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Abstract—Internet-based communications have amazingly
evolved in recent years. As a consequence, the number – and
complexity – of distributed systems which provide access to
services and applications has dramatically increased. As long
as these services have been extended to support an increasing
number of communication media (voice, audio, video, ...) and
systems, ad hoc communication protocols and methodologies
have been designed and developed. Given the autonomy of
available services and applications, distributed systems generally
rely on event-based communications for integrating these
resources. However, a general model for the management of
event-based communications, suitable for complex and ad hoc
event processing as well as for the generic publish/subscribe
messaging paradigm, is still missing. This paper presents1 a
general and flexible event detection and processing framework
which can be adapted based on specific requirements and
situations. Within the framework, the main aspects of event
management over distributed systems are treated, such as
event definition, detection, production, notification and history
management. Other aspects such as event composition, are also
discussed. The goal of the paper is to provide a common paradigm
for event-based communications, providing at the same time
new advantages with respect to the existing standards such as
composition, interoperability and dynamic adaptability.

Index Terms—Event management, modeling, distributed
systems, interoperability, adaptability.

I. INTRODUCTION

THE “fully connected world” is perhaps the most
remarkable step in the evolution of the communication

system in the last century. Through the Internet, each user
can virtually communicate events almost instantaneously with
any other user. The concept of event is of major importance
in the communications field, since it provides an enough
general abstraction layer through which dynamic aspects of
applications can be modeled. Events produced in the real world
are converted into a sequence of bits, sent through one or
more networks to reach their destination and then elaborated
and presented following the consumer’s indications. Events
are well fitted to represent the dynamic aspects of applications
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and distributed characteristics of systems: the sequence of their
execution, the state of a given process or of a data structure,
the communication between entities. Examples of events range
from the evolution of data (the price of Euro has varied in the
United States), to the change in the execution state of a given
process (a web page has been modified), to the communication
and interaction between its components (a print request has
been performed).

A vast number of event management models and systems
has been, and continues to be, proposed [1]–[3]. Several
standardization efforts are being made to specify how entities
can export the structure and contents of the events [4]. Models
proposed in the literature range from simple models which
describe the notification of signals to evolved models which
take into account various policies to manage the events.
Existing models have been defined in an ad hoc way, notably
linked to the utilization context (active DBMS event models),
or in a very general way in middleware (Java event service,
MOMs). Of course, customizing solutions prevents systems to
be affected with the heavy weight of an event model way too
sophisticated for their needs. However, they are not adapted
when the systems evolve, cooperate and scale, leading to a
lack of adaptability and flexibility.

The event management framework proposed in this paper,
based on an in-depth event characterization, is targeted to the
definition of a common event management model.

Through the definition of the conceptual mechanisms and
the general semantics for the integration of distributed systems
and heterogeneous networks, the proposed model aims at
providing modular, adaptable and extensible mechanisms,
which are well adapted when building applications and
systems.

A list of dimensions is proposed 2, that characterize the
detection, the production, the notification of events and the
history management respectively. The proposed dimensions
allow to: (i) highlight the aspects inherent to the management
of events; (ii) propose a meta-model of event management
to give a general characterization of management models
independently of their applicative context [1].

The remainder of this paper is organized as follows. The
generic structure of event-based systems is presented in
Section II, while more specific aspects concerning events
are described in Section III (event definition), Section IV

2In this context, the meaning of dimension is “significant aspect of a thing”
rather than its geometric meaning.



(event detection), Section V (event production), Section VI
(event notification), and Section VII (event history). A generic
event service which supports event management in distributed
systems is introduced in Section VIII. Finally, conclusions and
future work are presented in Section IX.

II. EVENT-BASED SYSTEMS

Event-based communication, based on a cause-effect
principle, provides the basis for anonymous and asynchronous
communication. The event, the cause, represents the change
in the state of a system which leads to the production
of a message. On the other hand, the reaction, the effect,
corresponds to a set of reactions within the system, which react
to the cause and can lead to the production of more events.
This principle allows to model the evolution of a distributed
system based on events asynchronously detected.

An event is modeled as an object of a specific type. The
type is specified by the programmer, as, for instance, an object
of type “event”. The production environment is represented by
the object attributes and methods, however finer categorization
may be defined by the programmer.

An event channel is an object which allows multiple
producers to communicate with multiple consumers in an
asynchronous way. The event channel, at the same time
producer and consumer of events, can notify changes related
to a certain object. In this sense, it acts as an intermediary
between objects which have been modified and an object
interested (or involved) in such changes. When a change
has taken place, an event can be notified to all the objects
interested. In this vision, the underlying communication
channel and network (e.g. multi-hop network) is transparent
to the event channel.

Producers and consumers can communicate through the
event channel by means of the push and pull model. The
producer notifies some events to the channel; then, the
channel notifies the events to the consumers. The consumer
consumes the events through the event channel, which, in turn,
detects them from the producer. The decoupled communication
between producers and consumers is highly relevant in
contexts where consumers would not be able to receive and
interpret the messages, which is, for instance, the case of
sensor networks. When a sensor needs to be awake to receive
the events in real time (on status), it stays continuously
connected to the network and thus wastes significant amounts
of energy. This communicating strategy is not feasible in the
common situation where sensors have strong computational
and power constraints [5]. Event channels are therefore of
deep importance to sensor networks, in which the consumers
are given the possibility to receive information (events)
asynchronously. Moreover, event channels determine how to
propagate the changes between producers and consumers. For
instance, an event channel determines the persistence of an
event: it is the channel which decides for which period to hold
an event, to which to send it and when. The producers generate

events without having to know the identity of consumers and
vice versa.

