

Abstract—Hierarchical softmax is widely used to accelerate the

training speed of neural language models and word embedding

models. Traditionally, people believed that the hierarchical tree of

words should be organized by the semantic meaning of words.

However, Mikolov et al. showed that high quality word

embeddings can also be trained by simply using the Huffman tree

of words. To our knowledge, no work gives a theoretic analysis on

how we should organize the hierarchical tree. In this paper, we try

to answer this question theoretically by treating the tree structure

as a parameter of the training objective function. As a result, we

can show that the Huffman tree maximizes the (augmented)

training function when word embeddings are random. Following

this, we propose SemHuff, a new tree constructing scheme based on

adjusting the Huffman tree with word similarity knowledge.

Experiment results show that word embeddings trained with

optimized hierarchical tree can give better results in various tasks.

Index Terms—Hierarchical Softmax, Word Embedding, Word

Similarity Knowledge

I. INTRODUCTION

Raditionally, words are treated as distinct symbols in

NLP tasks. This treating has limitations especially when it

is used with n-gram models. For example, if the size of the

vocabulary is |V|, an n-gram language model will have O(|V|n)

parameters. The curse of dimensions in the number of

parameters leads to great difficulties on learning and smoothing

the model. More advanced methods were proposed to address

this problem. Word embedding, also known as distributed

representations or word vectors, is among one of them. The key

idea is to exploit the similarity between words. Word

embedding maps words to vectors of real numbers in a low

dimensional space. Similar words are mapped to close vectors

while dissimilar words are mapped to vectors with longer

distance. For example, the word cat may be mapped to (0.8, 0.7,

), and dog may be mapped to (0.75, 0.77,), while the

Manuscript received June 25, 2016.

Junfeng Hu is the corresponding author. (phone: 86-10-62765835 ext 103;

fax: 86-10-62765835 ext 101; e-mail: hujf@pku.edu.cn)

Zhixuan Yang and Caihua Li are with the School of Electronics Engineering

and Computer Science, Peking University, Beijing, 100871, P. R. China.

(e-mail: {yangzx95, peterli}@pku.edu.cn).

Chong Ruan and Junfeng Hu are with Key Laboratory of Computational

Linguistics, Ministry of Education, Institute of Computational Linguistics,

School of Electronics Engineering and Computer Science, Peking University,

P. R. China. (e-mail: {pkurc, hujf}@pku.edu.cn).

word Paris may be mapped to (-0.5, -0.9,).

Bengio et al. [1] proposed a neural language model that uses

word embeddings as input features of the language model. The

model also treats word embeddings as unknown parameters and

learns them from data just like other parameters in the neural

network. Such neural network methods were further improved

in both efficiency and accuracy by many researchers in the past

decade such as the log-bilinear model by Mnih & Hinton [14]

and the skip-gram model by Mikolov et al. [11]. More efficient

training algorithms were also introduced, including hierarchical

softmax by Morin and Bengio [16], NCE (noise contrastive

estimation) [4] [13], and negative sampling by Mikolov et al.

[10], which is a further simplification of NCE. Simpler models

and more efficient training algorithms allow learning accurate

word embeddings from large-scale corpus.

People used to believed that the hierarchical tree used in

hierarchical softmax should organize words by the semantic

meaning of words. For example, Morin & Bengio [16] extracted

the tree from the IS-A taxonomy in WordNet [12] and Mnih &

Hinton [15] constructed the tree by repeatedly clustering word

embeddings into a binary tree. However, Mikolov et al. showed

that high quality word embeddings could also be learned by

simply using the Huffman tree. To our knowledge, no work has

given a theoretical analysis on how we should organize the

hierarchical tree. Inspired by the analysis performed by Levy

and Goldberg [9], we try to answer this question by treating the

tree structure as a parameter of the training objective function.

Following this, we show that the Huffman tree can maximize the

augmented objective function when word embeddings are

random. We can also explain more clearly why semantic related

words should be placed together in the hierarchical softmax

tree. Following the theoretical analysis, we propose SemHuff, a

new hierarchical softmax tree constructing scheme based on

adjusting the Huffman tree by rearranging nodes in same level.

Our experiments show that SemHuff can improve the Huffman

tree in all tasks and hierarchical softmax can outperform

negative sampling in some situations.

