

Abstract—Named entities are perhaps the most important
indexing element in text for most of the information extraction
and mining tasks. Construction of a Named Entity Recognition
(NER) system becomes challenging if proper resources are not
available. Gazetteer lists are often used for the development of
NER systems. In many resource-poor languages gazetteer lists of
proper size are not available, but sometimes relevant lists are
available in English. Proper transliteration makes the English
lists useful in the NER tasks for such languages. In this paper, we
have described a Maximum Entropy based NER system for
Hindi. We have explored different features applicable for the
Hindi NER task. We have incorporated some gazetteer lists in
the system to increase the performance of the system. These lists
are collected from the web and are in English. To make these
English lists useful in the Hindi NER task, we have proposed a
two-phase transliteration methodology. A considerable amount
of performance improvement is observed after using the
transliteration based gazetteer lists in the system. The proposed
transliteration based gazetteer preparation methodology is also
applicable for other languages. Apart from Hindi, we have
applied the transliteration approach in Bengali NER task and
also achieved performance improvement.

Index Terms—Gazetteer list preparation, named entity
recognition, natural language processing, transliteration.

I. INTRODUCTION
amed entity recognition is a subtask of information
extraction that seeks to locate and classify the proper
names in a text. NER systems are extremely useful in

many Natural Language Processing (NLP) applications such
as question answering, machine translation, information
extraction and so on. NER systems have been developed for
resource-rich languages like English with very high
accuracies. But construction of an NER system for a resource-
poor language is very challenging due to unavailability of
proper resources.

English is resource-rich language containing lots of
resources for NER and other NLP tasks. Some of the

Manuscript received July 10, 2008. Manuscript accepted for publication

October 22, 2008.
Sujan Kumar Saha is with Department of Computer Science and

Engineering, Indian Institute of Technology, Kharagpur, India (email:
sujan.kr.saha@gmail.com).

Partha Sarathi Ghosh is with HCL Technologies, Bangalore, India (email:
partha.silicon@gmail.com).

Sudeshna Sarkar is with Department of Computer Science and
Engineering, Indian Institute of Technology, Kharagpur, India (email:
shudeshna@gmail.com).

Pabitra Mitra is with Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur, India (email: pabitra@gmail.com).

resources of English language can be used to develop NER
system for a resource-poor language. Also English is used
widely in many countries in the world. In India, although there
are several regional languages like Bengali, Hindi, Tamil,
Telugu etc., English is widely used (also as subsidiary official
language). Use of the Indian languages in the web is very little
compared to English. So, there are a lot of resources on the
web, which are helpful in Indian language NLP tasks, but they
are available in English. For example, we found several
relevant name lists on the web which are useful in Hindi NER
task, but these are in English. It is possible to use these
English resources if a good transliteration system is available.

Transliteration is the practice of transcribing a word or text
in one writing system into another. Technically most
transliterations map the letters of the source script to letters
pronounced similarly in the goal script. Direct transliteration
from English to an Indian language is a difficult task. As our
primary objective is to make the available English gazetteer
lists useful for the Hindi NER task, we propose a two-phase
transliteration, which is capable to do that.

The transliteration module uses an intermediate alphabet,
which is designed by preserving the phonetic properties. The
English names in the name lists are transliterated to the
intermediate alphabet. A Hindi word, when it needs to be
checked whether it belongs to a gazetteer list, is also
transliterated into the intermediate alphabet. For an English-
Hindi word pair, if their transliterated intermediate alphabet
strings are the same, then we conclude that the English word
is the transliteration of the Hindi word.

In this paper, we have identified suitable features for Hindi
NER task. These features are used to develop a Maximum
Entropy (MaxEnt) based Hindi NER system. The highest F-
value achieved by the MaxEnt based system is 75.89. Then
the transliteration based gazetteer lists are incorporated in the
system and F-value is increased to 81.12. The improvement in
accuracy demonstrates the effectiveness of the proposed
transliteration approach.

The proposed transliteration module is applicable to other
languages also. We have chosen another language Bengali and
applied the transliteration approach for using the English
gazetteers in Bengali NER task. Also in Bengali, the addition
of the transliteration based gazetteer lists increases the
accuracy.

The paper is structured as follows. Varios NER techniques
and transliteration systems for different languages are
discussed in Section II. In Section III, the architecture of the
MaxEnt based Hindi NER system is presented. Then two-

Sujan Kumar Saha, Partha Sarathi Ghosh, Sudeshna Sarkar, and Pabitra Mitra

Named Entity Recognition in Hindi
using Maximum Entropy and Transliteration

N

phase transliteration system is discussed in Section IV. In the
next section, the prepared gazetteers and the corresponding
experimental results are discussed. The experiments on
Bengali NER are summarized in Section VI. Section VII
presents the overall discussion. Finally Section VIII concludes
the paper.

II. PREVIOUS WORK
There are a variety of techniques for NER. Two broadly

classified approaches to NER are:
− Linguistic approach and
− Machine learning based approach.

The linguistic approach is the classical approach to NER. It
typically uses rules manually written by linguists. Though it
requires a lot of work by domain experts, a NER system based
on manual rules may provide very high accuracy. There are
several rule-based NER systems, containing mainly
lexicalized grammar, gazetteer lists, and list of trigger words,
which are capable of providing F-value of 88-92 for English
[9], [13], [18].