Common event models are considered an actual challenge
also in the field of multimedia stream management. especially
when the considered system is distributed over heterogeneous
networks (“There is the need of querying and event processing
architectures, simple schemes for sensor networks are not
designed for multimedia sensors” [6]). Among the most
interesting new approaches to multimedia event management,
it is worth noting the six-dimensional “5W+1H” approach,
derived from the journalism [7], [8] and particularly related to
the emerging field of multimedia event management.

Other recent challenges in the field of multimedia and
stream event management and modeling include multimedia
over sensor networks [6], which introduce interesting
dimensions related to multimedia requirements such as class
type, data type, and bandwidth. In [9], event management
for RFID sensors is discussed. Events are characterized as
{event time, ID of RFID tags, ID of RFID readers} tuples, and
XML-based communication is foreseen. A similar approach
is discussed in [10]. However, this is not applicable to other
types of nodes (e.g. sensors), where the low communication
bandwidth foresees more efficient communication modes.
In [11] several aspects of multimedia applications are
considered (structural, temporal, informational, experiential,
spatial and causal). A common event model is foreseen to
provide interoperability to multimedia applications of different
areas, such as multimedia presentations and programming
frameworks. Chang et al. [12] consider multimedia elements
as a primary data type (micon), and define apposite operators
like Ψ (conversion between media formats).

In addition, in practical situations, events produced by
sensors such as wireless motes and RFID readers, are not
significant enough for consumers. They must be combined or
aggregated to produce meaningful information. By combining
and aggregating events either from multiple producers, or from
a single one during a given period of time, a limited set
of events describing meaningful situations may be notified
to consumers. Therefore, academic research and industrial
systems have tackled the problem of event composition.
Techniques such as complex patterns detection [13]–[16],
event correlation [17], [18], event aggregation [19], event
mining [20], [21] and stream processing [22]–[24], have
been used for composing events. In some cases event
composition is done on event logs (e.g. data mining) and
in other cases it is done dynamically as events are produced
(e.g. event aggregation and stream processing). Nevertheless,
to the best of our knowledge, there is no approach that
integrates different composition techniques. Yet, pervasive and
ubiquitous computing, network and environment observation,
require to observe behavior patterns that can be obtained by
aggregating and mining statically and dynamically huge event
logs or histories.
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III. EVENT DEFINITION

The definition of an event type is described by a dimension
and a domain. We consider the word “dimension” as a
parameter or coordinate variable assigned to such a property 3.
The identified dimensions are not independent, but instead they
are organized in layers and are cross-referenced to characterize
the events. Table 6 summarizes the main event dimensions
identified in the work for characterizing events’ definition
(Dimensions 1-7). Dimensions 1-3 are related to the event
representation: if the event is represented by a type or not,
the structure of the type, if it has a production environment or
not. Dimensions 4-6 characterize the types of operators which
can be associated to the event types to represent composite
event types. Finally, dimension 7 (net effect) considers the net
effect by means of: (i) inverse types, and (ii) an algebra of
production environments.

The net effect of a sequence of operations represents the
balance of those operations after the end of the sequence. If,
for instance, a sequence of operations creates an entity, and
destroys it afterwards, the net effect will be considered as
zero. If two entities are created, a and b, and afterwards a
is destroyed, the net effect will be the creation of b.

The definition of event types is strongly related to time,
taking into account the temporal nature of the notion of
event. Indeed, the definition of an event type often integrates
concepts like interval and occurrence instant. Certain types
can also represent other temporal dimensions such as duration,
dates, periods, etc. In general, event models are based on the
time models inherited from the context in which they have
been designed: programming languages, data models, etc. The
following characterizes the dimensions to be considered for
defining events.

Dimensions 8-12 (ref. Table 2) characterize a time model.
The occurrence instant of an event is represented as a point on
a timeline which can be discrete or continuous (dimension 8).
Granularity and temporal types, defined in dimensions 9 and
11 respectively, can be used to define event types. Granularity
also characterizes the operations which may be executed on the
temporal types, and which can be also used to describe event
types – like, for example, 5 minutes after an user connection:
BeginConnection + 5 minutes with delta(login:string,
instantconnection:date).
The possibility to have conversion functions is foreseen in
dimension 10, while dimension 12 describes the types of
temporal operators available.

The most basic concept regarding time is the timeline.
Abstractly speaking, a timeline is a pair (D,<T ) composed
by a finit set of chronons 4 D [25] and a binary relation <T ,
which defines a complete and linear order over D. From the
event management point of view, a timeline serves to model

3Merriam-Webster English dictionary. The geometric meaning of
dimension, for space definition (e.g. a three-dimensional space), will not be
considered here.

4A chronon is a proposed quantum of time in the Caldirola’s discret time
theory.

a discretized position in the production of a succession of
events linearly ordered. This notion is particularly important,
since the types conceptually represent occurrences produced
within a timeline. The characteristics of the timeline allow then
to choose, for instance, specific ordering algorithms, but also
to specify the temporal relations between events, such as: an
event e1 was produced after e2, or an event e1 was produced
between 9 : 00 and 17 : 00.

We refer to granularity as one partition of the set of
chronons of a given timeline and its convex subsets, named
particles, and to minimal granularity as the granularity
obtained by dividing a timeline in singletons. Weeks, months
and years correspond to granularities. The partial order
relation finer than ≺ defines a hierarchical structure on a
same timeline, which for instance allows to define that the
granularity seconds is finer than hours.
The ≺ relation also allows to convert particles belonging to
different granularities by means of conversion functions like
approximation, which allows to rough guess a particle of a
granularity G1 by means of a particle G2 which contains it
(zoom in), and expansion, which allows to associate a set of
granularities G1 to each particle of granularity G2 (zoom out).
Interested readers can refer to [26] for further details.

