
the costs of ITS development.  These tutorials focus on very 
specific identifiable skills.  Guaranteed learning is restricted 
specifically to those skills.  Nonetheless, TutorIT tutorials 
developed to date also include instruction pertaining to 
meaning.  I refer here to the kinds of instruction commonly 
included in textbooks and classroom instruction.4   

There is no guarantee having gone through a given TutorIT 
tutorial that students will necessarily also master this 
supplemental material – material that is normally included 
(but also not guaranteed) in classroom instruction.  The 
question of whether and to what extent this supplemental 
instruction benefits students is an empirical one.  Given 
TutorIT’s focus on doing what it can do better and more 
efficiently than a human (or any other means of transmittal), 
this question also is of secondary importance.  Current 
TutorIT tutorials are designed to support classroom instruction 
not to replace what a good teacher can (or should) do.5 

How can that be – better results at lower cost?  The answer 
lies in the very close relationship between knowledge 
representation, on the one hand, and diagnostic and remedial 
actions on the other.  On the one hand, arbitrary refinement 
allows for indefinite precision.  Tutoring can be guaranteed.  
Learners who enter with predetermined prerequisites and who 
complete a given TutorIT tutorial will by definition 
demonstrate mastery of defined skills.   

The same structural relationships that make it possible to 
provide efficient, highly targeted adaptive instruction also 
eliminate the need to program pedagogical decisions.  While 
estimates may be based on slightly different assumptions, the 
bottom line is that roughly half of all development costs can 
be eliminated (cf. Foshay & Preese, 2005, 2006; Scandura, 
2006a,b).  It is not necessary to independently program 

 
4 It is not that one could not target meaning as such.  It is simply that doing 

so would require further analysis.  For example, TutorIT Column Subtraction 
is based on a detailed analysis of what must be learned to perform column 
subtraction – with learning guaranteed when a student completes the tutorial.  
This tutorial also includes instruction describing and graphically illustrating a 
concrete model of what is being done step by step (e.g., when one borrows 
during subtraction).  The difference is that we have not undertaken a 
systematic analysis of what would need to be learned to ensure that a student 
is able to demonstrate the meaning associated with any given problem, or the 
reverse to construct a physical model corresponding to any given subtraction 
problem.  We could!  We just haven’t, nor has any text book we know of as 
well. “Dienes blocks” developed in the 1960s by an old colleague of mine 
were designed precisely for this purpose. 
5 While TutorIT Math is not sufficiently complete to cover all that is in a 
typical textbook.  Other than background reading and the like, it is an open 
question as to whether there are specific skills in a math textbook that could 
not be done as well (or better) in TutorIT. 
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diagnostic and instructional logic as in developing other 
adaptive tutoring systems.   

In comparison with other approaches, AuthorIT and 
TutorIT offer three major benefits: 

a) Better results on well defined tasks than even human 
tutors due both to more complete analysis (than most 
humans are capable of) and to highly effective and 
efficient tutoring.  The latter derives from TutorIT’s 
optimized pedagogical decision making.  More 
complete analysis and optimized decision make it 
possible under carefully prescribed conditions to 
actually guarantee learning. The way things are set up 
there is essentially no way a student can complete a 
TutorIT math tutorial without mastering the skill.  The 
question is not learning as such but whether a student is 
motivated to complete a given tutorial, a very different 
question requiring a very different answer.  

b) Greatly reduced development costs because all TutorIT 
decision making is predefined.  All diagnosis and 
testing is automatic and based entirely on the structure 
of the to-be-learned knowledge.  While we have not 
kept actual figures on development costs, they are by 
definition an order of magnitude less than that required 
in ITS development.  TutorIT tutorials ready for field 
testing have been completed by myself with the 
assistance of approximately one full time person for a 
year.  With an experienced team and further maturity 
of AuthorIT and TutorIT, development costs may be 
expected to go down gradually.    

c) Furthermore, pedagogical decision making is fully 
configurable.  TutorIT can easily be configured to 
provide adaptive tutoring customized for different 
learners both individually and by population.  TutorIT 
also can be configured to provide highly adaptive 
diagnosis, to provide practice or to serve as a 
performance aid.  Configuration consists entirely of 
making selections in an Options dialog – all without 
any programming or change in the knowledge 
representation. 

NOTE: The notion of (content) domain independent 
instructional systems is not entirely new.  It is not difficult, for 
example, to construct CBI systems that support specific 
categories of learning, such as those defined by Gagne 
(1985).  The closest analog is probably Xaida (e.g., see 
Dijkstra, Schott, Seel & Tennyson,1997).  TutorIT takes a 
major step forward in this regard by providing tutoring 
support for ANY well defined content. This not only includes 
all Gagne’s categories of learning, for example, but any 
combination thereof.   

The bottom line is that TutorIT is another significant step 
forward in automation.  TutorIT provides another case where 
computers can do things better than a human – this time in 
adaptive tutoring.  As more and more tutorials are developed 
TutorIT can gradually taking over tasks previously done by 
humans – not just in math skills but ultimately with any well 
defined skill.  TutorIT tutorials will gradually take over for 

one reason: Not because they are approaching what humans 
can do but because they can do some jobs better than humans.   

TutorIT, of course, will not eliminate the need for good 
teachers any more that good computational tools have 
eliminated the need for people who use them.  TutorIT 
tutorials will enable teachers to concentrate on things they can 
do better.  TutorIT automation will be an on-going and 
continuing process.  Our children and our country will be the 
main beneficiaries.  If you might be interested in contributing 
to this effort please let me know at scandura@scandura.com. 