The main disadvantages of these rule-based techniques are:
they require huge experience and grammatical knowledge on
the particular language or domain; the development is
generally time-consuming and sometimes changes in the
system may be hard to accommodate. Also, these systems are
not transferable, which means that one rule-based NER system
made for a particular language or domain, cannot be used for
other languages or domains.

The recent Machine Learning (ML) techniques make use of
a large amount of annotated data to acquire high-level
language knowledge. ML based techniques facilitate the
development of recognizers in a very short time. Several ML
techniques have been successfully used for the NER task.
Here we mention a few NER systems that have used ML
techniques.

‘Identifinder’ is one of the first generation ML based NER
systems which used Hidden Markov Model (HMM) [2]. By
using mainly capital letter and digit information, this system
achieved F-value of 87.6 on English. Borthwick used MaxEnt
in his NER system with lexical information, section
information and dictionary features [3]. He had also shown
that ML approaches can be combined with hand-coded
systems to achieve better performance. He was able to
develop a 92% accurate English NER system. Mikheev et al.
has also developed a hybrid system containing statistical and
hand coded system that achieved F-value of 93.39 [14].

Other ML approaches like Support Vector Machine (SVM),
Conditional Random Field (CRF), Maximum Entropy Markov
Model (MEMM) are also used in developing NER systems.
Combinations of different ML approaches are also used. For
example, we can mention a system developed by Srihari et al.,
which combined several modules, built by using MaxEnt,
HMM and handcrafted rules, that achieved F-value of 93.5
[17].

The NER task for Hindi has been explored by Cucerzan and
Yarowsky in their language independent NER which used
morphological and contextual evidences [5]. They ran their
experiments with 5 languages: Romanian, English, Greek,
Turkish and Hindi. Among these, the accuracy for Hindi was
the worst. For Hindi the system performance has F-value of
41.70 with very low recall 27.84% and about 85% precision.
A successful Hindi NER system is developed by Li and
McCallum using CRF with feature induction [12]. They
automatically discovered relevant features by providing a
large array of lexical tests and using feature induction to
automatically construct the features that mostly increase
conditional likelihood. In an effort to reduce overfitting, they
used a combination of a Gaussian prior and early stopping.
The training set consisted in 340 K words. Feature induction
constructed 9,697 features from an original set of 152,189
atomic features; many are position-shifted but only about 1%
are useful. Highest test set accuracy of their system is the F-
value of 71.50. The MaxEnt based Hindi NER system
developed by Saha et al. has achieved F-value of 80.01 [16].
The system has used word selection and word clustering based
feature reduction techniques to achieve this result.

Transliteration is also a very important topic and several
transliteration systems for different languages have been
developed using different approaches. The basic approaches
of transliteration are phoneme based or spelling-based. To
mention a phoneme-based statistical transliteration system
from Arabic to English is developed by Knight and Graehl
[10]. This system used finite state transducer that implemented
transformation rules to do back-transliteration. A spelling-
based model that directly maps English letter sequences into
Arabic letters is developed by Al-Onaizan and Knight [1].
There are several transliteration systems for English-Japanese
[8], English-Chinese [11], English-Spanish [4] and many
other languages to English.

But very few attempts were made to develop transliteration
systems for Indian languages to English or other languages.
We can mention a transliteration system for Bengali-English
transliteration developed by Ekbal et al. [7]. They have
proposed different models modifying the joint source channel
model. In that system a Bengali string is divided into
transliteration units containing a vowel modifier or matra at
the end of each unit. Similarly, English string is also divided
into units. Then various unigram, bigram or trigram models
are defined depending on consideration of contexts of the
units. Linguistic knowledge in the form of possible conjuncts
and diphthongs in Bengali and their representations in English
are also considered. This system is capable of transliterating
mainly person names. The highest transliteration accuracy
achieved by the system is 69.3% Word Agreement Ratio
(WAR) for Bengali to English and 67.9% WAR for English to
Bengali transliteration.

III. MAXENT BASED HINDI NER SYSTEM
We have used MaxEnt classifier to develop the system.

Selection of an appropriate feature set is very important to
train a ML based classifier. As language resources and tools
are limited in Hindi, we have given the most importance to the
features. MaxEnt model has the capability to use different
features to compute the conditional probabilities.

In Hindi, there is no capitalization of letters to distinguish
proper nouns from other nouns. Capitalization is a very
important feature for English as most of the names are
capitalized. Due to absence of the capitalization feature, Hindi
NER task is difficult. Also, person names are more diverse in
Indian languages; many common words are used as names.

In the following sections we discuss the features that we
have identified and used to develop the Hindi NER system.

A. Feature Description
The features that we have identified for the Hindi NER task

are:
− Surrounding Words

As the surrounding words are very important to recognize a
NE, previous and next words of a particular word are used as
features. As a feature, previous m words (wi-m...wi-1) to next n
words (wi+1...wi+n) can be treated depending on the training
data size, total number of candidate features etc. During
experiment different combinations of previous four words to
next four words are used as features. These features are multi-
valued. For a particular word wi, its previous word wi-1 can be
any word in the vocabulary, which makes the feature space
very high. Such high-dimensional features do not work well if
amount of training data is not sufficient.

− Binary Word Feature
The multi-valued feature can be modified as a set of binary

feature to reduce the feature space. Class specific lists are
compiled taking the frequent words present in a particular
position. For example, for the previous word of the person
class, frequent words are collected in PrevPerson list. Such
lists are compiled for each class and each position (previous m
to next n). Now C binary features replace the word feature for
a particular position, where C is the number of classes. The
word in a particular position is checked whether it is in the
corresponding position list for a class or not. Firstly we have
prepared the lists blindly by taking the words occurring at
least four times in a particular position corresponding to a
class.

