

Abstract— The goal of this study is to outline the readability of
an Example-Based Machine Translation for any pair of
languages by means of the language-independent properties of
the lexical conceptual structure (LCS). We describe LCS as a
representation of traditional dependency relationships and use in
experiments an isolated pair of verbs, extracted from Orwell’s
“1984” parallel English – Romanian texts. We discuss the mental
models in terms of specific knowledge structures. Finally, we
present LCS-Based Machine Translation from the point of view
of a complex adaptive system and present our ongoing work in
order to capture the neutral linguistic core of any mental model
corresponding to the real world.

Index Terms—Lexical conceptual structure, machine
translation, readability, complex adaptive system.

I. INTRODUCTION
HE paradigm of ‘translation by analogy’, used to
characterize the Example-Based Machine Translation,

proposes the use of an unannotated database of examples
(possibly collected from a bilingual dictionary) and a set of
lexical equivalences simply expressed in terms of word pairs.
The matching process is focused on checking the semantic
similarity between the lexical items in the input sentence and
the corresponding items in the candidate example. In fact, an
Example-Based Machine Translation database is used for
different purposes at the same time: as a source of sentence
frame pairs, and as a source of sub-sentential translation pairs.

In this paper, we aim to present a new direction in designing
the structural Example-Based Machine Translation. We are
expanding the original Nagao’s model [1] in order to obtain
the translation of a complete sentence by utilizing more than
one translation example and combine some fragments of them.
Usually, the translation examples are represented as
dependency trees with correspondence links between sub-
trees. I propose here an issue to replace the traditional
representation of these translation examples with lexical
conceptual structure (LCS), a kind of a compositional
abstraction with language-independent properties that
transcend structural idiosyncrasies [2].

For an input sentence, there is a matching expression,
naming a pointer to a translation unit, i.e., a lexical conceptual
structure to be found in a manually constructed database of
examples. The pointer is optionally followed by a list of
commands for deletion/replacement/adjunction of nodes

Manuscript received July 22, 2008. Manuscript accepted for publication
October 30, 2008.

Nadia Luiza Dinca is with Research Institute for Artificial Intelligence,
Bucharest, Romania (hnadia_luiza@hotmail.com).

dominated by the node pointed to. The replaced or adjoined
elements are other matching expressions. The data
encapsulation of the translation examples is related to the
modularity demands of the sub-sequences that inherit the
features of the dominating units.

It is obviously that a machine translation system requires a
substantial amount of translation knowledge, typically
embodied in bilingual dictionaries, transfer rules, example
databases or statistical models. Our approach seeks to obtain
as much of this knowledge as possible by expressing
translation examples in LCS- dependency trees.

The real value of this LCS–Based Machine Translation is
offered by readability, since the machine captures the mental
models of any language and therefore, isolates the
correspondence links between the translation units.

II. LEXICAL CONCEPTUAL STRUCTURE
Traditionally, a translation example contains three parts:

- Dependency tree, adapted for the source language;
- Dependency tree, created for the target language;
- Correspondence links.

In this paper, the dependency trees are replaced with lexical
conceptual structures, built by hand, for English-Romanian
linguistic project. We have isolated pairs of verbs, extracted
from Orwell’s “1984” parallel English-Romanian texts.

The verbs were characterized from the point of view of
syntagmatic and paradigmatic relations, using the verb classes
and alternations described by Levin [3] and Visdic [4], using a
multilingual ontology editor.

The semantic properties of a lexical item are totally
reflected in a number of relations associated to different types
of contexts. These affinities developed by a word regarding a
context are syntagmatic or paradigmatic. Lexical semantic
relations are essentially paradigmatic, even if they can be
combined directly with or be based on, some analytical
elements or expression of properties, as in WordNet.

