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Abstract—Selection of genes associated to complex diseases
has been a challenging task in the field of bioinformatics.
Through various studies it has been concluded that selection
of highly connected intramodular hub genes in a co-expression
network analysis approach leads to more biologically relevant gene
lists. In this paper, we have assess the empirical performance
of three existing network reconstruction methods Weighted
Gene Correlation Network Analysis (WGCNA), Algorithm for
the Reconstruction of Accurate Cellular Networks (ARACNE),
Graphical Lasso (GLASSO). The study compares the extracted
hub genes from estimated networks on the prostate cancer dataset
based on two criteria: the first criterion evaluates the biological
enrichment and the second criterion evaluates the statistical
validation, prediction accuracy. The result suggests, though there is
considerable amount of heterogeneity, randomness and variability
in structures of networks estimated using different reconstruction
methods, our findings provides evidence for similarity in hub genes
selection. These findings after network analysis can provide an
intuitive insight into selection of network estimation methods for
specific range of gene expression in microarray datasets. Index
Terms—Gene Selection, Intramodular hub gene, Co-expression
network, Genetic Network, Network reconstruction, Network
analysis, Microarray

I. INTRODUCTION

Understanding the relationship among genes, is extremely
fundamental with a specific end goal to analyze genomic
data. Gene expression data can be productively dissected with
network methods characterizing clusters of interconnected
genes [1], with edges capturing interactions at different levels.
Genetic interactions hypothesizes activities of biological
pathway, cellular response [2], acknowledging elements of
genes from their reliance on different genes [3], distinguishing
novel biomarkers [4] and more precise classification methods
[5]. The degree of interactions in the clusters are significantly
higher than an irregular network exhibiting indistinguishable
degree distribution [6]. Diverse statistical and bioinformatics
techniques can be applied directly to microarray data to
estimate networks of genetic interactions in different cellular
states or disease stages with a common motive to glean an edge
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among a pair of genes by considering a cue of association,
which is pivotal in different network reconstruction method
[7]. Associations in network can be classified into two:
Marginal associations that ignores the nearness of other genes
while estimating an edge between genes and conditional
associations that considers impact of nearness of other
genes while concluding an edge between genes. Focusing
on intramodular hubs instead of whole network hubs for
co-expression network applications leads to better results
of clinical significance [8] a key factors in a network
architecture [9], and are often strongly enriched in specific
functional categories or cell markers [10]. Empirical evidence
shows gene selection based on intramodular connectivity
leads to biologically more informative gene lists focusing
on the relationship between modules and the sample trait
[1], [11], [12], that prompts gene connectivity can be used
for identifying hubs and differentially connected genes [11],
[13], [14] for finding biological information embedded in
microarray data [13], [14]. Our comparative study includes
a comparison of three computational methods with publicly
available software, Weighted Gene Correlation Network
Analysis (WGCNA) [15], Algorithm for the Reconstruction of
Accurate Cellular Networks (ARACNE) [16], Graphical Lasso
(GLASSO) [17] for reconstruction of genetic networks with
undirected edges as it is not possible to estimate directed edges
with observational data alone [18]. Different computational
tools are implemented to a benchmark dataset to analyze
similarities and differences in estimated networks and their
performances in terms of intramodular hub genes. Finally,
the presence of cancer related genes and their influence in
specific cancer type using NCBI database and DAVID [19] has
been studied. The result provides a insight into the presence
of cancer-related genes in the hub gene modules found in
known biological networks [20] and also helps in selection
of most efficient network estimation method. The rest of the
paper includes detail of methods for network reconstruction,
proposed model, results analysis and discussion of our findings
for reconstructed genetic networks, and future research scope.