− Context Lists
The idea of binary word feature is used to define the class

context features. Context words are defined as the frequent
words present in a word window for a particular class. In our
experiment we have listed all the frequent words present
anywhere in wi-3...wi+3 window for a particular class. Then this
list is manually edited to prepare the context word list for a
class. For example, location context list contains roda (road),
rajdhani (capital), sthita (located in), jakar (going to) etc. The
feature is defined as, for a word wi, if any of its surrounding

words (wi-3...wi+3) is in a class context list then the
corresponding class context feature is 1.

− Named Entity Tags of Previous Words
Named entity (NE) tags of the previous words (ti-m...ti-1) are

used as feature. This feature is dynamic. The value of the
feature for wi is available after obtaining the NE tag of wi-1.

− First Word
If the word is the first word of a sentence, then this feature

is set to 1. Otherwise, it is set to 0.
− Containing Digit

If a word contains digit(s) then the binary feature
ContainsDigit is set to 1.

− Made up of 4 Digits
For a word w if all the characters are digits and having only

4 digits in w, then the feature fourDigit is set to 1. This feature
is helpful for identifying year. A little modification of the
feature might give better result. As in our development, we are
working in news domain, the years are limited to 1900-2100
in most cases. Then we have modified the feature as if it is a
four-digit word and its value is between 1900 and 2100 then
the feature value is 1.

− Numerical Word
If a word is a numerical word, i.e. it is a word denoting a

number (e.g. tin (three), char (four) etc.) then the feature
NumWord is set to 1.

− Word Suffix
Suffix information is useful to identify the named entities.

This feature can be used in two ways. The first and naive one
is that a fixed length word suffix of current and surrounding
words can be treated as feature. During evaluation, it was
observed that this feature is useful and able to increase the
accuracy by a considerable amount. Still, better approach is to
use suffix based binary feature. Variable length suffixes of a
word can be matched with predefined lists of useful suffixes
for different classes of NEs. Suffix list of locations is very
useful since most of the location names in India end with a
specific list of suffixes. Suffix list of locations contains 116
suffixes like, bad, pur, puram, ganj, dihi etc.

− Word Prefix
Prefix information of a word is also useful. A fixed length

word prefix of current and surrounding words can be treated
as feature.

− Parts-of-Speech (POS) Information
The POS of the current word and the surrounding words are

important to recognize names. For this task we have used the
POS tagger developed at IIT Kharagpur, India. The tagset of
the tagger contains 28 tags. Firstly we have used the POS
values of current and surrounding tokens as feature.

All 28 POS tags are not helpful in recognizing names.
Nominal and postpositional tags are the most important in
name finding in Hindi. Then we have modified the POS
tagger to a coarse-grained POS tagger which has only three
tags - nominal, postpositional (PSP) and others. These coarse
grained POS values of current and surrounding tokens are
more helpful for name recognition.

The POS information is also used in another way. Some
binary features are defined using the POS information. For
example, a binary feature NominalPSP is defined as
following, if the current token is nominal and the next token is
a PSP then the feature is set to 1, otherwise 0.

B. Maximum Entropy Based Model
MaxEnt is a flexible statistical model which assigns an

output for each token based on its history and features.
MaxEnt computes the probability p(o|h) for any o from the
space of all possible outputs O, and for every h from the space
of all possible histories H. A history is all the conditioning
data that enables to assign probabilities to the space of output.
In NER, history can be viewed as all information derivable
from the training corpus relative to the current token wi. The
computation of p(o|h) depends on a set of features, which are
helpful in making predictions about the output.

Given a set of features and a training corpus, the MaxEnt
estimation process produces a model in which every feature fi
has a weight αi. We can compute the conditional probability
as [15]

if (h ,o)1(|)
() i

i

p o h
Z h

α= ∏ (1)

ιf (h ,ο)
ι() α

O i

Z h = ∑ ∏ (2)

The probability is given by multiplying the weights of
active features. The weight αi is estimated by a procedure
called Generalized Iterative Scaling (GIS) [6]. This method
improves the estimation of weights iteratively. The MaxEnt
estimation technique guarantees that, for every feature fi, the
expected value equals the empirical expectation in the training
corpus.

For our development we have used a Java based open nlp
MaxEnt toolkit1 to get the probability values of a word
belonging to each class. That is, given a sequence of words,
the probability of each class is obtained for each word. To
find the most probable tag corresponding to each word of a
sequence, we can choose the tag having the highest class-
conditional probability value.

Sometimes this method results in inadmissible assignment
for tags belonging to the sequences that never happen. To
eliminate these inadmissible sequences we have made some
restrictions. Then we have used a beam search algorithm with
beam length 3 with these restrictions. This algorithm finds the
most probable tag sequence from the class conditional
probability values.

C. Training Data
The training data used for this task contains of about 243 K

words with 16,482 NEs, which is collected from the popular
daily Hindi newspaper "Dainik Jagaran". In this development,
we have considered four types of NEs to recognize. These are
Person (Per), Location (Loc), Organization (Org) and Date.
To recognize entity boundaries, each name class N is
subdivided into four sub-classes, i.e., N_Begin, N_Continue,

1 www.maxent.sourceforge.net

N_End, and N_Unique. Hence, there are total 17 classes (4
name classes × 4 sub-classes + 1 not-name class). The corpus
contains 6,298 Person, 4,696 Location, 3,652 Organization
and 1,845 Date entities.