According to [5], a lexical conceptual structure is a directed
graph with a root, where each root is associated with a special
kind of information, including a type, a primitive and a field.
The types name are Event, Path, Manner, Property, Thing; the
fields refer to Locational, Possessional, and Identificational
values. The primitive of a LCS node is splitted into structural
primitive (e.g., go, cause, act) and constants (e.g., reduce+ed,
slash+ingly, face+ut, caine+este). For example, the top node
in the root LCS of the verb follow (“the eyes follow you”) has
the structural primitive ACT_ON in the locational field. Its
subject is a star-marked LCS with the restriction of being a
type thing. The number “1” specifies the thematic role of the

Modeling a Quite Different Machine Translation
using Lexical Conceptual Structure

Nadia Luiza Dinca

T

agent. The second child node is an argument position and
needs to be of type thing, too; its number “2” represents the
clue of the theme:

 (DEF_WORD: “follow”
 LCS: (act_on loc (* thing 1) (* thing 2)))

The format for thematic roles is the following:
1. Any thematic role preceded by an underscore (_) is

obligatory.
2. Any thematic role preceded by a comma (,) is optional.
3. Prepositions inside parentheses indicate that the

corresponding phrases must necessarily be headed by the
specified prepositions.

4. An empty set of parentheses () indicates that there
necessarily must be a prepositional head, but it is left
unspecified.

5. The difference between the main communication and the
incident constructions referring to a second level of speech is
marked by indices “1” for the first level, and “2” for the
second one.

In the notation we used, the DEF_WORD, THEM_ROLES
and LCS represent the Dorr’s description attributes [2], [6].
We added TE, CLASS, SYNSET attributes with the values of
translation equivalent, semantic and synonymic classes. The
LCS specifies a star marker (*) for very explicitly realized
argument and modifier. The star marker forces logical
constituents to be realized compositionally at different levels.

Consider the sentence (1a). This can be represented as
shown in (1b), glossed as (1c):

1a. I walk to cinema.
1b. (event go loc
 (thing I+)
 (path to loc
 (thing I+)
 (position at loc (thing I+) (thing cinema+)))
 (manner walk +ingly))
1c. ‘I move (location) to the cinema in a walking manner.’

The next figure shows the lexicon entry for the contextual
sense of the English verb ‘walk’ with several pieces of
information, such as the root form of the lexical item, its
translation equivalent, the semantic verb class and the synset,
introduced by the fields: DEF_WORD, CLASS, SYNSET and
TE. The thematic roles appearing in the root LCS entry are
classed in a canonical order that reflects their relative surface
order: first available in this case is theme, with the obligatory
specification; the last two optional roles are source and goal:

(DEF_WORD: “walk”
TE: “merge”
CLASS: “51.3.2”
SYNSET: “walk: 4”, “jog: 3”,
 “run: 29”
THEM_ROLES: “_th ,src() ,goal()”
LCS: (event go loc (* thing 2)
 ((* path from 3) loc (thing 2)
 (position at loc (thing 2) (thing 4)))

 ((* path to 5) loc (thing 2)
 (position at loc (thing 2) (thing 6)))))

The field LCS introduces the uninstantiated LCS
corresponding to the underlying meaning of the word entry in
the lexicon. The top node for ‘walk’ has the structural
primitive go in the locational field. Its subject, marked with a
star “*”, indicates that the node must be filled recursively with
other lexical entries during semantic composition. The only
restriction is that the filler must be of type ‘thing’. The second
and third child nodes are in argument positions filled with the
primitives FROM and TO; the numbers 3 and 5 mark the
source and goal particle; the numbers 4 and 6 stand for source
and goal.

III. LEXICAL CONCEPTUAL STRUCTURE-BASED MACHINE
TRANSLATION

The main problem concerning an Example-Based Machine
Translation is how to use a translation example for translating
more than one source sentence. The solution described here
uses the lexical conceptual structure as a representation of
traditional dependency relationships. The words are
introduced in the dictionary with the specification of semantic
class, the synset and LCS –for the verb lexical entry– and with
the notation of thematic roles and LCS, for all other parts of
speech lexical entries (i.e., nouns, pronouns, numbers,
adverbs, adjectives, prepositions).

The basic properties of LCS are: idempotence, reflexivity
and compositionality:
- Idempotence: a LCS multiplied by itself, gives itself

as a result. For example, the root LCS for “follow”
can combine with any members of the semantic class
“51.6” (“watch: 2”, “observe: 7”, “follow: 13”) and
the resulted LCS has the same characteristics as the
original one.

- Reflexivity means the act of self-reference. For
example, the LCS created for the verb “divide” can
refer to any members of the synset “divide: 1”, “split:
1”, “split up: 2”, “separate: 4”, “dissever: 1”, “carve
up: 1”).

- Compositionality states that the meaning of a
complex expression is determined by the meanings of
its constituent expressions and the rules used to
combine them. It can be considered the most
important property because it allows to a translation
equivalent to be used in order to translate more than
one source sentence.