Starting from the concept of granularity, a set of types which
get involved directly in the definition of event types has been
identified:

– An instant is a point within a timeline which can
be represented by an integer, when a discrete time
representation is adopted;

– A duration is a number of particles used as a distance
measure between two instants, to allow the expression
of movements in time with respect to a given instant.
In general, it is characterized by a positive integer (its
measure) and by a granularity, like 4 seconds;

– An interval is represented by the bias between two
instants, or by an instant (the lower bound of the interval)
and its duration. Given that the lower and upper bounds of
an interval are both of the same granularity, the interval
can be represented by means of a granularity and two
positive integers (the positions of the bounds).

The temporal types of the programming languages and the
query languages are generally provided with operators. In our
opinion, the four basic following operators on time models
which should be included in any software implementation are:

– selectors of the maximum/minimum instant and of the
duration of a set of instants with the same granularity,

– order relations on the instants (<,>,=),
– arithmetic operators between instants and durations like

addition and subtraction of a duration to an instant, or
between two durations, and

– conversion operators between two temporal values
observed with different granularity levels. Interested
readers can refer to [27] for more details.
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TABLE I
DIMENSIONS OF EVENT TYPES.

Dimension Domain

1 Event {with type, without type}
2 Event type {string, expression, object}
3 Production environment {yes, no}
4 Operator types {selection, algebraic, temporal}
5 Validity interval {interval, period, none}
6 Filtering {regular expressions, predicates}
7 Net effect {inverse events, algebra of production environments, none}

TABLE II
DIMENSIONS CHARACTERIZING THE TIME MODEL.

Dimension Domain

8 Time {discrete, continuous}
9 Granularity {day, month, year, hour, minute, second}
10 Conversion function {yes, no}
11 Temporal types {instant, interval, duration}
12 Temporal operators {comparison, selection, join}

IV. DETECTION

DETECTION is the process through which an event is
recognized and associated to a point in time named instant
of occurrence. The events may be observed by a process
external and independent from the producer, or signaled by
the producer itself.

The detection is characterized by the conditions in which the
events are observed, and can be modeled by dimensions from
13 to 16 described in Table 3 and explained in the remainder of
this section. The production unit is the interval during which
producer can observe events (dimension 13). The observation
point (dimension 14) can be located at the operation start or
end points. The interaction protocols used to retrieve them,
finally, are described by type (dimension 15) and detection
mode (dimension 16).

The PRODUCTION UNIT identifies the interval during which
the events can be detected. More precisely, it specifies the
interval within the execution of a producer in which events
are produced. The interval can be defined by the duration of
the execution of a program, a transaction, an application, an
user connection.

For example, the transaction is the production unit in
most of centralized active DBMS [28]. Few active DBMS
allow event detection mechanisms without transactions. The
so-called external events, that is, the event which do not
represent operations on the base and aren’t inevitably produced
inside transactions, are also detected in the context of
a transaction. Distributed active systems [29]–[31] allow
detection of events coming from different DBMS and
applications. In this case, the events are observed by
the detectors within the transactions. The detectors are
synchronized by a global detection mechanism, which builds

a global view of events produced within different transactions
– and without transactions.

It is possible to associate an implicit production unit to
a set of producers. In this case, event detection is active
as long as there is any producer subscribed, even if there
are no consumers. The Microsoft event service [32] defines
the production unit as implicit and bound to the duration of
the execution of the producer objects, while the Java event
service [33] bounds the production unit to the duration of the
execution of the producer objects, “reducing” the management
to a multicast notify mechanism: the producer objects notify
events to the subscribed consumer objects. The production
unit in streams in sensor networks and also managed by
Data Stream Management Systems (DSMS) is determined by
explicit time intervals.

Event detection mechanisms face a granularity issue when
the processes to be observed have a duration and the events
which represent them are instantaneous. To this concern,
certain systems distinguish between physical and logical
events. A PHYSICAL EVENT is the instance which has
been detected, while a LOGICAL EVENT is its conceptual
representation (expressed by an event type).

We refer to the physical events which have been detected
as an occurrence of an event type. A logical event which
represents an observed operation can be split in two physical
events detected repectively before and after the operation,
according to the observation point of the detection process.
For instance, the update operation on the balance variable of
an entity with type ACCOUNT may be represented by an event
type associated to an observation point named “point obs”: <
point obs > UpdateAccount with delta(
accountnumber:integer, newbalance:real, oldbalance:real).
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TABLE III
DIMENSIONS OF EVENT DETECTION.

Dimension Domain

13 Production unit {duration of execution of the producer, transaction, connection, application}
14 Observation point {before, after}
15 Detection protocol {pull, push }
16 Detection mode {synchronous, asynchronous}

The operation can be handled by associating it to a time
interval [t0, t1] where t0 correspond to the operation start and
t1 to its end. An event can be observed at t0, corresponding
to the transition:

update operation inactive → update operation running 5,
and at t1, corresponding to the transition:

update operation running → update operation finished 6.
Both cases refer to the same event, but detected in two

different instants. The modifier before and after allow to state
the events observation point with respect to the operation
executed within a production unit.

The DETECTION PROTOCOL identifies the way of
interaction with the producer in order to retrieve the events.
In general, events are detected with a protocol of type push if
the producer explicitly reports the events. In case of type pull,
the detection mechanism queries or observes the producer to
retrieve the events. The choice of one of the two protocols
depends on the characteristics of the producers.