The rest of this paper is organized in the following way:

Section 2 analyzes hierarchical softmax by treating the tree

structure as a parameter. Section 3 proposes SemHuff, our new

tree constructing scheme. Section 4 presents our experiment

results, which compares the negative sampling and the

hierarchical softmax with different tree constructing schemes.

This work is supported by the National Natural Science Foundation of

China. (grant No. M1321005, 61472017).

Optimize Hierarchical Softmax with Word

Similarity Knowledge

Zhixuan Yang, Chong Ruan, Caihua Li, and Junfeng Hu

T

11 POLIBITS, vol. 55, 2017, pp. 11–16https://doi.org/10.17562/PB-55-2

IMPORTANT: This is a pre-print version as provided by the authors, not yet processed by the journal staff. This file will be replaced when formatting is finished.

IS
S

N
 2395-8618

mailto:hujf@pku.edu.cn

In the end, section 5 concludes this paper.

II. ANALYSIS

A. Why Huffman Tree Works?

The skip-gram model predicts the probability over all words

given one word in its context. The training objective function is

the log likelihood:

Corpusw wctx

ij

i

wwpL
i j)(w

)|(log

A linear classifier with |V| outputs is used to predict the

conditional probability p(wj|wi). In order to avoid an output

layer with |V| outputs, which is very computationally expensive,

hierarchical softmax organizes all words as a binary tree. Then,

the conditional probability p(wj|wi) of wj is decomposed as the

product of probabilities of going from the root of the tree to the

leaf node representing wj. When skip-gram is used with

hierarchical softmax, the objective function can be written as:

Corpusw wctx wpath

ij

i j

wnnwdpL
i j)(w)(n

),|),((log

where path(wj) is the set of internal nodes on the path from

the root of the tree to the leaf node representing wj. And d

(abbreviation for direction) is defined as:

nw

nw
nwd

j

j

j
 of subtree left the in is,1

 of subtree left the in is,0
),(

The above objective function sums over every word and its

context words in the corpus. We can group the summation by

(wi, wj) pairs so that the equation can be written as:

Vw V wpath

ijji

j

wnnwdpwwL
i jw)(n

),|),((log),(#

where #(wi, wj) is the total number of observed (wi, wj) pairs in

the corpus. We can divide the equation by the total number of all

observed pairs, so that the count can be treated as probability:

Vw V wpath

ijji

j

wnnwdpwwpL
i jw)(n

),|),((log),((1)

Then we change the order of the summations:

Vw wpathn Vw

ijjij

j i

wnnwdpwwpwpL
j)(

),|),((log)|()(

where p(wi|wj) = p(wi, wj) / p(wj) is the conditional probability of

wi occurs in the context of wj. When hierarchical softmax is used

with the skip-gram model, p(d(wj, n)| n, wi) is computed by a

logistic regression:

0),(for),(1

1),(for),(
),|),((

nwdwn

nwdwn
wnnwdp

ji
T

ji
T

ij

If word embeddings and classifier weights are independently

random initialized from a uniform distribution with zero mean,

the expectation of p(d(wj, n)| n, wi) is 1/2. And the expectation of

L with respect to word embeddings is:

Vw wpathn Vw

jij

j i

wwpwpLE
j)(

)1)(|()(][

Since p(wi|wj) is a distribution, it sums to 1:

Vw wpathn Vw

jjj

j j

wpathwpwpLE
j)(

|)(|)()1()(][

This is also the objective function of the Huffman tree.

From this result, we can see why the idea of using Huffman

tree as the hierarchical softmax tree works in practice, since it

maximizes the objective function when word embeddings are

random. It also points out the structure of the hierarchical tree

should consider the frequency of the words besides the meaning

of the words.

B. Why Similar Words Should Be Placed Together?

The motivation of placing similar words in nearby positions

in the tree is straightforward: the training samples for the

classifier in each internal node will be more separable because

similar words will have similar contexts by the distributional

hypothesis of Harris [5]. We can explain this idea more clearly

from the perspective of the training objective functions. It will

also show some connections between the hierarchical softmax

and decision trees.

In the training objective function (1), we can sums over all

internal nodes first:

n Vww

ijji

j

wnnwdpwwpL
,i

),|),((log),(

If we assume the classifier in node n is perfectly trained, its

estimation of the probability of going to the left subtree when

the input word is wi should be the ratio of training samples

leading wi to left, that is:

0),(..