V. CRITICAL ADVANCES IN CURRENT SLT THEORY  
Analyzing Complex Domains.– It might seem we are done!  

Given any domain, we can always use AuthorIT’s 
AutoBuilder component to systematically identify what needs 
to be learned for success – with whatever degree of precision 
may be necessary or desired. The rest follows automatically.  
TutorIT takes the representation produced (including display 
layouts and associated media) as input and automatically 
delivers instruction as prescribed. 

While theoretically possible, identifying what must be 
learned as an SLT rule is not necessarily easy.  It can be very 
difficult, practically impossible to identify a single, integrated 
SLT rule that represents the knowledge needed to master 
complex domains.  This is not simply having to compromise 
as regards completeness.   

It would be impractical if not impossible to directly identify 
what must be learned to prove all known theorems in 
mathematics, or to specify how to write a beautiful poem 
(given some topic or idea).  As those engaged in ITS 
development know, identifying what needs to be learned in 
high school algebra already poses a difficult task (Ritter, 
2005).   

By way of contrast, high level relational models are 
relatively easy to create (cf., Scandura, 1973; Hoz, 2008).  
Relational models, however, lack precision – and complexity 
increases rapidly.  Both constraints place significant limits on 
effective tutoring. Equally important, pedagogical decisions 
based on relational models can be very difficult.  Pedagogical 
decision making depends inextricably on content semantics, 
thereby increasing both development and evaluation costs.   

In SLT, it might appear that one can avoid this problem by 
simply introducing a finite set of SLT rules.  For example, 
instead of one SLT rule as above, why not simply add new 
SLT rules?  Certainly, one can do this.  Doing so, however, 
does not solve the fundamental problem.  Given any non-
trivial domain, it is impossible to directly identity everything a 
learner should know. This fact has been a central tenet in SLT 
from its inceptions (cf. Scandura, 1971a). It was the primary 
motivation for introducing higher order rules. 

ITS systems approach this problem from a very different 
perspective. Beginning with Newell & Simon’s (1972) 
influential work on problem solving, the focus has been on 
identifying sets of productions corresponding to what might 
be in human brains.  ITS knowledge engineers work with 
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subject matter experts to identify condition-action pairs, or 
productions representing relevant knowledge.  Productions 
collectively are expected to be sufficient for solving arbitrary 
problems in a given domain.   

Identifying productions, however, is not sufficient in itself.  
Give a computer a problem and a set of productions, and what 
happens?  Nothing!  As Newell & Simon (1972) recognized 
early on some kind of control mechanism is necessary to 
activate the productions.   

From a theoretical perspective the fewer mechanisms 
needed the better.  With this in mind, Newell & Simon (1972) 
originally proposed “means-ends” analysis as a universal 
control mechanism:  Given a problem, select (and apply) 
productions that will reduce the difference between the goal 
and the current problem state.  Mean-ends analysis seemed 
reasonable and gradually morphed into chaining (of 
productions).  Empirical results later suggested that other 
mechanisms also are commonly involved in learning and 
problem solving:  Variations on generalization, abstraction, 
analogy and other mechanisms have been proposed.  

A further limitation of learning mechanisms, as used in 
production systems, is that they impose essential constraints 
on implementation. One can add or remove individual 
productions without fundamentally changing the operation of 
an ITS.  Learning mechanisms, however, necessarily come 
“hard wired”.  They cannot be added or removed without 
fundamentally effecting operation of a production system. 

Ohlsson (2009) suggested no end to the number of learning 
mechanisms that might be needed or desired.  The 
impracticability of identifying all potentially relevant 
mechanisms is one of the reasons that he and Mitrovic 
introduced Constraint Based Modeling as a means of reducing 
complexity in ITS development (e.g., Mitrovic & Ohlsson, 
2007).   

Quite independently, Polya’s (1960) early analyses of 
mathematical problem solving further suggest that learning 
mechanisms are, in fact, domain dependent.  Polya identified a 
number of domain specific “heuristics” like the pattern of 
“two-loci” or “similar figures”.  Such heuristics are formally 
equivalent to learning mechanisms, but are more similar in 
nature to higher order rules in SLT (cf. Ehrenpreis & 
Scandura, 1974; Wulfeck & Scandura, Chapter 14 in 
Scandura, 1977).  Higher order SLT rules are domain 
dependent and play a direct role in how new SLT rules are 
acquired and used.   

NOTE: While influential in mathematics education, Polya’s 
(1960) work is not widely known in TICL circles.  

SLT Solutions.– SLT takes this analysis further.  Existing 
SLT theory offers a detailed road map going forward, a road 
map that builds directly on current AuthorIT and TutorIT 
technologies. 

Consider the second or third major advances mentioned 
earlier:   

(2) The ability to systematically identify the higher as 
well as lower order SLT rules required for success in any 
given domain, no matter how complex.  

(3)  The ability to formulate SLT’s Universal Control 
Mechanism (UCM) in a way that is completely 
independent of the rules and higher order rules necessary 
for success in any given domain.  

I summarize each of these advances and their importance 
below. Then, I describe how AuthorIT and TutorIT can be 
extended to support each advance. 

Structural (cognitive domain) Analysis (SA) of Complex 
Domains.–  SA takes a fundamentally different approach to 
the problem.  The focus here is on identifying both the higher 
and lower order SLT rules that must be learned for success.  
Unlike productions (condition-action pairs), SLT rules are not 
assumed to be in human minds – nor are higher order rules 
viewed as hard wired mechanisms.  Rather, higher as well as 
lower order SLT rules (like relational models) are both 
operationally defined in terms of observable behavior with 
respect to criterion tasks.   

All SLT rules represent what must be learned for success.  
They provide an explicit basis for both diagnosis and 
remediation.   