II. METHODS AND MATERIALS
A. Methods

WGCNA [15] is a genetic network reconstruction tool
based on marginal measure of correlation patterns among
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genes that incorporates functions for finding modules of highly
correlated genes. In WGCNA, gene significance and module
eigengene or intramodular hub gene based connectivity among
genes facilitate gene screening methods to identify candidate
biomarkers, and can be used to generate testable hypotheses
for validation in independent datasets [21]. WGCNA is
implemented using R software. ARACNE [16] is based on
removal of non-linear similarities among expression levels
for a pair of genes. The algorithm computes pair wise
mutual information MIij for each pair of genes i and j,
and applies DPI (Data Processing Inequality) as a pruning
step for removal of the false positive edges corresponding to
indirect interactions in the network. ARACNE is classified
as a method based on a blend of marginal and conditional
associations and is implemented using package minet [22]
in the Bioconductor. Graphical lasso (GLASSO) [17] is a
network estimation tool based on sparsity inducing penalties
i.e. lasso penalty assuming multivariate normality for random
variables [7]. GLASSO estimates inverse covariance matrix
by maximizing the l1- penalized log likelihood function to
construct a sparse graphs of conditional independence relations
among the genes. The tuning parameter ρ is a positive number
controlling the degree of sparsity. It is implemented with
package glasso in R.

B. Datasets

The prostate cancer microarray dataset for homo sapiens
consisting 104 samples and 20000 genes with 6 variants in
samples [20], is utilized in our study to show the effectiveness
of our proposed model, obtained from NCBIs Gene Expression
Omnibus (GEO). For the purpose of statistical analysis the
samples are categorized into two, 70 diseased samples and
34 normal samples. Biological dataset adopted for validation
collected from the NCBI gene database includes 7238 cancer-
related genes and 2202 prostate cancer genes.

C. Proposed Model

Block diagram in Fig 1, represents the schematic work flow
of the proposed hub genes selection model.

1) Data Preprocessing.: The methods are being imple-
mented in R software using different R packages. The
preprocessing of data includes cleaning of data by removal
of genes with large number of missing values. Hierarchical
clustering is performed for finding sample outliers in the
samples. Missing values of a gene are replaced with the
mean value of observed data. The genes are filtered based on
their variances across diseased and normal samples producing
100 samples and 14689 probes. Due to technical limitations
regarding memory allocation during GLASSO implementation
(System specification:12 GB RAM) we had to confined
the number of probes not more than 10000 for different
computational tool implementation.

Computational Tools Implementation.:

a) WGCNA.: Pearson correlation Sij is calculated for
the gene expression profile and are then transformed into
adjacency matrix by applying a power adjacency function
|Sij |β, where the exponent β is the power estimate to
obtain a scale-free topology [23]. Further co-expression values
are converted to the topology overlap measure (TOM), that
facilitates the identification of gene modules. The output of the
implementation showed 19 modules. Based on high module
membership and intra modular connectivity hub gene modules
are selected.

b) ARACNE.: Mutual information (MI) is evaluated
between each pair of genes and is taken as input to the aracne()
function for network estimation. The number of the edges
are controlled by thresholding the value of MI for each pair
of genes in the network. The output of the implementation
showed 1 module. For analysis and comparison with network
estimation from other tools, connectivity of each node is
considered.

c) GLASSO.: Covariance matrix is calculated between
each pair of genes and taken as input to glasso()
function to calculate an inverse covariance matrix for
network estimation. In our implementation we have opted
for two variations of GLASSO i.e. defining diagonal of
inverse covariance to be penalized or not. The output of
the implementation showed 1 module each for both the
variations of GLASSO implementation considering the module
constraint of minimum 25 genes, taken as standard in
WGCNA.

2) Extraction of Hub Gene Modules.: A hub gene module
with high intramodular connectivity can be considered as
a gene module with strongly interacting genes. Study
shows genes with higher module membership show higher
intramodular connectivity and are more biologically significant
[15]. A set of twenty top ranked genes are extracted from
each module to create hub gene modules for further analysis.
Integrated modules shows improved classification performance
in gene selection [20], so we have selected five top ranked
genes from individual hub gene module to construct a
integrated hub module.

3) Performance evaluation of selected hub genes.:
a) Statistical Analysis.: Predictive accuracy of the

hub genes are measured in terms of Matthews coefficient
correlation (MCC), as it is a measure of quality of binary
classification. [24], [25]. MCC, overall accuracy, sensitivity,
specificity, precision and f-measure are adopted for statistical
analysis in comparison to the known true classes [25].