Let’s consider the translation of the following sentence:
(1) He dipped the pen into the ink.
 If the translation database contains the translation examples

(2) and (3), then we can translate sentence (1) into (4) by
imitating examples and combining fragments of them:

(2) He dipped the pen into the blue liquid.
 El isi inmuie penita in lichidul albastru.
(3) I bought an ink bottle.
 Eu am cumparat o cutie cu cerneala.
 (4) El isi inmuie penita in cerneala.

Formally, a translation example consists of three parts:
- Source LCS-tree (ELCS; English Lexical

Conceptual Structure);
- Target LCS-tree (RLCS; Romanian Lexical

Conceptual Structure);
- Correspondence links.

Each number prefixed by “e” or “r” represents the identifier
of the sub-tree and each node in a tree contains a word (in root
form), a thematic role and its corresponding part of LCS. A
correspondence link is represented as a pair of identifiers.

If the translation of an identical sentence is not available in
the bilingual corpus, the EBMT system makes use of some
sort of similarity metric to find the best matching translation
examples. Suitable sub-sequences are iteratively replaced,
substituted, modified or adapted in order to generate the
translation. While the replacement, substitution, modification
or adaptation is rule-driven, the mapping of a source segment
into an equivalent target segment is guided from translation
examples.

According to [1], the concept matching expression (ME) is
defined as in the following:

<ME> ::= [<ID> | <ME - Commands>]
<ME – Commands> ::=
 []
or [<ME – Command> | <ME – Commands>]
<ME – Command> ::=
 [d, <ID>] %% delete <ID>
or [r, <ID>, <ME>] %% replace <ID> with <ME>
or [a, <ID>, <ME>] %% add <ME> as a child of

 root node of <ID>

Under these assumptions, the LCS trees (a) can be
represented by the matching expression (b):

(a) elcs_e ([e11, [dip, cause],
 // TE1

 [e12, [he, _ag, (* thing 1)]],
 [e13, [pen, _th, (go loc (* thing 2))]],
 [e14, [into, _goal (into), ([into] loc (thing 2))],
 [e15, [liquid, _goal (into), (thing 6)]
 [e16, [blue, _goal (into), (thing 6)]]]])

 rlcs_e ([r11, [inmuia, cause],
 [r12, [el, _ag, (* thing 1)]],
 [r13, [penita, _th, (go loc (* thing 2))]],
 [r14, [in, _goal (in), ([in] loc (thing 2))],
 [r15, [lichidul, _goal (into), (thing 6)]
 [r16, [albastru, _goal (into), (thing 6)]]]

 %% clinks: ([e11, r11], [e12, r12], [e13, r13], [e14, r14],

[e15, r15])

 elcs_e ([e21, [buy, cause_exchange],

 // TE2
 [e22, [I, _ag, (* thing 1)]],
 [e23, [bottle, rec, (go poss (* thing 2))],

 [e24, [ink, _th, (go poss (* thing 2))]]]])

 rlcs_e ([r21, [cumpara, cause_exchange]
 [r22, [Eu, _ag, (* thing 1)]],
 [r23, [cutie, rec, (go poss (* thing 2))],
 [r24, [cerneala, _th, (go poss (* thing 2))]]]])

%% clinks: ([e21, r21], [e22, r22], [e23, r23], [e24, r24])

(b) [e11, [(r, e15, [e24]), (d, e16)] // for source language

The first step is matching fragments of the input sentence
He dipped the pen into the ink against a database of real
examples. Two sequences can be found: he dipped the pen
into the and ink, respectively. The data encapsulation of the
translation unit provides a kind of logical independence of the
sub-sequences. Therefore, the complex translation unit, i.e.,
the entire sentence, is splitted into two sub-units; the first sub-
unit encapsulates the second sub-sequence ‘into the’, while the
last has lexicalized only the head and the specifier, and it waits
for the noun corresponding to the input modifier.

TE1 joins TE2 and the result matches against the input only
if the result has the same structure as the source sentence and
its arguments have values for the same type, primitive and
field as the input. The inheritance develops translation sub-
units incrementally through defining new objects in terms of
one previously object defined. It is applied only from noun to
adjective, from preposition to noun, and the inherited features
allow the matching by literals, instead of complex translation
units.