D. Evaluation
About 80 different experiments are conducted taking

several combinations from the mentioned features to identify
the best feature set for the NER task. We have evaluated the
system using a blind test file of size 25 K words, which is
totally different from the training file. The accuracies are
measured in terms of F-measure, which is weighted harmonic
mean of precision and recall. Precision is the percentage of the
correct annotations and recall is the percentage of the total
named entities that are successfully annotated. The general
expression for measuring the F-value is: Fβ = ((1 + β2)
(precision × recall)) / (β2 × precision + recall). Here the
value of β is taken as 1.

First of all, we have used only the current and surrounding
words as feature of MaxEnt. We have experimented with
several combinations of previous 4 to next 4 words (wi-

4...wi+4) to identify the best word-window. The results are
shown in Table I.

TABLE I.

RESULTS (F-MEASURE) OF MAXENT BASED SYSTEM USING WORD FEATURES
Feature Per Loc Org Date Total

wi, wi-1, wi+1 61.36 68.29 52.12 88.9 67.26

wi, wi-1, wi-2, wi+1, wi+2 64.10 67.81 58 92.30 69.09

wi, wi-1, wi-2, wi-3, wi+1, wi+2,
wi+3

60.42 67.81 51.48 90.18 66.84

wi, wi-1, wi-2, wi-3, wi-4, wi+1,
wi+2, wi+3, wi+4

58.42 64.12 47.97 84.69 61.27

wi, wi-1inList, wi-2inList,
wi+1inList, wi+2inList 65.37 70.33 47.37 83.72 66.17

From Table I we can observe that word window (wi-2...wi+2)

gives the best result. When the window size is increased, the
performance degrades. List based binary word features are not
effective. In the table, the notation wi-ninList is used to indicate
binary word features for all classes for wi-n. We have already
mentioned that the binary word feature matches the word if it
presents in a frequent word list which is formed from the
training corpus. By analyzing the word lists we have observed
that the lists do not contain all the words related to a class. For
example, the word ‘jakar’ (going to) in the next position helps
to conclude that the current word has high probability to be a
location name. But the word is ‘jakar’ is not in the
corresponding list because the word is not occurring in that
particular position with high frequency in our training corpus.
Manual editing of the lists might help the binary word feature
to perform better.

Similar experiments are conducted to find the best feature
set for the Hindi NER task. The features described earlier are
applied separately or in combination to build the MaxEnt

based model. In Table II we have summarized the results.
Only the best values of each feature category are given in the
table. This result is considered as the baseline in this study.

TABLE II.

RESULTS OF MAXENT BASED SYSTEM USING DIFFERENT FEATURES

Feature Per Loc Org Date Total

words, previous NE tags 63.33 69.56 58.58 91.76 69.64

words, tags, prefix(≤4) 66.67 71 58.58 87.8 70.02

words, tags, suffix(≤4) 70 76.92 59.18 88.9 73.5

words, tags, suffix (≤4),
prefix(≤4)

70.44 70.33 59.18 90.18 72.64

words, tags, digit information 62.94 69.56 50 91.76 67.63

words, tags, suffix (≤4), digit 70.44 76.92 60.44 93.02 74.51

words, tags, POS (28 tags) 66.67 72.84 60 88.9 71.22

words, tags, POS(coarse-
grained) 69.62 80.74 58.7 91.76 75.22

words, tags, POS(coarse-
grained), suffix (≤4), digit 72.23 78.1 62.37 93.02 75.67

words, tags, ‘nominalPSP’,
suffix (≤4), digit 72.5 80.74 58.7 93.02 75.89

From the table we can observe that some of the features are

able to improve the system accuracy separately, but when
applied in combination with other features, they cause
decreasing of the the accuracy. For example, with the
information about the word and tag only we achieve F-value
of 69.64. When suffix information is added, F-value is
increased to 73.5 and when prefix information is added then
F-value of 70.02 is achieved. But when both the suffix and
prefix features are combined, then the F-value is 72.64. Prefix
information increases the accuracy alone, but when combined
with suffix information, it decreases the accuracy instead of
increasing it. More complex features do not guarantee the
better result. The best accuracy of the system is the F-value of
75.89, which is obtained by using current word, surrounding
words (wi-1, wi+1), previous NE tags, suffix information (≤4),
digit information (contains digit, four digit, numerical word)
and the POS based binary feature nominalPSP. Here an
interesting observation is, that the best feature set uses the
word window (-1 +1), i.e. one previous word and one next
word. Using the wider window reduces the performance,
though in Table I it was found that window (-2 +2) performs
best.

IV. GAZETTEER INFORMATION
Gazetteer lists or name dictionaries are helpful in NER. It is

observed that a huge number of organization names end with
some specific words like Inc., Corp., Limited etc. If all such
words can be collected in a list then they can help to recognize
the organization names. Again, it is very common that some
designations like prof., minister etc. and some other qualifiers
like Mr., Dr., Sri etc. appear before the name of a person. A
list containing all such words helps in person name

identification. A surname list is also helpful for identifying
person names. Similarly location list, organization list, first
name list etc. are some helpful gazetteer lists.