MCC =
TP × TN − FP × FN√

(TP + FP )× (TP + FN)× (TN + FP )× (TN + FN)
(1)

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)
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Fig. 1. Steps for gene selection in proposed model

Precision =
TP

TP + FP
(5)

F −measure = 2× TP
2× TP + FP + FN

(6)

where TP is number of true-positive samples, TN is count for
true-negative samples, FP is number of false-positive samples
and FN is number of false-negative samples.

b) Enrichment Analysis.: The biological significance of
the selected hub genes are firstly validated with the percentage
of disease-related genes in them and secondly the results are
validated by summarizing the genes belonging to an enriched
functional category measured in terms of p-value [26] and fold
enrichment, of enriched attributes (EA) using DAVID [19].

III. RESULT AND DISCUSSION

In the paper we have performed three step evaluation of the
selected modules for the hub genes selection.
(i) Comparison of modules based on the graph density of hub
gene modules.
(ii) Effectiveness of selected hub gene modules are analyzed
in terms of prediction accuracy.
(iii) Biological significance is analyzed involving presence of
disease related genes and enriched attributes.
After applying the progression (ii) of our proposed model
for GCN construction utilizing distinctive computational
strategies, brought about 19 modules in WGCNA ,their genes
are ranked predicated on their intra modular connectivity.
An arrangement of twenty top positioned genes are extracted
from every module to extracted 19 hub gene modules for
further analysis, that tallies to cull of 439 genes. Assuming
integrated modules shows amended relegation performance in
gene glean [20], We have sorted out five top ranked genes
from individual hub gene module to contrive a integrated
hub module Hub5 with 125 genes. Hub genes and subset
of hub gene modules are constructed from the modules
estimated using ARACNE(A1-603 genes, A2-179 genes) and

GLASSO(for penalized diagonal false: F1-497 genes, F2-134
genes, for penalized diagonal true: T1-497 genes, T2-140
genes implementation, by considering the heterogeneity in
degree distribution for network estimates utilizing distinctive
computational tools and number of genes selected as hub
genes in WGCNA for individual and integrated modules
as standard. The distinct co-expressed gene modules and
integrated modules constructed using distinctive computational
strategies of our approach are designated as following: Bl
Black, B Blue, Br Brown, C Cyan, G Green, GY Green
Yellow, G60 Grey 60, LC Light Cyan, LG Light Green, LY
Light Yellow, M Magenta, MB Midnight Blue, P Pink, Pu
Purple, R Red, S Salmon, Tn Tan, T Turquoise, Y Yellow,
Hub5 are the co-expressed hub gene modules obtained using
WGCNA based network construction approach. A1, A2 are
the co-expressed hub gene modules obtained using ARACNE
based network construction approach and F1, F2, T1, T2 are
the co-expressed hub gene modules obtained using GLASSO
based network construction approach.

A. Graph Density Analysis
We surmise that the more precise and dense the gene

module, the higher the quality measure [20]. In Fig. 2 and
Fig. 3, we have summarized the results for all hub gene
modules from different computational tools in terms of graph
density (the ratio between number of edges and number of
nodes/genes) for prostate cancer dataset. After obtaining graph
density measure for different co-expressed hub gene module
from different computational tools, we filtered 6 different hub
gene modules in WGCNA (five individual modules and one
integrated hub gene module) for prostate dataset. As number
of modules in ARACNE and GLASSO implementation is very
less so all the hub gene modules are considered for the study.
The selected hub gene modules show comparatively high
graph density with respect to the intramodular connectivity.
Thus, these selected hub gene modules, are further considered
for statistical and biological analysis.
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Fig. 2. Graph density of Hub gene module for WGCNA

Fig. 3. Graph density of Hub gene module for ARACNE and GLASSO

B. Classification performance

Hub genes are high degree nodes that incline to play
a consequential role in the functional modules [27]. The
performance of the hub gene modules is evaluated in terms
of predictive accuracy as listed in Table 1 for prostate cancer
dataset . The kNN (k=3), Random Forest and SVM with
tenfold cross validation are applied as classifiers [20]. From
Table 1, we observed few hub gene modules in WGCNA
(Blue,Hub5) shows better results than of the individual hub
gene modules, for ARACNE (A1,A2) and for GLASSO (F1,
F2, T1, F1) the results are good.

C. Biological Significance analysis

The biological analysis of co-expressed hub gene modules
are based on the fol-lowing criteria:

1) Disease-related genes analysis.: Fig 4, illustrates the
efficacy of hub gene selection in terms of identifying
disease-related genes represented as the percentage of studied
cancer (prostate) related genes in each significant hub gene

module. It is been observed that the hub gene modules
with enhanced prediction accuracy have high fraction of
co-expressed cancer-related genes. They are being considered
as significant for further study for genes mostly related with
disease.