In the example above, the preposition node for into requires
a daughter node with the feature tuple (_goal (into), (thing
6)), instantiated by the lexical items black liquid. Also, the
item ‘black’ lexicalizes the daughter node of the noun ‘liquid’
and it inherits its feature tuple. The inheritance is possible only
if the selected literal has the same type as the input needed to
match. The LCS-tree created for the second translation
example shows the value of theme for the bi lexeme ‘ink
cerneala’ and the type ‘thing’, so the literal is corresponding
to the input word.

In the transfer step, the system replaces every identifier in
the source matching expression with its corresponding
identifier:

SME= [e11, [r, e15, [e24]]
TME= [r11, [r, r15, [r24]

In the composition step, the lexical conceptual structure-
tree is composed according to the target matching expression:

TME = [r11, [r, r15, [r24]]
TLCS= ([r1, [inmuia, cause],

 [r2, [el, _ag, (* thing 1)]],
 [r3, [penita, _th, (go loc (* thing 2))]],

 [r4, [in, _goal (in), ([in] loc (thing 2))],
 [r5, [cerneala, _goal (into), (thing 6)]]]])
%% El isi inmuie penita in cerneala.

IV. DISCUSSION
The EBMT idea is to translate by analogy [7], [8]. But what

is happening when the translator finds only a synonym of a

given input, instead of its matching in different associations?
In our opinion, the solution is to consider a new mental model
as we explain below.

Any translation means to acquire new knowledge about the
real world by taking into consideration the older knowledge
organized into mental schemata by the system. The synonymy
relation, the classification into semantic verb classes, the verb
arity and the thematic roles, the lexical-semantic
representation in terms of primitive, fields and types- all
represents mental schemata corresponding to different levels
of the linguistic representation [9], [10]. Each of these
schemata identifies distributed information and a starting point
in understanding, learning and transferring the code from a
source language to a target language.

When the system confronts with a new situation, i.e., the
presence of a synonym, instead of its matching, it must unify
all the distributed schemata and organize them into a new
mental model, which is, in our case, the lexical conceptual
structure tree representation of the translation examples.
Therefore, while the schemata are generic pre-compiled
knowledge structures, the mental models are specific
knowledge structures, built in order to figure a new situation
using this generic knowledge.

Lexical forms written in the example side may be a
synonym for the matched input word and we must modify the
input side before constructing a target structure. The matching
is analogue to a reasoning issue in natural language, where an
unknown word is translated depending on the associations
with known items, participants in the same kind of context and
used as pointers for the semantic interpretation of the item
given.

Usually, the context acceptance means the words which
occur with a lexical item in order to disambiguate it
semantically. For this approach, the context refers to the
semantic class and synonymy relation of the verb given in the
lexical entry (e.g., the context of jog is the class “51.3.2.” and
the synset “run: 29, jog: 3, walk: 4, zigzag: 1, jump: 1, roll:
12”, instantiated for the sentence John jogged to school).
Formally, the source verb “a” may be translated into the target
verb “b” when:

a. there is the appropriate equivalent in the translation
database;

b. there is a source verb “c” which is:
b.1. in a synonymy relation with “a”;
b.2. in the same semantic verb class with “a”;
b.3. the translation equivalent of “a”.
The following example shows how to obtain a translation if

the system has a translation example and its context:

Input Sentence: He runs to school.
Translation Example:

He jogs to school = El alearga la scoala.
Context:
jog: 3= run: 29
jog: <- class “51.3.2.”
jog: (synset) <- (run: 29, jog: 3, walk: 4, zigzag: 1, jump: 1,

roll: 12)

Target Sentence: He runs to school = El alearga la scoala.

Even LCS is not a deep knowledge representation; it

captures the semantics of a lexical item through a combination
of semantic structure (which is something the verb shares with
a semantic verb class) and semantic content (which is specific
to the verb itself). The semantic structure relies also on the
subcategorization level of linguistic representation by the fact
that there are three ways a child node relates to its parents: as a
subject (maximally one), as an argument, or as a modifier.
Considering this relation between different levels of linguistic
representation, I can define a well-formedness principle for
LCS-based MT:

A translation is well-formed if:
i. There is an appropriate equivalent in the

database examples;
ii. There is an appropriate context (semantic verb

class and synset) for the input verb;
iii. The LCS children are lexicalized (if there is one

minimally) and associated with information
including a type, a primitive and a field.