Gazetteer lists are successfully used in many English NER
systems. Borthwick’s ‘MENE’ has used 8 dictionaries [3],
which are: First names (1,245), Corporate names (10,300),
Corporate names without suffix (10,300), Colleges and
Universities (1,225), Corporate suffixes (244), Date and Time
(51) etc. The numbers in parentheses indicate the size of the
corresponding dictionaries. As another example, we can
mention the hybrid system developed by Srihari et al. (2000).
The gazetteer lists used in the system are: First name (8,000),
Family name (14,000) and a large gazetteer of Locations
(250,000). There are many other systems which have used
name dictionaries to improve the accuracy.

Being influenced by these systems, we have decided to use
gazetteer lists in our system. We have planned to use a few
gazetteer lists like, person prefix, corporate suffix, surname,
first name, location etc.

Initially we have attempted to prepare the gazetteers from
the training corpus. Comparing with similar English
dictionaries, it seems that prepared dictionaries might be
sufficient for person prefix words, organization suffix words
etc. but person first name list, location list etc. are not
sufficient for the Hindi NER task. Then we have attempted to
use the web sources for creating large gazetteer lists.

As our goal is to develop a NER system for Hindi, we are
mainly interested in preparing gazetteers, which will contain
mainly places in India, Indian first names and Indian
surnames. For that purpose, we have collected the names from
several websites. Mainly we have explored some Indian baby
name websites to prepare the first name list. Also a lot of
names of non-Indian famous personalities who are likely to
appear in Indian news, collected from several sources, are
added to the first name list. Similarly, we have prepared the
location dictionary using Indian telephone directory, postal
websites and the web encyclopedia ‘wikipedia’. In Table III,
we have mentioned the main sources from which we have
collected the names.

TABLE III.
SOURCES OF GAZETTEER LISTS

Gazetteer Sources
First name http://hiren.info/indian-baby-names

http://indiaexpress.com/specials/babynames
http://www.modernindianbabynames.com/

Surname http://surnamedirectory.com/surname-index.html
http://en.wikipedia.org/wiki/Indian_name
http://en.wikipedia.org/wiki/List_of_most_common_surn
ames

Location http://indiavilas.com/indiainfo/pincodes.asp
http://indiapost.gov.in
http://maxmind.com/app/worldcities
http://en.wikipedia.org/wiki

A. Transliteration
The transliteration from English to Hindi is very difficult.

English alphabet contains 26 characters whereas the Hindi
alphabet contains 52 characters. So the mapping is not trivial.
We have already mentioned that Ekbal et al. [7] has

developed a transliteration system for Bengali. A similar
approach can be used to develop a Hindi-English
transliteration system. But it requires a bilingual transliteration
corpus, which needs huge efforts to built, is unavailable to us.
Also using this approach the word agreement ratio obtained is
below 70%, which is not a good value for the task.

To make the transliteration process easier and more
accurate, we propose a 2-phase transliteration module. As our
goal is to make decision that a particular Hindi string is in
English gazetteer or not, we need not transliterate the Hindi
strings in English or English strings into Hindi. Our idea is to
define an intermediate alphabet. Both the English and Hindi
strings will be transliterated to the intermediate alphabet. For
two English-Hindi string pair, if the intermediate alphabet is
same then we can conclude that one string is the transliteration
of the other.

First of all we need to decide the alphabet size of the
intermediate state. When several persons write a Hindi name
in English, all the English string may not be same. For
example a Hindi name “surabhii” when written in English,
may be written as several ways, like surabhi, shurabhi, suravi,
suravee, shuravi etc. So, it is very difficult to transliterate
properly. Preserving the phonetic properties we have defined
our intermediate alphabet consisting of 34 characters. To
indicate these 34 characters, we have given unique character-
id to each character which ranges from 51# to 84#. As special
characters and digits are very rare in person and location
names, all the special characters are mapped to a single
character with character-id 99# and all the digits are mapped
to 98#.

B. English to Intermediate Alphabet Transliteration
For transliterating English strings into the intermediate

alphabet, we have built a phonetic map table. This map table
maps an English n-gram into an intermediate character. A few
entities of the map table are shown in Table IV.

TABLE IV.

A PART OF THE MAP-TABLE
English Intermediate English Intermediate
A 51# EE, I 53#
OO, U 54# B, W 55#
BH, V 56# CH 57#
R, RH 76# SH, S 77#

The procedure of transliteration is as follows.

Procedure 1: Transliteration English-Intermediate
Source string – English, Output String – Intermediate.

1. Scan the source string (S) from left to right.
2. Extract the first n-gram (G) from S. (n = 4)
3. Search it in the map-table.
4. If it is found, insert its corresponding intermediate

state entity (I) into target string M. M M + I.
Remove G from S. S S – G.
Go to step 2.

5. Else, set n = n – 1.
Go to step 3.

Using this procedure, English string ‘surabhii’ will be
transliterated to 77#54#76#51#56#53#. If we check the
transliteration for ‘shuravi’, it is transliterated into
intermediate string in the same manner.