Historically, Structural (cognitive domain) Analysis (SA) 
has been used to systematically identify higher as well as 
lower order SLT rules.  As detailed above, the use of ASTs to 
replace directed graphs has played an important role enabling 
automation in the development and delivery of adaptive 
tutoring systems (cf. Scandura, 1971a, 1973, 1977 where SLT 
rules are represented as directed graphs or flowcharts and 
Scandura, 2005, 2007 where SLT rules are represented in 
terms of ASTs).  The process by which higher order SLT rules 
were constructed, however, was largely subjective.   

The way higher order SLT rules were constructed was fine 
for paper and pencil courseware development (e.g., a 
workbook by Scandura et al, 1971c) and for experimental 
research (e.g., 1974a).  But it was not sufficiently systematic 
or precise for automation. 

As SA was originally defined, the analyst, typically but not 
necessarily a subject matter expert or instructional designer, 
was asked to: 

a. define a complex problem domain informally,  
b. select a finite set of prototypic problems in that 

domain,  
c. construct an SLT solution rule for solving each 

prototype problem,  
d. construct a higher order SLT rule operating on 

other SLT rules (for constructing each solution 
rule), 

e. eliminate redundant SLT rules (which can be 
derived by application of higher order rules to 
others), and  

f. repeat the process as desired, each time resulting in 
a set of SLT rules that were at once simpler and 
collectively more powerful in generating power. 

SA was continued until the SLT rules and higher order 
rules identified provide sufficient coverage of the domain (cf. 
Scandura et al 1974 and Wulfeck & Scandura, 1977).   
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Analysis of various complex domains (e.g., Scandura et al, 
1974, Scandura, 1977, Scandura & Scandura, 1980) shows 
that as SA proceeds two things happen:  The individual rules 
become simpler but the generating power of the rule set as a 
whole goes up dramatically, thereby expanding coverage in 
original domain  (esp. see Scandura, et al, 1977; Wulfeck & 
Scandura, 1977). 

NOTE: There is no loss of generality because domains can 
be incrementally expanded without loss by building 
successively on prior analyses.  For details, see Scandura 
(2007) for the most complete coverage of the basic theory. 

Choosing the appropriate level of analysis in Step c was 
originally ad hoc.  This difficulty was solved as above by the 
introduction of ASTs.  Each individual SLT rule can now be 
refined successively in whatever degree of precision may be 
necessary or desirable.  . 

Step d of constructing higher order rules, however, was still 
a bottle neck – too subjective for full automation.  The key to 
solution was the following missing link between steps c and d: 

Convert each SLT solution rule in Step c into a higher 
order problem.  

Once a higher order problem has been constructed, higher 
order SLT rules can be constructed in exactly the same way as 
all other SLT rules. 

Given any problem domain, no matter how complex, the 
goal of Structural Analysis is to identify a finite set of higher 
and lower order SLT rules – rules that collectively make it 
possible to solve a sufficiently broad range of problems in the 
domain.  Unlike production systems, where the focus is on 
identifying ingredients that might be in human brains, the 
focus in Structural Analysis is on identifying what must be 
learned for success.   

Consider the following example of SA applied to a Number 
Series domain (adapted from Example 3 in Scandura (2007)).  
I have selected this example because it illustrates not only 
higher order SLT rules that generate new SLT solution rules 
but also how higher order selection rules come into play.  (See 
Appendix B for other examples.). 

Number Series Domain – consisting of sums of whole numbers 
from 1 up. (Step a above)  

1. SME Selects Prototypic Problems (one of potentially many) (Step 
b above) 

1 + 3 + 5  –   ?sum 
2. Construct (multiple) SLT Solution Rules (2A, 2B, 2C) for 

Prototypic Problem (each rule can be refined where desired as above) 
(Step c above, but wherein each solution rule may systematically be 
refined as in Fig. 2 above) 

2A  1 + 3 + 5        3x3         9  
2B  1 + 3 + 5        3x(1+5)/2      9  
2C 1 + 3 + 5        successive addition  9 

3. Convert each SLT Rule into a Higher Order Problem (This is a 
critical new Step in identifying higher order SLT rules) 
   (Construct Goal & Given of Higher Order Problem) 

Higher Order Problem 3A: 
 1 + 3 + 5      3x3      9  
 1 + 3 + 5 + 7 +  … nxn          Sum  
Higher Order Problem 3B:  
 1 + 3 + 5      3(1+5)/2   9 
 a + a+d + … + L=a+(n-1)d    n(a+L)/2   Sum 
Higher Order Problem 3C: 

1 + 3 + 5    1+3+5    9  

 a1 + a2 + a3 + … + an  successive addition  Sum 
4. Alternative SLT Higher Order Rules for Solving Higher Order 

Problems 3A, 3B, 3C (Step d above) 
Higher Order Rule 3A:   replace 3 terms by n  
Higher Order Rule 3B:  replace 1 by a, 5 by l, 3 terms by n  
Higher Order Rule 3C:  replace each term by a variable, three 

terms by n  
The process of SA can be repeated (indefinitely).  Step e 

(above) makes it possible (optionally) to eliminate redundant 
SLT rules – e.g., rules like 4x4, 5x5, …, 50x50 can be derived 
by applying higher order rule 3A, for example, to 3x3.  Higher 
order rules make it possible to derive any number of new SLT 
rules from basic rules.   

Notice that each alternative higher order SLT rule has a 
different domain of applicability.  Higher order rule 3A is 
very efficient but only works with arithmetic series beginning 
with 1 and having a common difference of 2 – for example, 1 
+ 3 + 5 + … + 99  50x50    2500.  Rule 3B is reasonably 
efficient and works with all arithmetic series.  Rule 3C is 
relatively inefficient (especially with long series) but works 
with all number series, arithmetic or otherwise.   