The type of the LCS created for ‘give’ is Event, its
structural primitive is go, which appears in many generalized
movements, and the field which specifies the domain is
Possessional. The thematic roles are organized into the grid:
"_ag_th_goal(to)". If the sentence contains a form which
doesn’t fill all the values of LCS, it won’t be lexicalized and
the sentence won’t be generated:

Input: He gives.
TE1: He gives fruits to children. El da fructe copiilor.
TE2: He buys a kilo of fruits. El cumpara un kilogram de

fructe.
LCS _input :
 ((cause (* thing 1)
 (go poss (* nill)
 ((* to 5) poss (nill) (at poss (nill) (nill))))
 (give+ingly 26))

V. CONCLUSION AND FUTURE WORK
The LCS-Based Machine Translation can be a powerful

linguistic tool because it allows clear readability of the results.
Since the information contained in these lexical conceptual
structures is language-independent, we consider them an
interesting issue to capture the core of a machine translation,
which is not centered on any particular pair of language.

In fact, the LCS-Based Machine Translation has the
behavior of a complex adaptive system, which means:

- Patterns of activity: the linguist has to describe the
LCS for every verb, considered a lexical entry in
translation database;

- Self-organization: the structure receives a holistic
interpretation, including a type, a primitive and a
field;

- Collective behavior: the verbal core is extended, so
that the root LCS accepts all the verbs which respect
the same semantic class.

In conclusion, this paper aims to present the improvement
of readability of an Example-Based Machine Translation in
terms of lexical conceptual structure. It is only a beginning of
a more profound study that will be developed in order to
characterize a machine translation without the old centering on
the particular pair of languages – source and target languages.

The future work involves the following practical tasks of
investigation:

1. Creating LCS-lexicons by taking the most frequent
verb pairs in “1984” corpus, Romanian and English
versions (with a frequency threshold of 5 occurrences,
minimally).

2. Considering French as a new language for translation
and creating also LCS-tree representations.

3. Organizing the LCS-trees of English, Romanian and
French languages into new mental models using the
encapsulation and a top ontology. We will try to
reduce the language differences and to isolate the
neutral linguistic core of any mental model,
corresponding to the real world.

REFERENCES
[1] S. Satoshi and M. Nagao. Toward Memory- Based Translation.

In: Proceedings of the 13th conference on Computational
linguistics, Finland: Helsinki, 1990, pp. 247-252.

[2] B. J., Dorr. LCS VerbDatabase, Online Software Database of
Lexical Conceptual Structures and Documentation.
http://www.umiacs.umd.edu/~bonnie/LCS_Database_Documentat
ion.html

[3] B. Levin. English Verb Classes and Alternations - A Preliminary
Investigation. The University of Chicago Press, 1993.

[4] http://nlp.fi.muni.cz/projekty/visdic/
[5] A. N. Fazil and B. J. Dorr. Generating a Parsing Lexicon from an

LCS-Based Lexicon. In: Proceedings of the LREC-2002
Workshop on Linguistic Knowledge Acquisition and
Representation, Spain: Las Palmas, 2002, pp. 43-52.

[6] H. Nizar, B. J. Dorr and D. Traum. Hybrid Natural Language
Generation from Lexical Conceptual Structures. Machine
Translation, 18:2, 2003, pp. 81—128

[7] M. Carl and A. Way (eds.) Recent Advances in Example-Based
Machine Translation. Kluwer Academic Publishers, 2003.

[8] H. Tanaka. Verbal case frame acquisition from a bilingual corpus:
gradual knowledge acquisition. In: Proceedings of the 13th
conference on Computational linguistics, Kyoto, Japan, 1994, pp.
727-731.

[9] R. Green, B. J. Dorr and Ph. Resnik. Inducing Frame Semantic
Verb Classes from WordNet and LDOCE. In: Proceedings of the
Association for Computational Linguistics, Barcelona, Spain,
2004, pp. 96-102.

[10] A. N. Fazil and B. J. Dorr. Generating A Parsing Lexicon from
an LCS-Based Lexicon. In: Proceedings of the LREC-2002
Workshop on Linguistic Knowledge Acquisition and
Representation, Las Palmas, Canary Islands, Spain, 2002, pp. 43-
52.