C. Hindi to Intermediate Alphabet Transliteration
This is done in two steps. At the first step, the Hindi strings

(which are in Unicode) are transliterated into itrans. Itrans is
representation of Indian language alphabets in terms of
ASCII. Since Indian text is composed of syllabic units rather
than individual alphabetic letters, itrans uses combinations of
two or more letters of English alphabet to represent an Indian
language syllable. However, there are multiple sounds in
Indian languages corresponding to the same English letter and
not all Indian syllables can be represented by logical
combinations of English alphabet. Hence, itrans uses some
non-alphabetic special characters also in some of the syllables.
The difficulty in converting the Unicode Hindi string to itrans
is that the conversion mapping of Unicode to itrans is many to
one. A map table2, with some heuristic knowledge, is used for
the transliteration. Our example Hindi word ‘surabhii’ is
converted into ‘sUrabhI’ in itrans.

At the next step, the itrans string is transliterated into the
intermediate alphabet using a similar procedure of
transliteration. Here we use a similar map-table containing the
mappings from itrans to intermediate alphabet. This procedure
will transliterate the example itrans word ‘sUrabhI’ to
77#54#76#51#56#53#.

D. Accuracy of the Transliteration System
The transliteration system is evaluated by using a bilingual

corpus containing 1,070 English-Hindi word pairs most of
which are names. 980 of them are transliterated correctly by
the system. So, the system accuracy is 980×100/1070 =
91.59%.

This transliteration approach is applicable for some other
languages also.

V. USE OF GAZETTEER LISTS IN MAXENT BASED HINDI NER
We have prepared the gazetteer lists directly from the

corpus or from the web using the transliteration process
discussed in the above section. The lists collected from the
web are transliterated and stored in the intermediate form. One
way of using the gazetteer information is to directly search a
token if it is in the list. If it is present then we make the
decision that the word belongs to that particular class. But this
cannot resolve ambiguity as a particular token may present in
more than one list and confusion arises. We have used the
gazetteer information as a feature of MaxEnt. In the following
we have described the prepared gazetteer lists and the
corresponding features in details.

2 www.aczoom.com/itrans

A. Gazetteer Lists
− Month name, Days of the Week

If the word is one of January, February, . . ., December,
(baishakh, jyashtha, . . ., chaitra (month names of Hindi
calendar)), then the feature MonthName is set to 1. If it is one
of Monday, Tuesday, . . ., Sunday (sombar, mangalbar, . . .,
rabibar,..) then the feature DayWeek is set to 1.

− Corporate Suffix list
Corporate Suffix List (CSL) contains most frequently

occurring last words of organization names collected from the
training data. CSL is made up of limited, corp., inc, institute,
university etc. The size of the list is 92 entries. For a word wi,
if any of the words from wi+1 to wi+ n is in CSL, then a feature
CorpSuf is set to 1.

− Person Prefix List
It contains the designations and qualifiers that occur before

person names and are collected from the training data.
Examples of some prefixes are, sri (Mr.), kumari (mrs.),
mantri (minister), adhyaksha (chairman) etc. The list contains
123 prefixes.

Note that person prefix words are not the part of the person
names, while corporate suffixes are part of the organization
names. For a word wi, if any of the words from wi-m to wi-1 is
in person prefix List, then a feature PerPref is set to 1.

− Common Location
This list contains the words denoting common locations.

Common location words like jila (district), nagar (town/city),
roda (road) etc. have high probability to occur at the end of a
location name. 70 such words are collected in the Common
Location List (CLL). Then the binary feature ComLoc is
defined as, it takes value 1 for a word wi if its next word
presents in CLL.

− Location List
17,600 location names are gathered in the Location List

(LL). LL is converted using the transliteration and stored in
intermediate form. LL is processed into a list of unigrams
(e.g., Kolkata, Japan) and bigrams (e.g., New Delhi, New
York). The words are matched with unigrams and sequences
of two consecutive words are matched against bigrams to get
the feature value of the binary LocList feature.

− First Name List
This list contains 9,722 first names collected from the web.

Most of the first names are of Indian origin. The feature
FirstName is defined as, if the word wi is in the list, then the
feature is set to 1, otherwise 0.

− Middle Name List
A list is compiled containing the common middle names in

India, for example, kumar, chandra, nath, kanta etc. This list
contains 35 entries.

− Surname List
This is a very important list which contains surnames. As

our objective is to develop a Hindi NER, we are most
interested in Indian surnames. We have prepared the Surname
List (SL) from different sources containing about 1,500 Indian
surnames and 200 other surnames. A binary feature SurName
is defined according to whether the word is in SL.

B. Evaluation
In Table V, we have shown the results of the NER system

after incorporating the gazetteer lists. To observe the
effectiveness of the prepared gazetteer lists in Hindi NER, we
have added the lists with the baseline system.

TABLE V.

RESULTS OF MAXENT BASED SYSTEM USING GAZETTEER LISTS
Feature Per Loc Org Date Total

Baseline: words, tags,
suffix (≤4) 70 76.92 59.18 88.9 73.5

words, tags, suffix,
CorpSuf 70 78.1 72.3 88.9 76.92

words, tags, suffix,
DayWeek, monthName, 70 76.92 59.18 95.83 74.16

words, tags, suffix,
PersonPrefix 72.5 76.92 59.18 88.9 74.09

words, tags, suffix,
SurName, PerPref,

FirstName, MidleName
77.2 78.1 59.18 88.9 76.34

words, tags, suffix,
LocList, ComLoc 70 82.81 61.05 88.9 75.41

words, tags, suffix, all
gazetteers 75.86 81.29 74.8 95.83 80.2

Baseline: words, tags,
nominalPSP, suffix

(≤4), digit
72.5 80.74 58.7 93.02 75.89

words, tags,
nominalPSP, suffix,
digit, all gazetteers

77.2 82.81 76.35 95.83 81.12

To observe the changes in accuracy, we have selected two

feature sets from the baseline system (as in Table II): {current
word, surrounding words, previous NE tags, suffix≤4} and
{current word, surrounding words, previous NE tags,
suffix≤4, digit information, nominal PSP}. The first feature
set achieves F-value of 73.5 and the second one achieves F-
value of 75.89, which is the best baseline feature set.