(NOTE: For early empirical research on the subject see 
Scandura, Woodward & Lee 1967; Scandura 1967.) 

In effect, three higher order rules are applicable rules in this 
example.  At this stage of SA, an analyst may eliminate 
redundant rules (as in Step e above).  Alternatively, deciding 
which SLT rule to use is essentially what one must do in many 
design problems. The acquisition of multiple ways of solving 
any given problem and of knowing which to select when is a 
key characteristic of expertise.6  

In our example, the selection process represents a still 
higher order problem (so SA is repeated as in the original Step 
f).  The given in the higher order problem consists of the three 
alternative rules.  The goal is to select exactly 1.  One higher 
order SLT selection rule that works can be summarized as: 

Case Type-of- Number Series:  
a) Starts with 1 with a common difference of 2  select rule N2 
b) Common difference  select rule N(A+L)/2  
c) Else  select successive addition 

A more general but error-prone selection rule is to simply 
choose the simplest rule.  Domain of applicability was largely 
ignored in early research.  Defining the domain structures 
associated with higher order SLT rules is essential.  
Automatically perceived structures play a decisive role in 
determining which rules to use under what circumstances.  

THEORETICAL NOTE FOR THOSE INTERESTED IN 
TRAINING EXPERTISE: For those who have read my recent 
monograph (Scandura, 2007) I would like to add one general 
remark:  In that monograph I introduced the notion of higher 
order SLT automation rules as the mechanism by which more 
efficient (automated) rules are derived from other rules.  
Irrespective of how they are learned I suspect that most 
expertise is gained via the gradual acquisition of efficient, 
increasingly specialized solution rules. Apparently effortless 

 
6 The above is a form of what is commonly referred to as knowledge 
engineering.  The main difference is that Structural (domain) Analysis is far 
more systematic with partially automated tools to support the process. 
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expert behavior results when previously learned, more 
efficient SLT rules are selected (via higher order selection 
rules) for use in more and more situations.  In accordance 
with SLT’s Universal Control Mechanism (UCM), these more 
efficient rules are selected by applying higher order 
(selection) rules as in all other behavior. The result is 
increasingly efficient, apparently automated behavior.  

The Need for Learning (often called Control) Mechanisms.– 
All knowledge in SLT is strictly relative:  What a person 
knows is defined by that person’s behavior relative to what 
must be learned for success. This relativistic view of 
knowledge holds whether the knowledge in question is of a 
higher or lower order. Whereas lower order SLT rules 
correspond to productions in expert systems, higher order SLT 
rules correspond to learning mechanisms.   

The question then is what controls the use of SLT rules?  
History makes it clear that neither means-ends analysis, 
chaining, nor any other expert system mechanism is sufficient.  
Furthermore, experience with Structural Analysis makes two 
things clear  

a) All mechanisms that have been proposed MAY play a 
role in problem solving and  

b) Variations on all such rules can systematically be derived 
via Structural Analysis.  

Any automated system capable of solving problems must 
include some kind of control mechanism.  The system must 
know what SLT rule to use and when.  I first proposed Goal 
Switching for this purpose in an invited talk where I first 
introduced SLT at AERA in 1970 (published in Scandura, 
1971a).  Unlike chaining and the like, SLT’s goal switching 
was originally modeled on a very easy to state but very hard to 
implement truism: Given a problem for which no solution is 
immediately available, the problem solver must necessarily 
first derive a procedure for solving the problem.  Indeed, this 
truism was so general, and so commonsensical that it took 
considerable convincing to get supporting experimental 
research on UCM published in the traditionally very rigorous 
Journal of Experimental Psychology (Scandura, 1974a).   

Goal Switching obviously differed from Newell & Simon’s 
(1972) means-ends analysis.  Indeed, Newell served as a 
reviewer and proposed rejecting several of my articles during 
this time period, including to one above in the Journal of 
Experimental Psychology (Scandura 1974a) and another in 
Artificial Intelligence (Scandura et al, 1974).  Fortunately, my 
counter arguments and other reviews led to their eventual 
publication.   

In fact, however, a major limitation of Goal Switching had 
nothing to do with validity or relevance.  A series of formal 
experiments (Scandura, 1967), as well as more informal pilot 
research with subjects as young as 4 years old, demonstrated 
its (near) universal availability to all learners.  The difficulty 
was in attempts to formally implement Goal Switching in a 
way that was completely independent of ANY higher order 
rule (cf. Wulfeck & Scandura, 1977).  This was finally 
accomplished with formalization of SLT’s Universal Control 
Mechanism (UCM) in the early 2000s (see Scandura, 2007, 

U.S. Patent, 6,275,976).  Again, I won’t repeat here what is 
already in print (see Scandura, 2007, for specifics).  

In retrospect, one can see why expert systems run into 
trouble.  One reason is that knowledge engineering turned out 
to be very hard, slow and expensive and that experts couldn’t 
always articulate what they were doing.  We have seen above 
how Structural Analysis, while it certainly does trivialize the 
problem, at least makes it more tractable.  More directly 
relevant in the present context, the original hope was that 
there were only a small number of basic learning mechanisms 
– preferably one.   Alas, “means-ends analysis” as originally 
proposed by Newell & Simon (1972) turned out not to be that 
mechanism.  

SLT’s Universal Control Mechanism (UCM), on the other 
hand, serves this role in unique fashion (Scandura, 2007; cf. 
Scandura, 1971a, 1973, 1974a,b).  UCM is completely 
independent of SLT rules and higher order rules.  More 
important, and unlike means-ends analysis, chaining and other 
mechanisms proposed in the expert system world, UCM 
serves as a common denominator completely independent of 
any particular problem domain.  