The DETECTION MODE relates the event detection
mechanism to the execution of the producer. In the
synchronous detection mode, the producer stops its execution
to signal the event. On the contrary, the asynchronous
detection mode assumes that the producers report the events
to the detection mechanism without having to interrupt their
execution.

In general, asynchronous detection is achieved by means of
a shared memory space. The asynchronous pull detection mode
assumes that there is a monitoring mechanism implemented
in the producer which observes its execution and stores
the events in a shared memory space accessible by the
detection mechanism. In case of synchronous pull detection,
the execution of the producer can be interrupted instead.

V. PRODUCTION

The PRODUCTION process corresponds to the time stamping
process of a detected event – taking into account the instant
at which the event occurs – and to its insertion within an
event history. Production is based on read and write access to
an history of produced events, as well as on the computation

5The transition is represented by the following event:
< Before > UpdateAccount with delta(
accountnumber:integer, newbalance:real, oldbalance:real).

6The transition is represented by the following event:
< After > UpdateAccount with delta(
accountnumber:integer, newbalance:real, oldbalance:real).

of the production instant of the events. The dimensions of
the production specify policies for ordering and composing
detected events (see Dimensions 17 - 20 in Table 4). Such
policies determine how to time stamp events, and which events
of the history should be used to produce composite events.

The TIME STAMPING process is the process through which
events are labeled with information regarding their instant of
occurrence. This process is based on the notion of clock, that
is, a function C(e) which associates an event e to its instant of
occurrence Iocc. A time stamp specifies the position of an event
on a timeline. The structure of time stamps varies depending
on the observation of events with respect to a local or global
reference.

In a centralized system, time can be described as a
completely ordered sequence of points 7, where instants
correspond to readings of the system local clock. Let e1 and
e2 be two events, detected respectively at the instants Iocc(e1)
and Iocc(e2). It is then possible to establish a total or partial
order between the two events by ordering their instants of
occurrence. Consequently, e1 is produced before, after or at
the same time than e2.

In a distributed system, events are generally produced at
points in time identified by different clocks. According to the
observation point, the relative order between two events can
vary depending on the observer’s position. As a consequence,
when events are produced by multiple producers and observed
by multiple consumers, it is necessary to choose a reference
clock in order to have a global perception of the events. The
time point which an event is associated is then “associated”
with a point of the reference clock, taking into account the drift
of producer and reference clock with respect to an universal
global reference point.

The GLOBAL TIME gtk of the instant Ilocalk , read in a local
clock k, is described by a point of the Gregorian calendar
(Universal Time Coordinated) truncated to a global granularity
gg:
gtk(Ilocalk) = TRUNCgg(clockk(Ilocalk)),
where TRUNC() is a rounding function like round(), ceil(),
floor() depending on the application context.

The “global” time stamp of a event allows to determine its
production instant in a global timeline, knowing its position
on another temporal reference called local with respect to a

7Declaring that the time points are completely ordered implies that, for any
pair of points t1 and t2, the temporal relation between them is either t1 < t2,
t1 = t2 or t1 > t2.
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TABLE IV
DIMENSIONS OF EVENT PRODUCTION.

Dimension Domain

17 Time stamping { < Ioccglobal >, < site, Iocclocal >, < Iocclocal, site, Ioccglobal > }
18 Granularity {instance, set of the same type, set of different type}
19 Consumer range {local,global}
20 Production mode {continuous, recent, chronological, cumulative}

given site. The time stamp of an event T (e) is thus a tuple
of the form < Iocc(e), site, Ioccglobal

(e) >, where Iocc(e) is
the instant of occurrence with respect to the local clock of
the producer site, and Ioccglobal

(e) is the global instant of
occurrence with respect to a reference clock. For example,
the time stamp of an event e produced in the site k may be
of the following form:
T (e)=<23991548127, k, (‘19/10/95’, 2 : 32 : 27.32)>

The time stamping of a composite event is determined by
the most recent component event. In a distributed context,
the notion of “most recent” is not unique, that is, multiple
component events exist which are virtually produced at the
same time and which may contribute to triggering a composite
event. In this case, all events contribute to determine the time
stamp of the composite event. The time stamping process is
summarized in Equation 1.

Given a set of time stamps ES and a time stamp st ∈ ES,
the maximum can be defined as:
st = Max(ES) ⇐⇒ ( � ∃ st1 ∈ ES, st < st1).
A set of maximum time stamps is therefore defined as:
Max(ES) = {st ∈ ES : st is a maximum of ES}.

The time stamp T (e) of a composite event is the set
Max(ES), where ES is the set of time stamps of the
component events. The production instant, as a function of
the semantics of composition operators, can then be computed
by using the set Max(ES). For example, given the following
join and sequence semantics:
(E1 ∧ E2) (st) = ∃st1, st2 [E1(st1) ∧ E2(st2)]∧
[st = Max(st1, st2)] (intersection)

(E1;E2) (st) = ∃st1 [E1(st1) ∧ E2(st2)]∧
(st1 < st) (strict sequence)
To establish an order between events, it is necessary to

compare their time stamps. The ordering procedure concerns
the management of the event history, which will be discussed
in Section VII.

It is possible to distinguish between events of different
granularities according to the number of occurrences they
are composed of. In general, the following two PRODUCTION

GRANULARITIES can be identified:

– instance: an event is produced every time that an
occurrence of event type is detected; and

– set: an event is produced at the moment of the detection
and composition of a set of events of the same type, or
of different type.