)|(),|0(

nwdts
w

iji

j

j

wwpwndp

Hence an upper bound of the log-likelihood is:

 n

ni
n w k

i WdnwkdpnwkdpL
i

]|[H),|(log)|,(
}1,0{

where Hn[d | W] is the conditional entropy between the direction

d and the word embedding W treated as a random variable, at

internal node n. If we adopt a top-down splitting tree

constructing scheme like the decision tree, the dividing criteria

should be the conditional entropy. If we want to minimize the

conditional entropy, placing words with similar contexts in the

same subtree is likely to reduce the entropy.

III. SEMHUFF

In this section, we propose our hierarchical tree constructing

scheme: SemHuff. Noticed that if we rearrange the nodes or

subtrees of a Huffman tree within the same level, the resulting

tree remains a Huffman tree, since all leaves keep their original

depths unchanged. So our strategy is to rearrange nodes in the

same level so that similar words can be placed together in the

Huffman tree.

A. Description

Assuming we already have word similarity knowledge: Sij is

the similarity between word wi and wj. We generate an arbitrary

Huffman tree from the corpus first. Then we adopt a bottom-up

adjusting strategy: (1) from the bottom level to the top level, for

level i, we calculate the similarity between all subtrees. The

12POLIBITS, vol. 55, 2017, pp. 11–16 https://doi.org/10.17562/PB-55-2

Zhixuan Yang, Chong Ruan, Caihua Li, Junfeng Hu

IMPORTANT: This is a pre-print version as provided by the authors, not yet processed by the journal staff. This file will be replaced when formatting is finished.

IS
S

N
 2395-8618

similarity of two subtrees is defined as the average similarity

between theirs leaves (i.e. words). (2) Then we apply the

weighted maximum matching algorithm to the similarity graph

of subtrees. (3) Now, we rearrange these subtrees in level i

according to the matching results. Matched subtrees are

organized as siblings and subtrees without matching are paired

arbitrarily. (4) go back to step (1) for level i-1 The algorithm is

described by pseudo code in Figure 1.

The word similarity knowledge can be extracted from

different kinds of language resources like WordNet [12] and

PPDB [2] for the English language. For the Chinese language,

we extract the similarity knowledge from the ontology

generated by He et al. [6] in our experiments. The word

similarity knowledge used by SemHuff is not limited to use

external prior knowledge. It is also possible to use the word

embeddings being trained by a bootstrapping process similar to

Mnih and Hinton [15].

B. Demonstration

To illustrate our algorithm more clearly, a hand-crafted demo

is provided for further investigation. We choose only 6 words

and set the corresponding similarity matrix intuitively. Then the

adjusting procedure is presented in Figure 2.

In the first step, we consider all possible matches among the

leaves, cat, dog, tree, grass and find out the best match is

obviously <cat, dog> and <tree, grass>, so cat and dog are set as

siblings and so are tree and grass. When it comes to the

penultimate layer, the four nodes/subtrees to be matched are

plant, {dog, cat}, animal, {tree, grass}. In this layer, the best

matches are <animal, {dog, cat}> and <plant, {tree, grass}>.

Now we see that all similar words are grouped together. After

this step, adjusting procedure stops, because no upper layer has

more than two nodes.

C. Implementation Details

Our implementation of SemHuff is modified from the original

word2vec package. In our program, we use the highly efficient

Blossom V package written by Kolmogorov & Vladimir [7] to

perform weighted maximum matching. However, it's not

practical to find the exact weighted maximum matching of a

dense graph which has tens of thousands vertices and about a

billion edges, since the complexity of the matching algorithm is

O(|E||V|3). As a result, some approximation is made: for each

word, we only keep its 30 most similar words and thus speed up

the computation. With this method, adjusting can be done in less

than 20 minutes for a Huffman tree of 80k leaves and 24 layers

on a typical workstation.

We'd like to show a snippet of the adjusted Huffman tree in

Figure 3. We see that similar words have been put together and

it demonstrates the effectiveness of our adjusting algorithm.

IV. EXPERIMENTS

We conduct experiments to compare the performance of

different hierarchical tree structures. Following Lai et al. [8], we

evaluate word embeddings by tasks from two perspectives:

semantic properties of word embeddings and using word

embeddings as features for downstream NLP applications.