An overview of UCM follows (for details see Scandura 
2007.):  
− Check available rules to see which SLT rules have 

structures that match the given problem 
− Unless exactly one SLT Rule matches, control goes to a 

deeper level looking for rules whose ranges contain 
structures that match the given problem (a recursive 
process) 

− Once exactly one SLT rule is found, that rule is applied & 
a new rule generated 

− Control reverts to the previous level & the process 
continues with checking at the previous level of 
embedding 

− Eventually, the process halts because the problem is 
solved or processing capacity is exceeded (alternatively a 
predetermined recursion limit may be set in automated 
systems)  

Measuring knowledge relative to behavior in one form or 
another is not new.  However, being able to explain and 
predict the behavior of individuals in specific instances 
distinguishes SLT.  This is true even more so where a problem 
solver does not already know a solution procedure – but must 
derive one.  UCM plays an essential role in the latter process. 

NOTE: A historical analogy to Relativity Theory is 
interesting in this regard.  Without assigning more 
significance than warranted, introduction of UCM in SLT 
plays a role analogous to constancy of the speed of light in 
Relativity Theory. 

Measuring speed of an object relative to an observer was 
not especially new or interesting.  Add in the constant speed of 
light, however, and the situation changes.  As Einstein showed 
in 1905 funny things happen when one accounts for the time 
light takes to reach an observer.   
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Knowledge is strictly relative in a similar sense.  What 
counts as knowledge is not absolute but necessarily relative to 
observable behavior.   

Behavior  with respect to complex domains may be 
explained via finite sets of higher and lower order SLT rules.  
But, these SLT rules depend on analyst. 

UCM is what holds things together.  Together with the SLT 
rules and higher order rules associated with any given 
domain, UCM allows explicit predications regarding problem 
solving behavior in specific instances (Scandura, 1974a). 

VI. NEEDED AUTHORIT AND TUTORIT EXTENSIONS 
To date, AuthorIT/TutorIT tutorials have only been used to 

develop tutorials for well-defined math skills.  TutorIT does, 
however, support “chaining” although this technologies has 
not been put to serious use. The only example to date involves 
a simple railroad crossing, where TutorIT is fed two simple 
rules: a) one for turning a signal red or green depending on the 
location of a train (near or out of a crossing) and b) one for 
raising or lowering a railroad crossing gate depending on the 
color of the signal (red-down and green-up).  TutorIT is not 
explicitly told that the gate must go down when the train 
approaches the crossing and up when it is not.  

TutorIT is able to generate correct answers by chaining 
known rules, where the output of one serves as input to the 
next as required to generate the correct answer.  The answers 
TutorIT generates are used in turn to evaluate learner 
responses. Chaining is a small step forward and akin to what 
is done in contemporary ITS systems.   

As outlined above (and detailed in Scandura, 2007; 
Scandura et al, 2009), however, SLT goes much further.  Two 
objectives are on the near term agenda.   

1. In order to teach higher order SLT rules we must be 
able to systematically identify and precisely represent 
them. The behavioral equivalent of all other learning 
mechanisms that have been proposed or used in 
Intelligent Tutoring Systems (ITS). Or expert systems 
generally, can be represented as higher order SLT 
rules.7  These higher order SLT rules are derived 
directly via Structural (domain) Analysis (SA) from the 
problem domain itself.  

2. In order for TutorIT to generate solutions to ill-defined 
problems, we must also be able to formalize and 
implement SLT’s Universal Control Mechanism 
(UCM). 

Both AuthorIT and TutorIT will both have to be extended.  
First, AuthorIT must support the construction of SLT rules 
that operate on nodes that are themselves SLT rules.   

This can already be done using AuthorIT’s SoftBuilder 
component.  SoftBuilder is a fully general development 

 
7 The same is true in case based reasoning (CBR), wherein higher order 

rules involve analogical thinking. From a SLT perspective, CBR involves 
higher order rules that map solutions (SLT rules) for one kind of task into 
solutions for analogous ones (e.g., mapping counting up in addition to 
counting down in subtraction, or repeated addition in multiplication to 
repeated subtraction in division). 

system.  It supports the construction of any kind of SLT rule.  
Any SLT rule, whether of a higher or lower order, can be 
represented as a Flexform.  While sufficient in principle, 
however, it is extremely complex to construct higher order 
SLT rules.  The basic task is hard enough.  But, there is no 
automated support for refining higher order operations (or 
data) as is currently the case with AutoBuilder.     

SA in SLT does provide the necessary rigor.  The major 
work needed is to add support for what are called dynamic 
structural refinements and corresponding interaction 
procedural refinements (e.g., see Scandura, 2007, esp. pp. 
195-198). As detailed on pages 194-216, Structural Analysis 
so extended would make it possible to construct arbitrary 
higher order SLT rules as needed.   

The second major improvement requires replacing 
TutorIT’s current chaining mechanism with SLT’s Universal 
Control Mechanism (UCM). Fortunately, the chaining 
mechanism is a separable module so its replacement and 
integration should be straight forward.  Furthermore, the UCM 
design has been detailed in a recent patent.  The main 
challenge is to implement, test and refine as necessary to 
ensure that all work as designed ready for prime time.  

I will not than attempt to detail here either the extended 
form of Structural Analysis or the UCM (Scandura, 2007), 
and I certainly don’t want to imply that this will be a trivial 
undertaking. The risks are high.  For details I encourage you 
to study my recent monograph (Scandura, 2007, for SA – esp. 
pp.216-231 and UCM – esp. 216-231). 