2) Analysis of enriched attributes associated with prostate
cancer hub gene module.: The biological significance is
evaluated in terms of percentage of genes related with specific
relevant biological process in each hub gene module and are
shown in Table 2 for prostate cancer data. The biological
significance of the genes belonging to an enriched functional
category can be measured in terms of p-value [26]. The results
are validated using p-value value cut-off of 5× 102 and fold
enrichment (FE) 1.5 [6], of enriched attributes/functions (EA)
in our study. Since DAVID gene ID is unique per gene, it is
more accurate to use DAVID ID to present the gene-annotation
association by removing any redundancy in user gene list.
Interestingly, Hub5, A1, F1, F2, T1, T2 shows relatively
large number of EAs satisfying the p-value and FE cut-off.
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TABLE I
BIOLOGICAL FUNCTIONAL ANALYSIS OF GENES IN HUB GENE MODULES IN TERMS OF ENRICHED ATTRIBUTE COUNT

M NG CL 3NN RF SVM

Sen Spec Prec Fm Mcc Acc Sen Spec Prec Fm Mcc Acc Sen Spec Prec Fm Mcc Acc

B 20 N 0.62 0.86 0.07 0.66 S0.50 0.78 0.56 0.97 0.91 0.69 0.62 0.83 0.35 1.00 1.00 0.52 0.51 0.78
P 0.86 0.62 0.81 0.84 0.50 0.97 0.56 0.81 0.88 0.62 1.00 0.35 0.75 0.86 0.51

Br 21 N 0.77 0.77 0.63 0.69 0.52 0.77 0.65 0.85 0.69 0.67 0.50 0.78 0.12 0.88 0.33 0.17 -0.01 0.62
P 0.77 0.77 0.86 0.82 0.52 0.85 0.65 0.82 0.84 0.50 0.88 0.12 0.66 0.75 -0.01

G 24 N 0.65 0.79 0.61 0.63 0.43 0.74 0.41 0.88 0.64 0.50 0.33 0.72 0.38 0.94 0.77 0.51 0.41 0.75
P 0.79 0.65 0.81 0.80 0.43 0.88 0.41 0.74 0.81 0.33 0.94 0.38 0.75 0.51 0.41

T 21 N 0.53 0.74 0.51 0.52 0.27 0.67 0.47 0.86 0.64 0.54 0.37 0.73 0.00 1.00 0.00 0.00 0.00 0.66
P 0.74 0.53 0.75 0.75 0.27 0.86 0.47 0.76 0.81 0.37 1.00 0.00 0.66 0.80 0.00

Y 22 N 0.47 0.79 0.53 0.50 0.27 0.68 0.35 0.94 0.75 0.48 0.38 0.74 0.03 0.99 0.50 0.06 0.05 0.66
P 0.79 0.47 0.74 0.77 0.27 0.94 0.35 0.74 0.83 0.38 0.99 0.03 0.66 0.79 0.05

Hub5 125 N 0.79 0.96 0.90 0.84 0.77 0.90 0.68 0.96 0.89 0.77 0.68 0.86 0.71 0.94 0.86 0.77 0.68 0.86
P 0.96 0.79 0.90 0.93 0.77 0.96 0.68 0.85 0.90 0.68 0.94 0.71 0.86 0.90 0.68

A1 603 N 0.91 0.86 0.78 0.84 0.75 0.88 0.68 0.99 0.96 0.79 0.73 0.88 0.59 0.97 0.91 0.71 0.64 0.84
P 0.86 0.91 0.95 0.91 0.75 0.99 0.68 0.86 0.92 0.73 0.97 0.59 0.82 0.89 0.64

A2 179 N 0.85 0.85 0.74 0.80 0.68 0.85 0.62 0.94 0.84 0.71 0.61 0.83 0.53 0.97 0.90 0.67 0.59 0.82
P 0.85 0.85 0.92 0.88 0.68 0.94 0.62 0.83 0.88 0.61 0.97 0.53 0.80 0.88 0.59