For example, let us consider an event of type creation of
a new bank account detected at the moment of an insertion
in a relation Accounts. With an instance-oriented granularity,
the event is produced every time that the operation “a tuple
is inserted into the Account relation” is executed. On the
contrary, what happens if N bank accounts are created? Would
it be needed to produce an event creation of a new bank
account for each insertion or just one event which represents
the creation of N bank accounts? The choice is determined
based on what the consumer wants to observe and according
to the application context.

A set of granularities of the same type allows to produce
events which group N occurrences of the same type. For
example, all occurrences of type creation of a new bank
account produced in the context of a single transaction or all
the purchases made by a client within the last month.
A set of granularities of different types allows to produce
composite events by combining the events with operators such
as join, disjoint, sequence, etc. For example, creation of a new
bank account followed by a deposit of more than 1000 EUR:

CreateAccount with delta(accountnumber:string,
owner:string, balance:real); 8

UpdateAccount with delta(accountnumber:string,
oldbalance:real, newbalance:real)
where

CreateAccount.accountnumber=
UpdateAccount.accountnumber

and oldbalance− newbalance > 1000

In the two cases, it is necessary to specify the production
conditions of the component events. For example, the
component events should be produced by the same producer
or within the same production unit. Such aspects are related
to the semantics of the composition operators, but also to the
construction of the production environment, as explained in
the following.

The production process begins with the detection of basic
events9. When a basic event is detected, it is necessary to
verify if its occurrence initializes or triggers the production of
a composite event. The production of such event depends on
the occurrence of its component events and on the order with
which the occurrences are produced.

8The operator “;” represents the sequence operator.
9We talk about detection of basic events and production of composite

events.
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Max (T (e1), T (e2)) =

⎧⎪⎪⎨
⎪⎪⎩

T (e1) T (e2) < T (e1)

T (e2) T (e2) < T (e1)

T (e1) ∪ T (e2) T (e2) and T (e1) cannot be compared

(1)

The production of composite events is based on a production
mechanism. This mechanism “knows” the structure of the
composite event and the order with which its component
events should have taken place for the composite event to be
triggered. Everytime a simple event is detected, it is notified
to the production mechanism. If the production can move
forward, a new production state is derived. A certain final
state indicates the triggering of a composite event.

The production of composite events has been deeply studied
within the active databases domain [34], [35]. To date, most of
the production mechanisms of composite events are based on
the evaluation of finite state automata, Petri nets and graphs.

Let the reader remind that all events convey information
which differentiates them and informs on the conditions
under which they are produced: production instant, producer
identifier, real parameters inherent to its type (see production
environment within Section II. The construction of the
production environment of an event is determined by the
production granularity chosen to produce it. For example, let
us consider an history h = {e12, e13, e24, e15, e26, e27, . . .},
containing also occurrences of type operation made on a bank
account:
E1 = Deposit with delta(accountnumber:integer, amount:real)

The type E1 conveys information concerning the account
number and the amount of the operation which has been made.
With a production granularity of instances, three events e 12,
e13, e15 will be produced and the production context of each
contains the instant of production as well as the real parameter
associated to its type, that are, bank account number and the
amount of the operation which has been made.

When the construction of the production environment is
by set, it is necessary to specify which events – produced
previously and available in the history – participate in its
construction. For instance, an event representing n deposits
made on the same bank account between [9 : 00, 17 : 00]:
E1 = Deposit with n × delta(accountnumber:integer,

amount:real)
within [9:00,17:00] where same(accountnumber)

The CONSUMPTION SCOPE defines the selection policies
of the events belonging to the history used for building
the production environment of an event e i. The scope of
consumption can be:

– local with respect to (i) a producer, for example, when
events of the same producer are selected; (ii) a specific
set of producers, for example, when events produced
by processes running on the same server are selected;
(iii) to a time interval, for example, when only events

produced within the same production unit are used (e.g.
a transaction); or

– global, if all instances present in the history are used
to build the production environment of an event (e.g.
when the event contains information regarding bank
transactions effectuated during the day).

The PRODUCTION MODE determines the consumption
protocol of events to build composite events. It indicates
the combinations of primitive events that participate in the
composition of an event and clarifies the semantics of
composite event types. The notion of production mode of
events has been introduced by Snoop [36] with the name of
parameter context.

Four production modes have been proposed in the database
domain. (i) Continuous: all occurrences which time stamp the
begin of an interval of a composite event type are considered
as initiator events of composite events. (ii) Recent: only the
most recent events are used to trigger occurrences of E. (iii)
Chronological: the occurrences of events are considered in
their chronological order of appearance. The component events
are used with a “FIFO”–type strategy. (iv) Cumulative: when
an occurrence of E is recognized, the context to which it
is associated includes — cumulates — the parameters of all
occurrences of events which participate to its construction.
For instance, NAOS [35] implements the continuous mode,
Sentinel [37] implements all the four modes, Chimera [38]
supports the recent mode, SAMOS [39] implements the
chronological mode.

VI. NOTIFICATION

The NOTIFICATION process deals with the notification of
events to the consumers. The notification of an event can
be made at specific instants in relation to their instant of
production and considering temporal constraints. The events
can also be filtered before being notified. The dimensions
of the notification, corresponding to dimensions 21-27 in
Table 5, characterize the aspects to be taken into account
for the notification of events to the consumers. Such aspects
are determined by the specific consumer needs in terms of
information (validity interval, instant of notification, history
management, communication protocol), but also by the
autonomy and the isolation needs of the producers (granularity
and range of selection, visibility of events in the history).