After adding the gazetteer lists, F-value has increased to
80.2 for the first feature set and 81.12 for the second. Also
from the table we observe that the addition of a gazetteer list
for a particular class (Cj) mostly increases the accuracy of Cj.
For example, when the person gazetteer lists (e.g. person
prefix list, surname list, first name list etc.) are incorporated,
F-value of the person class has increased to 77.2 from 70.
Change in accuracy of the other classes is minor. The highest
F-value achieved by the developed Hindi NER system is
81.12.

VI. EXPERIMENTS ON BENGALI NER
The proposed two-phase transliteration approach is used

successfully to make the English gazetteer lists useful in the
Hindi NER task. The proposed approach is also applicable to
other resource-poor languages. To study the effectiveness of
the approach in another language we have chosen Bengali. As
Hindi and Bengali alphabets are very similar, we needed a

little effort to transfer the transliteration module from Hindi to
Bengali.

Our primary objective is not to develop a ‘good’ Bengali
NER system, but to experiment the effectiveness of the
transliteration approach in Bengali NER task. We first
developed a Bengali NER system using a small training
corpus which is used as baseline. Then the transliteration
module is modified to make the collected English gazetteer
lists useful for the Bengali. These gazetteer lists are
incorporated in the system and the improvement in accuracy is
observed.

A. Training Corpus
The training corpus used for the Bengali NER task is much

smaller than the Hindi corpus. The corpus contains only 68 K
words. Three named entity classes are considered: Person,
Location and Organization. The corpus contains 1,240 person
names, 1,475 location names and 490 organization names.

B. Transliteration Module
Collected English gazetteer lists are then transliterated into

Bengali. English to intermediate alphabet transliteration of the
gazetteer lists is already done during the experiments in Hindi.
Using a Bengali map-table, the Bengali words are
transliterated to itrans. We have already mentioned that the
alphabets of Bengali and Hindi are similar, so the Hindi
module for the transliteration from itrans to intermediate is
used for Bengali without any modification.

The accuracy of the Bengali transliteration is measured
using a smaller bilingual test corpus containing 400 word
pairs. The accuracy of transliteration for Bengali is 89.3%.

C. Features for Bengali NER
The feature set used for the Bengali NER development is

mentioned in the following.
− Surrounding words (two previous and two next),
− NE tags of previous words,
− Affix information (all affixes up to a fixed length and

list based),
− Root information of the words,
− POS information.

Most of the features are used in similar ways as used in the
Hindi NER task. The feature root information is not used in
Hindi NER development, but it is very important in Bengali
NER. In Bengali, several affixes are often added to the names
inflecting them. For example, a person name “Sachin” is
inflected in Bengali as, sachinra (plural, the group in which
Sachin belongs to), sachiner (of Sachin), sachinke (to Sachin),
sachinda (brother Sachin), sachinbabu (Mr. Sachin) etc. As
these affixes are added to the names, sometimes identification
of inflected names becomes very difficult. To identify the
inflected names we have extracted the ‘root’ information of
the words and used them as features of MaxEnt. In Hindi,
such affixes generally present separately from the names as
‘postpositions’, so root information is not much useful.

D. Experimental Results
MaxEnt classifier is used for the experiments. The training

corpus and the mentioned features are used to develop the
baseline system. The system is evaluated using a test corpus
containing 10 K words. The baseline system has achieved the
highest F-value of 62.81. After that the transliteration based
gazetteer lists are incorporated. Then F-value of the system
has increased to 69.59. The results are summarized in Table
VI.

TABLE VI.

RESULTS OF THE BENGALI NER SYSTEM
Feature Per Loc Org Total

words, tags 56.9 56.13 56.67 56.55

words, tags, affix 58.01 59.05 57.28 58.24

words, tags, affix, root
information 62.21 60.46 57.94 60.6

words, tags, affix, root, POS
information 64.39 62.5 60.2 62.81

words, tags, affix, root, POS
information, all gazetteers 70.42 69.85 67.58 69.59

VII. DISCUSSION
Named entity recognition is an important task. ML based

approach for NER task requires sufficient annotated data to
build the system. Gazetteer lists are often used to increase the
performance of a NER system. For resource-rich languages,
such resources are available, but for resource-poor languages
these resources are scarce. Useful gazetteer lists are not
available in these languages, though sometimes they are
available in other languages (like English). If such lists are
transliterated from other language into the target language,
they become useful. We have proposed a two-phase
transliteration methodology for the task.

Direct transliteration is difficult, so we have proposed a
two-phase transliteration. Here an intermediate alphabet is
defined. The strings from both languages (say, Hindi and
English) are transliterated into the intermediate alphabet to
make the decision that a string (Hindi) is in the gazetteer lists
(English) or not. The main advantages of the proposed
approach are:

− This is a character-gram mapping based (using map-
tables) approach, where no training data (bilingual
corpora) is required.

− The approach is very simple and fast.
− This is easily transferable to other language.
− The accuracy of transliteration is high.