F1 497 N 0.91 0.92 0.86 0.89 0.83 0.92 0.74 0.97 0.93 0.82 0.75 0.89 0.71 0.97 0.92 0.80 0.73 0.88
P 0.92 0.91 0.95 0.94 0.83 0.97 0.74 0.88 0.92 0.75 0.71 0.71 0.87 0.91 0.73

F2 134 N 0.91 0.91 0.84 0.87 0.81 0.91 0.79 0.97 0.93 0.86 0.80 0.91 0.82 0.96 0.90 0.86 0.80 0.91
P 0.91 0.91 0.95 0.93 0.81 0.97 0.79 0.90 0.93 0.80 0.96 0.82 0.91 0.93 0.80

T1 497 N 0.91 0.92 0.86 0.89 0.83 0.92 0.74 0.97 0.93 0.82 0.75 0.89 0.71 0.97 0.92 0.80 0.73 0.88
P 0.92 0.91 0.95 0.94 0.83 0.97 0.74 0.88 0.92 0.75 0.97 0.71 0.87 0.91 0.73

T2 140 N 0.91 0.91 0.84 0.87 0.81 0.91 0.82 0.97 0.93 0.88 0.82 0.92 0.79 0.97 0.93 0.86 0.80 0.91
P 0.91 0.91 0.95 0.93 0.81 0.97 0.82 0.91 0.94 0.82 0.97 0.79 0.90 0.93 0.80

Bold hub gene module specifies the hub gene modules showing comparable good predictive accuracy
measures. NG number of genes, Cl Class label, 3NN 3 nearest neighbors, RF random forest, SVM
support vector machine, Sen sensitivity, Spec specificity, Prec precision, Fm F-measure, Mcc Matthews
correlation coefficient; Acc prediction accuracy, N negative (normal) sample, P positive (prostate cancer)
sample

Fig. 4. Biological significance study of the hub gene modules in terms of the presence of disease-related genes for prostate cancer dataset in WGCNA,
ARACNE and GLASSO. NG number of genes in hub gene module, NCG number of Cancer genes in hub gene module, NPG number of Prostate Cancer
genes in hub gene module
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Few of the biological functions more related to the disease
are also found enriched in the modules. These processes
mainly include transcription, translation and RNA binding that
plays an important role in protein regulation. Acetylation and
phosphoproteins are known to play a vital role in genetics
modification that occurs in cancer.The dysregulation of cell
cycle, spliceosome and focal adhesion plays pivotal role in
cancer metastasis. Regulation of apoptosis, UBL conjugation
are important parts of programmed cell death and have
significant change in cancer progression [20].

IV. CONCLUSION

The advantage of focusing on intramodular hub genes
instead of whole network of co-expressed genes leads to better
selection of biologically enriched and statically significant
biomarkers. The study shows the comparison of gene selection
using three widely used standard computational tools. We
have evaluated the selected hub gene modules for three
different benchmark methods based on their graph density,
predic-tion accuracy and presence of enriched attributes.
Considering graph density as meas-ure, modules formed in
WGCNA are more dense than modules estimated from other
tools. The statistical analysis of selected modules based on
graph density shows, modules in ARACNE, GLASSO and
integrated module in WGCNA have compara-tively similar
class performance and outperforming the individual modules
in WGCNA showing moderate accuracy. The modules in
GLASSO are biologically more significant with respect to
presence of enriched attributes than the modules in ARACNE
and WGCNA. All the standard computational methods used in
the study are showing similar performance, at the same time
GLASSO and ARACNE are show-ing more computational
complexity based on size of the modules created. The hub
gene selected using different computational tools may further
be provided to different known networks which may provide
greater insights into the fundamental biology and pathogenesis
of the disease.
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TABLE II
BIOLOGICAL FUNCTIONAL ANALYSIS OF GENES IN HUB GENE MODULES IN TERMS OF ENRICHED ATTRIBUTE COUNT

CM Modules NG DC No of EA

WGCNA B 20 15 14
Br 21 18 1
G 24 19 10
T 21 13 1
Y 22 9 1
Hub5 125 88 120

ARACNE A1 603 421 219
ARACNE A2 179 126 53
GLASSO F1 497 367 580
GLASSO F2 134 103 369
GLASSO T1 497 367 580
GLASSO T2 140 108 340

Computational method, NG number of genes, DC DAVID ID count EA enriched attribute
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