The VALIDITY INTERVAL (dimension 21), specifies an
observation window on events belonging to the history. This
interval allows to specify in which period of time a consumer
is interested on events of a specific type. For example, the
following expression:
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TABLE V
DIMENSIONS OF EVENT NOTIFICATION.

Dimension Domain

21 Validity interval {implicit, explicit}
22 Notification instant {immediate with [Δ]C [Comp], immediate without C, [Δ] differed wrt. an event}
23 Selection granularity {instance, set}
24 Selection range {local, interval, global}
25 Visibility {local, global}
26 Notification protocol {pull, push}
27 Notification mode {synchronous, asynchronous}

after UpdateAccount with delta(accountnumber:integer,
oldbalance:real, newbalance:real), [9:00,17:00]

allows to focus on an update on a bank account executed
between 9 : 00 and 17 : 00. Only events which take place in
the active production unit(s) (a transaction, a program, etc.)
in the interval [9 : 00, 17 : 00] are considered. If the validity
interval and the production unit correspond, the events are then
relevant during the execution of the transaction (production
unit by default) in which they are produced and are not
visible outside such interval. Treating separately the event
production unit (on the detection side) and the validity interval
(on the notification side) contributes to the flexibility of the
event notification mechanism, while allowing the consumers to
decide the periods during which they want to observe events.

The NOTIFICATION INSTANT (dimension 22) specifies the
instant when the notification mechanism must retrieve the
events from the history to notify them to the consumers.
The events are delivered at different instants according to
the degree of reliability of the conveyed information, the
notification rate required by the consumers, and so on. It is
possible to notify them:

– immediately after the production;
– at a precise instant with respect to the production of

another event, for instance at the end of the stock market
session, every two minutes, on 10/09/00 at 14:30; or

– with respect to a latency time defined as follows: it exists
a constant Δ such as, if the instant of production of an
event ei is t, then the notification mechanism sends the
event after t+Δ.

It is also possible to associate a confirmation to the event
notification, to allow the validation – or invalidation – of the
notified occurrences. For example, the event e1 “an operation
of purchase of actions has been executed” can be confirmed
by the event e2 “authorization confirmed by the bank”. It
is possible to specify a temporal constraint ( latency time)
associated to the notification of the confirmation event. For
example, e2 should be notified with a 15 minutes delay. If
the constraints are never verified, it can also be defined a
compensation event notified instead of the confirmation event.
An instant of notification is associated to the compensation
event too.

The EVENT SELECTION process specifies the policies to be
used to choose the events belonging to the event history when

it is necessary to notify them to the consumer. These policies
are essentially determined by the consumers’ needs and the
characteristics of the producers (for instance, autonomy), but
also by the characteristics of the applications common to
producers and consumers.

The SELECTION GRANULARITY (dimension 23) describes
the selection criteria of history events:
(i) instance–oriented: only the last occurrence of an event is
notified;
(ii) set–oriented: all instances available in the history are
notified.

The SELECTION SCOPE (dimensions 24, 25) describes the
visibility of history events with respect to the consumers. Two
scopes of selection are possible based on applications’ needs:

– local: each consumer is granted access to a history events
subset. There can be two different criteria: selection
of events produced within a specified time interval
(e.g., selection of the events detected in the same
production unit (intra–production unit)), or considering
a content–based filtering;

– global: events produced within other executions
(inter–production unit) are selected, that is, beyond
the limitations of applications and transactions. For
example, the events produced within a given transaction
are visible after the validation or before it.

The inter–production unit approach poses issues which still
have to be treated, like: (i) what to do of history events which
production unit has terminated?, and (ii) until which moment
are they visible to the consumers?

The dimensions of notification (26 and 27) characterize also
the communication protocol and mode used to notify events
to the consumers. The NOTIFICATION PROTOCOL describes
the way in which the notification mechanism interacts with
the consumer during the event notification process, while
the NOTIFICATION MODE define the way the operations are
executed. Asynchronous notification assumes consumers and
notification mechanism exchange events through a shared
memory space. The pull asynchronous notification mode
assumes that the notification mechanism stores the events in
a memory space which may be queried by the consumer
to retrieve the events. In case of a push synchronous
notification, the notification mechanism must be able to stop
the consumer(s) execution.
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VII. HISTORY

An EVENT HISTORY is an ordered set of instances of
events. The event history plays a fundamental role in the
event production and notification. The management policies
of the event history, summarized by means of dimensions
28-31 in Table 6 determine which events have to be inserted
in the history and for how long, and when to insert and delete
them. The management of the event history specifies then the
insertion, selection and history update policies.

EVENTS INSERTION (dimension 28) in the event history is
determined by an ordering function which allows to determine
the position of an event (just occurred) in the history.
According to specific algorithms like the precedence model
2gg proposed by [40], we assume that it is always possible
to determine an ordering (total or partial) between history
events, based on comparison of timestamps. Let the reader
refer to Appendix A for more details concerning timestamps
comparison.

The HISTORY SELECTION is determined by the events
visibility adopted for the production of events and by the
selection scope events adopted for the notification. The
visibility of events adopted for the production describes the
policies to be used to consume the events part of the history
during the construction of the production environment of an
event ei. With a policy:

– intra–occurrence, the event ei is produced and ignored
in the construction of the production context of other
occurrences;

– inter–occurrence, after having been produced, the event
ei is kept visible for the construction of production
environments of other occurrences.

The UPDATE of the history (dimension 29) is performed in
the following cases:

– Invalidation: An event stored in the history can be
invalidated by the production of a second event. The net
effect allows to determine this situation. To be able to
compute the net effect of an event of type E, its inverse
type E−i, as well as the net effect computation rules
(defined by the model of event types) should initially
be known. The invalidation of events affects the event
notification process. In particular, the cancellation of
events already notified but that wait for a confirmation.
If the event is cancelled before the production of the
confirmation event, strategies to notify such situation
should be planned.