Our experiments were conducted on the Chinese language.

function SemHuff(Corpus, S)

T ← GenerateHuffmanTree(Corpus)

for d from Depth(T) down to 1 do

 N ← {s | subtree s in level d of T}

for i in N and j in N do

d
jiS ,
←Average({Su,v |wu∈i and wv∈j})

end for

matching ← WeightedMaximumMatching(N, Sd)

for i∈N do

if i is matched then

 rearrange i and its match as siblings in level d of T

else

 randomly pick another unmatched subtree as its sibling

end if

end for

end for

return T

end function

Fig. 1. The pseudo code of SemHuff. The function takes the corpus

and a similarity measure S between words as input and returns the

adjusted Huffman tree.

Fig. 2. Top: Huffman tree generated from corpus. Middle:

Huffman tree after adjusted the bottom layer. Bottom: the

final Huffman tree.

13 POLIBITS, vol. 55, 2017, pp. 11–16https://doi.org/10.17562/PB-55-2

Optimize Hierarchical Softmax with Word Similarity Knowledge

IMPORTANT: This is a pre-print version as provided by the authors, not yet processed by the journal staff. This file will be replaced when formatting is finished.

IS
S

N
 2395-8618

The training corpus used is Xinhua News [3] of two years: 1997

and 2004. There are about 50 million tokens in the corpus and

80 thousand words occurring at least 5 times.

The following models are compared in our experiments:

a) HS-Huffman: hierarchical softmax with Huffman tree.

b) HS-SemHuff: hierarchical softmax with SemHuff. The

similarity knowledge used is the ontology generated

by the hierarchical clustering algorithm by He et al.

[6].

c) NS: negative sampling with 7 negative samples.

All models are used with skip-gram and run 20 iterations over

the entire corpus. The subsampling rate is set to 10-5.

A. Word Similarity Task

We extract 3020 pairs of synonyms from Tongyici Cilin

(available at http://ir.hit.edu.cn/demo/ltp/Sharing_Plan.htm),

which is a manually built Chinese thesaurus. Tongyici Cilin

comprises sets of Chinese synonyms. The synonym pairs are

chosen from synonym sets whose size is not greater than 10,

because large synonym set in Tongyici Cilin tends to be

inconsistent.

For each extracted synonym pair <A, B>, we measure the

rank of B in a set of candidate words by the distance of its word

embedding to the word embedding of A. The mean rank (MR)

and mean reciprocal rank (MRR) is used to evaluate the quality

of learned word embeddings. For MR, lower is better; while for

MRR, higher is better. The result for different models in

different settings is showed in Figure 4 and Figure 5.

The MR and MRR give consistent evaluation: NS >

HS-SemHuff > HS-Huffman. Though, the MR value of several

hundred is somehow counterintuitive. After investigation, the

reason can be explained as follows. Only one word embedding

is learned for a certain word, while it is always the case that one

word has multiple meanings and usages. Take 团长 and 参谋长

for an example, 参谋长 means "a chief of staff in an army'',

while 团长 have many meanings. One of its meanings is "a

regimental commander'', which is used in the context of military

affairs, so it may co-occur with 参谋长 frequently. Besides, 团

长 can also be used to refer to the head of a delegation, a circus

troupe, an opera troupe, and many other groups. This

asymmetry in word usage leads to the following phenomenon:

for the word 参谋长, 团长 is its close neighbor, because 参谋

长 is only used in military topics and 团长 is also salient in this

context. But when we stand in the view of 团长, 参谋长 is not

similar to 团长, because many other words such as 演员(actor),

代表(representative) will occupy the vicinity of 团长, and 参谋

长 will get a rank worse than 1000. If we average a small

number and a large number, say 10 and 1000, the result will be

several hundred. What's more, the training corpus and the

testing word pairs are not exactly in-domain, which contributes

to this large rank, too.

B. Analogy Task

Our second evaluation method is the analogy task. If the

relation between word A and B is similar to the relation between

C and D, then vector(A) - vector(B) ≈ vector(C) - vector(D).

Since we use Xinhua News as training data, information about

Chinese cities and provinces should be attained. Thus, we

choose 20 pairs of <provincial capital city>:<province> to

Fig. 3. Top: Huffman tree generated from corpus. Bottom:

Huffman tree after adjustment.