The disadvantages of the approach are:
− The English strings are not transliterated to the target

language. Here only the decision is taken whether a
target word (Hindi) is in the English name list or not.

− The module is specially built for the NER task. It is
not widely applicable to other NLP tasks.

The accuracy of transliteration is 91.59% for Hindi and
89.3% for Bengali. The major cases where the transliteration

approach fails are, presence of homophones (pronounced
similarly but one word is name but the other is not-name),
word level changes (e.g., India is written as ‘bharat’ in Indian
languages, New Delhi as ‘nayi dilli’), dropping of internal
vowels (‘surabhi’ is sometimes written/pronounced as
‘surbhi’ – ‘a’ is dropped) etc.

Suitable features are identified and MaxEnt is used to build
the baseline NER systems for Hindi and Bengali using the
identified features. Baseline accuracies for Hindi and Bengali
are F-value of 75.89 and 62.81 respectively. A few gazetteer
lists are collected from the web, which are in English, are
incorporated in the system using the transliteration module
and performance improvement is observed. F-values are
increased to 81.12 for Hindi and 69.59 for Bengali. The
accuracy for Bengali is much lower compared to Hindi
because the training corpus size for Bengali is only 68 K
words, whereas in Hindi the corpus contains 243 K words.

VIII. CONCLUSION
ML based approach requires annotated data and other

resources to build a NER system. We have identified the
suitable features for the Hindi NER task. We observed that
some relevant gazetteer lists, which are very useful for
improving the performance of the NER system, are available
in English. To make the English name lists useful for Hindi,
we have proposed a two-phase transliteration methodology.
The available English gazetteer lists are used successfully in
the Hindi NER system using the proposed transliteration
approach. We have also examined the effectiveness of the
transliteration approach on Bengali NER task.

Use of larger training data would increase the overall
accuracy of the system. Also we hope that use of larger
gazetteer lists will increase the accuracy of the system.

REFERENCES
[1] Al-Onaizan Y. and Knight K. 2002. Machine Transliteration of Names

in Arabic Text. In: Proceedings of the ACL Workshop on Computational
Approaches to Semitic Languages.

[2] Bikel D. M., Miller S, Schwartz R and Weischedel R. 1997. Nymble: A
high performance learning name-finder. In: Proceedings of the Fifth
Conference on Applied Natural Language Processing, pp. 194-201.

[3] Borthwick A. 1999. A Maximum Entropy Approach to Named Entity
Recognition. Ph.D. thesis, Computer Science Department, New York
University.

[4] Crego J. M., Marino J. B. and Gispert A. 2005. Reordered Search and
Tuple Unfolding for Ngram-based SMT. In: Proceedings of the MT-
Summit X, Phuket, Thailand, pp. 283-289.

[5] Cucerzan S. and Yarowsky D. 1999. Language independent named
entity recognition combining morphological and contextual evidence. In:
Proceedings of the Joint SIGDAT Conference on EMNLP and VLC
1999, pp. 90-99.

[6] Darroch J. N. and Ratcliff D. 1972. Generalized iterative scaling for log-
linear models. Annals of Mathematical Statistics, pp. 43(5):1470-1480.

[7] Ekbal A., Naskar S. and Bandyopadhyay S. 2006. A Modified Joint
Source Channel Model for Transliteration. In Proceedings of the
COLING/ACL 2006, Australia, pp. 191-198.

[8] Goto I., Kato N., Uratani N. and Ehara T. 2003. Transliteration
considering Context Information based on the Maximum Entropy
Method. In: Proceeding of the MT-Summit IX, New Orleans, USA, pp.
125–132.

[9] Grishman R. 1995. Where's the syntax? The New York University
MUC-6 System. In: Proceedings of the Sixth Message Understanding
Conference.

[10] Knight K. and Graehl J. 1998. Machine Transliteration. Computational
Linguistics, 24(4): 599-612.

[11] Li H., Zhang M. and Su J. 2004. A Joint Source-Channel Model for
Machine Transliteration. In: Proceedings of the 42nd Annual Meeting of
the ACL, Barcelona, Spain, (2004), pp. 159-166.

[12] Li W. and McCallum A. 2003. Rapid Development of Hindi Named
Entity Recognition using Conditional Random Fields and Feature
Induction. In: ACM Transactions on Asian Language Information
Processing (TALIP), 2(3): 290–294.

[13] McDonald D. 1996. Internal and external evidence in the identification
and semantic categorization of proper names. In: B.Boguraev and J.
Pustejovsky (eds), Corpus Processing for Lexical Acquisition, pp. 21-39.

[14] Mikheev A, Grover C. and Moens M. 1998. Description of the LTG
system used for MUC-7. In Proceedings of the Seventh Message
Understanding Conference.

[15] Pietra S. D., Pietra V. D. and Lafferty J. 1997. Inducing features of
random fields. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 19(4): 380-393.

[16] Saha S. K., Mitra P. and Sarkar S. 2008. Word Clustering and Word
Selection based Feature Reduction for MaxEnt based Hindi NER. In:
proceedings of ACL-08: HLT, pp. 488-495.

[17] Srihari R., Niu C. and Li W. 2000. A Hybrid Approach for Named Entity
and Sub-Type Tagging. In: Proceedings of the sixth conference on
applied natural language processing.

[18] Wakao T., Gaizauskas R. and Wilks Y. 1996. Evaluation of an algorithm
for the recognition and classification of proper names. In: Proceedings
of COLING-96