– Expiration: The consumers determine a validity interval
for the various event types. When such deadline expires,
event can be deleted from the history if they have been
received by all consumers. A “sophysticated” system
where the consumers grant different validity intervals to
the same event type can be imagined. In this case, the
definition of views within the history can be interesting.

– Cancellation: The production of an event can be
cancelled by a particular situation. For example, when
events are produced within transactions, their production
may be cancelled if the transaction fails. In this case, it is
necessary to delete from the history all cancelled events.

– Explicit invalidation: Instances of events can be deleted
as a consequence of explicit requests formulated by
clients or users 10.

A transient event has a duration equal to zero. On the
contrary, a persistent event has a longer duration. So, for
example, an event may persist as long as the control stream
by which it has been generated exists, the object from which
has been produced persists or another event still has to be
produced. The PERSISTENCE (dimension 30) describes the
time interval during which the events are kept in the history.
Four policies can be adopted. An event e i is kept:

1) until its notification: ei is kept in the history until it has
been notified to all its consumers, then it is deleted;

2) during the validity interval: events are kept in the history
until the end of their validity interval;

3) for the production unit: events do not survive the
execution of their producer. For example, event are kept
in the history until the end of the transaction, as long
as a program is running or an user is connected. As
mentioned earlier, in many active DBMS event models
the production unit (transaction) corresponds to the
validity interval. In this case, events are kept until the
end of the transaction;

4) until the production of the next event of the same type:
a new occurrence of an event causes the deletion of
the previous occurrence. In this case, two situations are
possible: the new event can add up to the production
environment of its predecessor (at the condition that it
refers to the same data), or can ignore it.

Taking into account the net effect has a few implications
on the persistence policies, since in the case of a persistence
policy until the notification, an event e i can be cancelled
by another event of “inverse type” between the time of its
production and the moment when the notification has taken
place. In the other cases, an event of inverse type can always
cancel ei.

The events describe changes, transitional by nature and
which can be assimilated to a transition between two states,
generated within a system and which determine its evolution.
PERMANENCE aims at making the evolutions permanent by
storing in the disk the history of corresponding events, in
validation points explicitly set by the application programmers.

A number of applications exist, such as workflow or data
mining applications, for which the permanence of events could
be useful — as when the so–called “durative” events have to
be detected. For example, the detection of an event like 5
days after the creation of a bank account requires the storage
of the event creation of a bank account for at least five

10Which is undoubtedly an effective method to tamper with event history.
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TABLE VI
DIMENSIONS OF EVENT HISTORY.

Dimension Domain

28 Insertion {ordering function}
29 Updating {invalidation, expiration, cancellation, explicit cancellation, none}
30 Persistence {validity interval, production unit, until a more recent ei is produced }
31 Permanence {validation point, explicit, none}

consecutive days. The migration of processes can also need
the permanence of events. A sequence of events reflects indeed
the execution state of one or more processes. It is potentially
desirable to store this information, migrate the process, then
recover the events by means of which it can be relaunched
with its last state.

VIII. EVENT SERVICE FRAMEWORK

An event service is a mediator in event-based systems
enabling loosely coupled communication among producers
and consumers. Producers publish events to the service, and
consumers express their interest in receiving certain types of
events by issuing event subscriptions. A subscription is seen
as a continuous query that allows consumers to obtain event
notifications [23], [24]. The service is then responsible for
matching received events with subscriptions and conveying
event notifications to all interested consumers [41]. Within
our framework, the challenge is to design and implement an
event service that implements event composition by querying
distributed histories ensuring scalability and low latency.

We propose a generic event service that provides support
for managing events in distributed systems. The service
architecture consists of cooperative and distributed event
detectors, which receive, process and notify events. The event
service detects the occurrence of primitive and composite
events and consequently notifies all the applications or
components that have declared their interest in reacting to
such events. Two main detector types are provided by the
service: Primitive Event Detectors, which gather events from
producers; and Composite Event Detectors, which process and
produce events from multiple, simpler detectors.

Event Detectors are connected forming an event
composition network. Events obtained from producers
are propagated through the composition network and
incrementally processed at each Composite Event Detector
involved. Event processing functions can be separately
configured for each Composite Event Detector. The most
important configurable functions include event composition,
correlation, aggregation, filtering according to the dimensions
described in the previous sections.

Event Detectors are managed by the Service Manager
component. They are dynamically created and configured in
base on advertisements and subscriptions from producers and
consumers respectively. Then, the Service Manager manages
event advertisements and subscriptions. It maintains a list of

all the detectors of the system and the event types (primitive
or composite) that each one of them manages (receives and
notifies).

The Service Manager implements the DataCollector
interface, receiving advertisements and subscriptions from
producers and consumers respectively, in order to create
and configure Event Detectors. The Service Manager uses
EDManagement interfaces in order to (re-)configure Event
Detectors.

We propose a distributed event composition approach, done
with respect to subscriptions managed as continuous queries,
where results can also be used for further event compositions.
According to the type of event composition strategy (i.e.,
aggregation, mining, pattern look up or discovery), event
composition results can be notified as data flows or as discrete
results. Event composition is done with respect to events
stemming from distributed producers and ordered with respect
to a timestamp computed with respect to a global time line.
Provided that our event approach aims at combining different
strategies that can enable dynamic and postmortem event
composition, we assume that different and distributed event
histories can be used for detecting composite event patterns.
For example combining a history of events representing
network connections with another history that collects events
on the access to a given address in the Internet for determining
the behavior of users once they are connected to the network.