What is important here is to understand that extension of 
AuthorIT and TutorIT will do two major things for us:   

1. AuthorIT’s AutoBuilder component will fully support 
Structural (domain) Analysis (SA), enabling it to 
identify and detail higher as well as lower order SLT 
rules associated with any given domain.   

2. TutorIT enhanced with UCM will be able to solve 
novel problems in domains, even where it is not 
explicitly given a SLT solution rule.  

Given a complex domain, extension of AutoBuilder will 
more fully support Structural (domain) Analysis (SA).  In 
addition to arbitrary refinement, AutoBuilder will be able to 
systematically identify finite but sufficient sets of higher as 
well as lower order SLT rules.  Sufficiency means that 
collectively these SLT rules will provide what the analyst 
considers to be “adequate coverage” of the given domain.  By 
“adequate coverage” I mean that the rules collectively provide 
sufficient coverage in the domain – that solutions can be 
generated for sufficient numbers and varieties of problems in 
the domain.    

Armed with the UCM and  a sufficient set of higher (and 
lower) order SLT rules associated with a problem domain, 
TutorIT will be able to dynamically derive new solution rules 
as needed.  TutorIT will also be able to provide systematic 
tutoring on all requisite higher as well as lower order SLT 
rules. 

Given any domain, TutorIT’s ability to generate solutions 
will depend on adequacy of requisite Structural Analysis 
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(SA).  In this context, it should be emphasized that SA can be 
applied iteratively.  An analyst may build on the results of SA 
without starting over.  SA is a strictly cumulative.  The SLT 
rules deemed sufficient at one point in time may 
systematically be superseded later on.  

Although TutorIT’s interface may have to be enhanced, 
tutoring on higher order SLT rules will take place exactly as 
any other SLT rule. Knowledge will still be represented 
hierarchically, and TutorIT decision making will follow the 
same rules.  Critically important from an implementation 
perspective, theoretical parsimony is matched by the current 
AuthorIT and TutorIT technologies.  It would be fool hardy to 
underestimate the effort required, but we do not envision 
major unknowns.  

The extended form of TutorIT will select and present 
problems. The learner will respond, and TutorIT will see if it 
is correct and provide feedback.  If a response is incorrect, 
TutorIT will provide diagnostic and remediation as detailed 
above on each of the rules required to solve the problem. 

Notice the efficiencies.  Suppose the learner is given a 
complex problem.  Instead of having to pinpoint inadequacies 
in this complex context, it will be sufficient to identify the 
individual SLT rules and higher order rules necessary for 
success.  Once this has been done, one can treat each 
individual SLT as before.  All SLT rules, higher as well as 
lower order, have precisely the same formal structure.  Hence, 
diagnosis and remediation can be carried out in modular 
fashion.   

Comparison with ITS.– Given their dominance, comparison 
with ITS may be helpful to understand the significance of 
what all this means.  AuthorIT can be used to identify what 
must be learned for success with arbitrary degrees of 
precision.  No longer does one have to worry about individual 
learner models as such. The author need be concerned only 
with identifying what higher and lower order SLT rules must 
be learned for success.  This may be done with arbitrary 
degrees of precision, either initially or in cumulative fashion 
as experience and development resources dictate.  More 
important perhaps, AuthorIT is not limited in the same way by 
the complexity of the domain being analyzed.  The sheer 
complexity of some domains makes them inaccessible to 
traditional ITS methodology.  Traditional ITS development 
requires coming up de novo with: a) a sufficient set of 
productions, b) assumptions as to what learning mechanisms 
to use and c) finally data supporting validity of the analysis.   

Structural Analysis does not have the same limitations.  
What one identifies is whatever an expert in the field believes 
is necessary and sufficient for success in that domain.  
Certainly, experts may differ as to what they believe should or 
might be learned.  That is not the point.  There is nothing to 
constrain SA to a single point of view.  Complications in 
supporting multiple perspectives include introducing higher 
order selection rules for deciding which of the alternative 
solution rules to use under what conditions.  In short, anything 
that can be done with production systems can be done more 

simply and with TutorIT in conjunction with higher and lower 
order SLT rules. 

Given a representation of what needs to be learned, whether 
of just lower order as at present or including higher order 
knowledge as proposed, TutorIT can quickly and easily 
construct individual learner models, and maintain them 
dynamically during the course of tutoring. Most important, an 
extended TutorIT would be able to address diagnosis and 
remediation on each SLT rule in strictly modular fashion. The 
result would be orders of magnitude reduction in 
(pedagogical) decision making complexity.  This is simply not 
possible in a production systems environment.   

As above, TutorIT will work even in the face of incomplete 
analysis.  Even a small amount of analysis is better than little 
or none.  Given its complexity, ITS research can only go so 
far.  

None of this means that we should give up on 
fundamentals.  Most TICL research today is limited to general 
models or frameworks. Some even come with fancy names.  I 
believe we can do more, however, than introduce acronyms in 
our research.  

We need to concentrate more heavily on identifying what 
needs to be learned.  Fifty years of basic and applied research 
in the field convinces me that the more precisely one 
understands what needs to be learned the better job one can do 
of teaching it.  This holds whether one is talking about 
automated tutorials or human teachers.  The only difference is 
that the former can be automated and are more readily subject 
to incremental improvement.8 

Comparison with Contemporary TICL Research.– Compare 
the above also with what is currently done in contemporary 
tutoring and simulation systems.  In such systems, so-called 
scaffolding is typically indirect, or at best imprecise.  We used 
to call them “Hints”.  Hints can certainly encourage, indeed 
require involvement of the learner.  If successful, they may 
also exercise the learner’s cognitive abilities.   