Itera tion

0 5 10 15 20

Huff-w5

Huff-w9

NS-w5

NS-w9

SemHuff-w5

SemHuff-w9

Legend

0.02

0.03

0.04

0.05

0.06

0.07

M
R

R

Dimension 50

Itera tion

0 5 10 15 20

Huff-w5

Huff-w9

NS-w5

NS-w9

SemHuff-w5

SemHuff-w9

Legend

0.03

0.04

0.05

0.06

0.07

M
R

R

Dimension 200

Fig. 4. Word similarity test results measured by MRR(mean

reciprocal rank). The x-axis is the number of iterations over

corpus during the training of the word embedding. The first

row presents results for 50-dimensional vectors, while the

second row is for 200-dimensional vectors.

14POLIBITS, vol. 55, 2017, pp. 11–16 https://doi.org/10.17562/PB-55-2

Zhixuan Yang, Chong Ruan, Caihua Li, Junfeng Hu

IMPORTANT: This is a pre-print version as provided by the authors, not yet processed by the journal staff. This file will be replaced when formatting is finished.

IS
S

N
 2395-8618

http://ir.hit.edu.cn/demo/ltp/Sharing_Plan.htm

generate 202 = 400 analogy problems. In each problem, a

city-province pair, say A and A', and another city, say B, are

given, while the province whose capital city is B is unknown.

Then, we search the word X from the whole vocabulary to fill in

the blank such that the analogy identity vector(city A) –

vector(province A') = vector(city B) – vector(X) is fitted as well

as possible.

All models were trained for 20 iterations and the test is

performed after every iteration. The best result for each model is

showed in Table 1. The result is encouraging: word embeddings

always give some province as the answer although we search for

the word X among all words in the vocabulary. A precision of

75% can be achieved with our SemHuff model.

From these results, we see that NS is powerful for dimension

50 but is surpassed by hierarchical softmax models in the high

dimensional case. Our HS-SemHuff model improves

HS-Huffman significantly in the 50-dimensional case, and it

outperforms HS-Huffman in every experimental setting, and

gives the best result for dimension 200.

C. POS Tagging Task

The third task is using word embeddings as features for POS

tagging. In this task, we use a very simple POS tagger: for a

word w, we concatenate the word embeddings of words in the

context windows of w as features.

And a linear softmax classifier is trained on these features.

This simple model is used because we think simpler models can

better reflect the quality of input features. The results are

showed in Figure 6.

In this task, NS performs better. As for two hierarchical

softmax models, our HS-SemHuff is comparable with

HS-Huffman in the low dimensional case and gives better

results for dimension 200.

Itera tion

0 5 10 15 20

Huff-w5

Huff-w9

NS-w5

NS-w9

SemHuff-w5

SemHuff-w9

Legend

800

900

1000

1100

1200

1300

M
R

Dimension 50

Itera tion

0 5 10 15 20

Huff-w5

Huff-w9

NS-w5

NS-w9

SemHuff-w5

SemHuff-w9

Legend

800

900

1000

1100

1200

1300

1400

M
R

Dimension 200

Fig. 5. Word similarity test results measured by MR(mean

rank). The x-axis is the number of iterations over corpus

during the training of the word embedding. The first row

presents results for 50-dimensional vectors, while the second

row is for 200-dimensional vectors.

TABLE I

ANALOGY TEST RESULTS

Model Name
Context

Window Size
Word Vector

Dimension

of Correct

Predictions

Huff 5 50 143

NS 5 50 235

SemHuff 5 50 217

Huff 9 50 161

NS 9 50 254

SemHuff 9 50 220

Huff 5 200 267

NS 5 200 194

SemHuff 5 200 280

Huff 9 200 294

NS 9 200 268

SemHuff 9 200 300

Itera tion

0 5 10 15 20

Huff-w5

Huff-w9

NS-w5

NS-w9

SemHuff-w5

SemHuff-w9

Legend

0.60

0.65

0.70

0.75

P
O

S
 A

c
c
u

rarc
y

Dimension 50

Itera tion

0 5 10 15 20

Huff-w5

Huff-w9

NS-w5

NS-w9

SemHuff-w5

SemHuff-w9

Legend

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

P
O

S
 A

c
c
u

rarc
y

Dimension 200

Fig. 6. POS tagging test results. The y-axis is the accuracy of

the resulting POS tagger. The x-axis is the number of

iterations over corpus during the training of word

embeddings.

15 POLIBITS, vol. 55, 2017, pp. 11–16https://doi.org/10.17562/PB-55-2

Optimize Hierarchical Softmax with Word Similarity Knowledge

IMPORTANT: This is a pre-print version as provided by the authors, not yet processed by the journal staff. This file will be replaced when formatting is finished.