Fig. 1. Primitive and Composite Event Detectors
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Therefore, both histories must be analyzed for relating the
connection of a user to the sites he/she visits at different
moments of the day.

The implementation of the event service extends the
implementation of the Composite Probes framework [42].
The prototype implementation is based on Julia [43], a Java
implementation of the Fractal component model [44], and
on additional Fractal utilities, including Fractal ADL [45].
The service prototype implements Primitive and Composite
Detectors. The service of communication is implemented via
JORAM [46], a JMS implementation. Additionally, Fractal
RMI and Fractal JMX should be used for the distribution
and managing of the Fractal components. The event service
implementation uses Fractal bindings for interconnections
among Event Detectors. Using bindings allows both local
communication inter-components via direct method calls, and
distributed communication based on Fractal RMI [47]. In
addition, maintaining the binding principle provides a true
architecture among Event Detectors.

IX. CONCLUSIONS

A general framework for processing events and thereby
supporting the communication among producers and
consumers has been presented in the paper. In our approach
we consider that event based communication must be
adapted according to the kind of producers and consumers.
For example, continuous detection/notification of events in
sensor networks is not the same as detecting and notifying
events concerning RSS flows of a web site or monitoring
middleware infrastructures for supporting business services.
Our framework and its associated event service can be
personalized thanks to a general meta-model that provides
dimensions for programming ad-hoc event management
policies. The paper also describes our implementation
experience of an event service that implements the meta-model
and that is based on composite probes [42] and that can be
configured for detecting, composing and notifying events.

We are currently developing a general event composition
framework that can act in a completely distributed way and
support dynamic event composition and event mining on
post-mortem event histories. We are particularly interested
in supporting monitoring for cloud-computing computing
and business services, middleware and computer services
monitoring, and for transmission of multimedia content over
ad-hoc networks.
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APPENDIX

Let the reader remind that a timestamp T (e) of an event
ei is a tuple < Iocc(ei), site, Ioccglobal

(ei) > 11. Yang and
Chakravarty define in [48] the temporal ordering relationship
between the timestamps of primitive events as follows:

1) ei before ej :
T(e1) < T(e2) ⇐⇒

(T(e1).site = T(e2).site) ∧ (Iocc(e1) < Iocc(e2)) ∨
(T(e1).site �= T(e2).site) ∧ (Ioccglobal(e1) <
Ioccglobal(e2))

Event e1 is produced before event e2 if:

(i) the two events are produced at the same location
and the instant of production of e1 is smaller than that
of e2; or
(ii) if they are produced at different locations and the
global instant of production of e1 is smaller than that
of e2.

11The notation T(e).< attribute > is used to denote the local (global)
instant of occurrence and the timestamp location.

2) Simultaneous:
T(e1) = T(e2) ⇐⇒ (T(e1).site = T(e2).site) ∧ (Iocc(e1)
= Iocc(e2))
Events e1 and e2 are simultaneous if the two are
produced at the same location and they have the same
instant of production.

3) Concurrent:
T(e1) ∼ T(e2) ⇐⇒ (T(e1) < T(e2)) ∨ (T(e2) < T(e1))
Events e1 and e2 are concurrent if e1 was is produced
before e2 or vice–versa.

The relation < defines a strict partial order 12 on a set of
timestamps of primitive events. Then two events e1 and e2 can
be ordered as follows:
e1 before e2:

T(e1).local < T(e2).local → T(e1).global ≤ T(e2).global
e1 simultaneous to e2:

T(e1).local = T(e2).local → T(e1).global = T(e2).global
e1 concurrent to e2:

T(e1).local ∼ T(e2).local → | T(e1).global − T(e2).global |
≤ 1gg

(gg represents the granularity of the global reference clock.)
It is worth noting that the difference between simultaneous

and concurrent events consists in that simultaneous events
are produced within the same location. For the ordering of
composite events, the previous definitions are modified as
follows [48]:

1) T(e1) < T(e2) ⇐⇒ (∀ t2 ∈ T(e2), ∃ t1 ∈ T(e1)) such
that (t1 < t2)
The composite event e1 is triggered before the composite
event e2 if and only if for all events which trigger e2

exists an event, which triggers e1, that has been produced
before.

2) Concurrent:
T(e1) ∼ T(e2) ⇐⇒ (∀ t1 ∈ T(e1), ∀ t2 ∈ T(e2)) such
that (t1 ∼ t2)
The composite events e1 and e2 are concurrent if and
only if all the triggering events of e1 and e2 are
concurrent.

3) Not comparable:
T(e1) �� T(e2) ⇐⇒ ¬ ((T(e1) < T(e2)) ∨ (T(e1) >
T(e2)) ∨ (T(e1) ∼ T(e2)))
The timestamps T(e1) et T(e2) of the composite events
e1 and e2 are not comparable if it is impossible to
determine an ordering relationship between e1 and e2.

4) T(e1) <∼ T(e2) ⇐⇒ T(e1) ∼ T(e2) ∨ T(e1) < T(e2)
The composite event e1 is triggered approximately
before the composite event e2 if and only if they are
concurrent or if e1 is produced before e2.

12Let the reader remind that an ordering relation < on a set A defines
a strict partial order if it is transitive and non–reflexive. It defines a total
ordering if, moreover, ∀ x,y,z ∈ A either x < y, or x = y, or y < x. In
centralized systems, a strict total order of type < is non-reflexive, transitive
and asymmetric; on the contrary, a total order ≤ is reflexive, transitive and
asymmetric.
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