The problem here is that existing systems of this type have 
never achieved results comparable to what a skilled human 
tutor might do.  Given increasingly precise representations of 
what must be learned for success, on the other hand, TutorIT 
will be capable of providing arbitrarily precise instruction. 

Encouraging learners to exercise whatever they may (or 
may not know) is a good thing.  Nonetheless, two points need 
to be emphasized.    

1. There is nothing that forces TutorIT to be as precise as 
may be possible.   

 
8 One might think that we already know what needs to be learned in school 

math.  Although analyses in school math tend to be more complete than in 
other areas, the analyses we have undertaken show that those used for 
planning textbooks, lessons, CBI programs and even ITS are invariably 
incomplete.  It is not sufficient to simply list the kinds of problems to be 
solved, to name the particular skills required or even to identify all of the 
productions that might be involved in solution.  Complete analysis requires 
full systematic analysis of what needs to be learned at all meaningful levels of 
abstraction.  Without full analysis, an automated tutorial will necessarily be 
incomplete, and cannot reliably guarantee mastery (at least not without 
including a lot of redundancy).   
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2. There will inevitably learners for which typical 
scaffolding is insufficient.   

AuthorIT’s support for arbitrarily precise representation, 
extended to include higher order knowledge, will make it 
possible to reach those who are unable to succeed on their 
own. By design, the proposed extension of TutorIT would be 
capable of precise diagnosis and remediation on higher as well 
as lower order knowledge.   

In this regard, I call attention to an early piece of research 
on math learning (e.g., Roughead & Scandura, 1968) in which 
we were able to explicitly identify the higher order rules 
necessary for success in math problems solving (number 
series).  Once identified, we found that students could be 
taught those higher order rules directly by exposition.  
Furthermore, it was impossible to tell the difference between 
those who were taught the higher order rules by exposition 
and those who discovered them on their own.   

I do believe that student’s who discover rules on their own 
and students who are taught those rules secondarily exercise 
and may learn additional skills. Students who discover higher 
order rules may in the process also exercise still higher level 
skills.  Conversely, students who learn by exposition gain 
more experience understanding complex instruction.   The 
essential point is that being able to identify such higher order 
knowledge (with arbitrary degrees of precision) inevitably 
makes it easier for more children to learn such higher order 
skills.  Here, we have another example of where computers 
might eventually take over tasks that they can do better than 
humans. 

One other point deserves emphasis.  TutorIT’s commitment 
to deterministic thinking (cf. Scandura, 1971, 2007) requires a 
significant change in how one goes about evaluating 
instruction.  In particular, it calls into question the usual 
measures used in controlled experiments, and specifically, the 
need for controlled experiments focusing on how much is 
learned.  Well designed and suitably refined TutorIT tutorials 
build on what students already know and automatically adapt 
to individual needs during the course of (individualized) 
tutoring.  By its very nature, TutorIT requires learners to 
demonstrate mastery of what is being taught.  IF a learner 
enters with the necessary prerequisites (which can 
systematically be identified) AND completes such a tutorial 
that learner will necessarily have demonstrated mastery of 
what is being taught.  This may sound like a tautology, but it 
is not.  Automated instruction that adapts to individual needs, 
as does TutorIT, requires a different focus.  Rather than 
comparing what or how much various groups of students 
learn, the critical issues are whether or not a child is motivated 
to complete a given tutorial, and how long it takes.  Similarly, 
rather than comparing TutorIT with alternative treatments 
(e.g., classroom learning), one can easily control and compare 
alternative delivery (i.e., tutoring) modes without confounding 
content with methodologies. 

Further Extensions.–Although discussion is beyond the 
current scope, it is worth noting that these ideas have 
implications far beyond tutoring systems.  As discussed in 

Scandura (2007) essentially all expert systems are based on 
deriving implications from sets of productions governed by 
learning mechanisms of one sort or another. It would be 
interesting to compare results of expert systems based on 
productions + mechanisms versus SLT + UCM.  Similarly, it 
would be nice to compare benefits in automatic problem 
solving.  For that matter, it would be interesting to apply the 
above approach based on KR in SLT and UCM in areas as 
diverse as robotics and manufacturing 

Where do we go from here?  Supporting complex domains 
will not come without a price.  Although our current research 
makes viability clear, the time and effort required with 
complex domains will almost certainly be greater than with 
well-defined domains.  Mastery in such domains requires the 
acquisition of higher as well as lower order knowledge. 
Identifying such knowledge is not always easy.  But as early 
research demonstrates, this can be done (Roughead 
&Scandura, 1968; Scandura, 1974, 1977; Scandura et al, 
1971c; Scandura & Scandura, 1980).  Moreover, the process 
is now far more systematic and it is a task that is long 
overdue.  I leave the position of TICL Chair this year, and am 
perhaps at the stage of my career where the term “senior 
advisor” takes on a double meaning.   

That said we have already developed a core of TutorIT 
math skill tutorials covering the basic facts, whole number 
algorithms and fractions.  We plan to add pre-algebra skills in 
the near term.  These tutorials represent only a beginning, but 
point the way toward a whole new generation of automated 
(and highly adaptive) tutorials.  They also open heretofore-
unavailable research opportunities, making it possible to better 
understand the benefits and limitations of various pedagogies.  
(As above, measurement should be more in terms of learning 
efficiencies as opposed to skills being learned.)  

More generally, TutorIT technologies have the potential of 
revolutionizing the way adaptive tutorials are developed, 
delivered and evaluated.  Not only can they be used to develop 
math skill tutors but highly adaptive tutorials in essentially 
any area: mathematics, reading, science or otherwise.    