IS
S

N
 2395-8618

V. CONCLUSION

In this paper, we seek to give some theoretical analysis on the

widely used hierarchical softmax algorithm. By treating the tree

structure as a parameter of the training objective function, we

show that the reason why the common practice of using the

Huffman tree works well is that the Huffman tree maximizes the

objective function when word embeddings are random. We also

show that the dividing criterion is the conditional entropy if we

adopt a top-down splitting tree constructing scheme. Following

the theoretical analysis, we propose SemHuff, a tree

constructing scheme based on adjusting the Huffman tree. From

the experiments, we show that negative sampling performs well

in most tasks while hierarchical softmax performs better in high

dimensional analogy task. And SemHuff further improves the

original hierarchical softmax algorithm in all of our tasks.

In fact, a more natural idea is to directly optimize the training

objective function with respect to the tree structure instead of

adjusting a Huffman tree. However, the optimization over the

space of all binary trees seems hard. We think some

approximation or relaxation is necessary to solve this

optimization problem. We leave this as future work for this

research.

REFERENCES

[1] Yoshua Bengio et al., “A Neural Probabilistic Language Model,” in:

The Journal of Machine Learning Research 3 (2003), pp. 1137–1155.

[2] Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch, “

PPDB: The Paraphrase Database,” in: Proc. of NAACL-HLT, Atlanta,

Georgia: Association for Computational Linguistics, June 2013, pp. 758

–764.

[3] David Graff and Ke Chen, “Chinese Gigaword,” in: LDC Catalog No.:

LDC2003T09, ISBN 1, 2005, pp. 58563–58230.

[4] M Gutmann and A Hyvärinen, “Noise-contrastive estimation: A new

estimation principle for unnormalized statistical models, ” in:

International Conference on Artificial Intelligence and Statistics, 2010,

pp. 1–8.

[5] Zellig S Harris, “Distributional structure,” in: Word 10.2-3 (1954), pp.

146–162.

[6] Shaoda He et al., “Construction of Diachronic Ontologies from People’s

Daily of Fifty Years,” in: Proc. of the Ninth International Conference

on Language Resources and Evaluation, Edited by Nicoletta Calzolari

(Conference Chair) et al. Reykjavik, Iceland: European Language

Resources Association (ELRA), May 2014.

[7] Vladimir Kolmogorov, “Blossom V: A new implementation of a

minimum cost perfect matching algorithm, ” in: Mathematical

Programming Computation 1.1, 2009, pp. 43–67.

[8] Siwei Lai et al., 2015.“How to Generate a Good Word Embedding?.”

Available: http://arxiv.org/abs/1507.05523

[9] Omer Levy and Yoav Goldberg, “Neural Word Embedding as Implicit

Matrix Factorization,” in: NIPS, 2014, pp. 1–9.

[10] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig, “Linguistic

regularities in continuous space word representations,” in: Proc. of

NAACL-HLT, June. 2013, pp. 746–751.

[11] Tomas Mikolov et al., “Efficient Estimation of Word Representations in

Vector Space,” in: Proc. of the International Conference on Learning

Representations, 2013, pp. 1–12.

[12] George A Miller, “WordNet: a lexical database for English,” in:

Communications of the ACM 38.11, 1995, pp. 39–41.

[13] Andriy Mnih, “Learning word embeddings efficiently with

noise-contrastive estimation,” in: NIPS, 2013, pp. 1–9.

[14] Andriy Mnih and Geoffrey Hinton, “Three new graphical models for

statistical language modelling,” in: Proc. of the 24th international

conference on Machine learning, 2007, pp. 641–648.

[15] Andriy Mnih and Geoffrey E Hinton, “A Scalable Hierarchical

Distributed Language Model,” in: NIPS, 2008, pp. 1081–1088.

[16] Frederic Morin and Y Bengio, “Hierarchical probabilistic neural network

language model,” in: Proc. of the Tenth International Workshop on

Artificial Intelligence and Statistics, 2005, pp. 246–252.

16POLIBITS, vol. 55, 2017, pp. 11–16 https://doi.org/10.17562/PB-55-2

Zhixuan Yang, Chong Ruan, Caihua Li, Junfeng Hu

IMPORTANT: This is a pre-print version as provided by the authors, not yet processed by the journal staff. This file will be replaced when formatting is finished.

IS
S

N
 2395-8618

http://arxiv.org/abs/1507.05523