While currently supporting development ourselves, we can 
only go so far alone.  Accordingly, I invite those of you who 
may be interested to join us in the effort.  You can help either 
by making others aware of TutorIT Math tutorials and/or by 
joining in future development.  If interested in developing 
TutorIT tutorials in your own field of expertise, feel free to 
contact me at scandura@scandura.com . 

Together, I believe we can make a real difference.  In 
addition to AuthorIT and TutorIT technologies themselves, we 
now have in place a unique means of distribution.  Anyone 
can get free TutorIT tutoring time by going to 
www.TutorITmath.com. Furthermore, users can earn more free 
time by referring others – who will also get free time.  It will 
be exciting to see the results of half a century of research 
finally making a difference. 
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Fig. 2.  Successive levels of procedural refinement in Column Subtraction.  This Flexform shows all levels refinement, from the highest levels of abstraction to 
the point where terminal nodes correspond to presumed prerequisites.  In column subtraction these prerequisites include basic subtraction facts, ability to compare 
numbers as to size, etc. Students are tested on entry to ensure that they have mastered these prerequisites. 
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Fig 3. The left panel in AuthorIT’s Blackboard Editor (BB) Editor is used to define individual problems. The center pane is used to layout the interface through 
which TutorIT and the learner are to interact. It also shows where instruction, questions, positive and corrective feedback are to appear (some appear in the same 
position, but not at the same time). The right panel is used to assign attributes to individual nodes (elements) in the problem.  These attributes include Display 
types (e.g., Text, Flash, Animation, Sound, Picture, OLE), Response types (Edit Box, Click, Combo Box, Construction) and corresponding Evaluation types 
(Match_text, Within_region, Structure, Debug). 

 
Fig. 5. Learner Model for a student just beginning TutorIT Column Subtraction.  

The initial status on each node is set to “?” because TutorIT the student has had some exposure to column subtraction. 
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APPENDIX B 
Steps 1-6 are illustrated in the following three examples, 

with emphasis on steps 3 & 4 – which are essential in 
dealing with higher order knowledge.  These examples 
illustrate how higher order SLT rules are derived using 
three simple domains: Measure Conversion, Proofs in 

Trigonometry and Number Series.  Only top level SLT 
rules are shown below:  Once a top level SLT rule has been 
constructed, refinement proceeds as above with all SLT 
rules, whether higher or lower order. 

 

Example 1: Measure Conversion 

1.SME Selects Prototypic Problems  
 3 yd  – ?in  
 2 gallon– ?pints 

2. Construct Solution Rules for Prototypic Problems 
 yd    36_times  in 
  gallons   8_times  pints 

3. Convert SLT (solution) Rule to Higher Order Problem 
   (Construct Goal & Given of Higher Order Problem) 

Givens:    yd   n1_times   xxx 
   xxx   n2_times   in  

Goal:  blug   n_times   clug 

4. Construct SLT Higher Order Rule Composition Problem 

(Domain/Range Structure of H. O. Rule is Un-initialized Version of Higher Order Problem) 
 DOMAIN*: blug [n_times] xxx 
   xxx [n_times]) clug  

RANGE:  blug (n_times) clug 

Construct Procedure for Higher Order SLT (Composition) Rule 

 PROCEDURE: compose rules so output of first matches input to second 

Example 2: Proving Trigonometry Identities 

1. SME Selects Prototypic Problem (one of many) 

  sin2A + cos2A = 1 – ?proof 

2. Construct Solution Rules for Prototypic Problems 

sin2A + cos2A = 1  divide a2 + b2 = c2 by c, substitute sin, cos   definitions    
 Proof is resulting steps 

3. Convert SLT Rule to Higher Order Problem  (Replace Semantic-specific Nodes in Solution Rule with 
Abstractions & Select Rule(s)  
 sin2A + cos2A = 1   divide a2 + b2 = c2 by c, substitute sin, cos definitions  

Proof is resulting steps  
Trig Identity      divide a2 + b2 = c2 by side, substitute trig. fn. Definitions  

Proof is resulting steps  
4. Construct H.O. SLT Generalization Rule 
 Replace Specific Values (e.g., c, sin) with Generalizations  

    (e.g., c side; sin trig_fns) 
 

Higher order rules make it possible to derive any number of 
new SLT rules from basic rules.  A wide variety of conversion 
problems, for example, can be solved by combining a small 
number of basic volume, weight, currency, etc. equivalents.  
Repeating the process (step f in SA) increases the generative 
power of the SLT rules and higher order rules associated with 
the ill-defined domain.  Analysis of several complex domains 
(e.g., Scandura et al, 1974, Scandura, 1977, Scandura & 
Scandura, 1980) shows that as SA proceeds two things 
happen:  The individual rules become simpler but the 

generating power of the rule set as a whole goes up 
dramatically, thereby expanding coverage in original domain  
(esp. see Scandura, et al, 1977; Wulfeck & Scandura, 1977). 

To summarize, the Measure Conversion domain in Example 
1 includes any number of (known & unknown) conversion 
problems, all solvable by chaining one known role after 
another.  Example 2 outlines a method (higher order SLT rule) 
for deriving trigonometric identities as generalizations of the 
Pythagorean theorem (similar to Case Based Reasoning).  
Example 3 (in the main text) illustrates an ill-defined domain 

Given 

Goal 
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where alternative SLT solution rules are commonly taught (or 
otherwise learned).  As above, this leads to identification of 
higher order SLT selection rules.  It is exactly these kinds of 
selection rules that must be learned to make sound decisions, 
whether it be in solving verbal problems in mathematics, or 
otherwise. 

Joseph M. Scandura


