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Abstract—Hierarchical softmax is widely used to accelerate the 

training speed of neural language models and word embedding 

models. Traditionally, people believed that the hierarchical tree of 

words should be organized by the semantic meaning of words. 

However, Mikolov et al. showed that high quality word 

embeddings can also be trained by simply using the Huffman tree 

of words. To our knowledge, no work gives a theoretic analysis on 

how we should organize the hierarchical tree. In this paper, we try 

to answer this question theoretically by treating the tree structure 

as a parameter of the training objective function. As a result, we 

can show that the Huffman tree maximizes the (augmented) 

training function when word embeddings are random. Following 

this, we propose SemHuff, a new tree constructing scheme based on 

adjusting the Huffman tree with word similarity knowledge. 

Experiment results show that word embeddings trained with 

optimized hierarchical tree can give better results in various tasks. 

 
Index Terms—Hierarchical Softmax, Word Embedding, Word 

Similarity Knowledge 

 

I. INTRODUCTION 

Raditionally, words are treated as distinct symbols in 

NLP tasks. This treating has limitations especially when it 

is used with n-gram models. For example, if the size of the 

vocabulary is |V|, an n-gram language model will have O(|V|n) 

parameters. The curse of dimensions in the number of 

parameters leads to great difficulties on learning and smoothing 

the model. More advanced methods were proposed to address 

this problem. Word embedding, also known as distributed 

representations or word vectors, is among one of them. The key 

idea is to exploit the similarity between words. Word 

embedding maps words to vectors of real numbers in a low 

dimensional space. Similar words are mapped to close vectors 

while dissimilar words are mapped to vectors with longer 

distance. For example, the word cat may be mapped to (0.8, 0.7, 

), and dog may be mapped to (0.75, 0.77, ), while the 
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word Paris may be mapped to (-0.5, -0.9, ). 

Bengio et al. [1] proposed a neural language model that uses 

word embeddings as input features of the language model. The 

model also treats word embeddings as unknown parameters and 

learns them from data just like other parameters in the neural 

network. Such neural network methods were further improved 

in both efficiency and accuracy by many researchers in the past 

decade such as the log-bilinear model by Mnih & Hinton [14] 

and the skip-gram model by Mikolov et al. [11]. More efficient 

training algorithms were also introduced, including hierarchical 

softmax by Morin and Bengio [16], NCE (noise contrastive 

estimation) [4] [13], and negative sampling by Mikolov et al. 

[10], which is a further simplification of NCE. Simpler models 

and more efficient training algorithms allow learning accurate 

word embeddings from large-scale corpus. 

People used to believed that the hierarchical tree used in  

hierarchical softmax should organize words by the semantic 

meaning of words. For example, Morin & Bengio [16] extracted 

the tree from the IS-A taxonomy in WordNet [12] and Mnih & 

Hinton [15] constructed the tree by repeatedly clustering word 

embeddings into a binary tree. However, Mikolov et al. showed 

that high quality word embeddings could also be learned by 

simply using the Huffman tree. To our knowledge, no work has 

given a theoretical analysis on how we should organize the 

hierarchical tree. Inspired by the analysis performed by Levy 

and Goldberg [9], we try to answer this question by treating the 

tree structure as a parameter of the training objective function. 

Following this, we show that the Huffman tree can maximize the 

augmented objective function when word embeddings are 

random. We can also explain more clearly why semantic related 

words should be placed together in the hierarchical softmax 

tree. Following the theoretical analysis, we propose SemHuff, a 

new hierarchical softmax tree constructing scheme based on 

adjusting the Huffman tree by rearranging nodes in same level. 

Our experiments show that SemHuff can improve the Huffman 

tree in all tasks and hierarchical softmax can outperform 

negative sampling in some situations. 

The rest of this paper is organized in the following way:  

Section 2 analyzes hierarchical softmax by treating the tree 

structure as a parameter. Section 3 proposes SemHuff, our new 

tree constructing scheme. Section 4 presents our experiment 

results, which compares the negative sampling and the 

hierarchical softmax with different tree constructing schemes. 
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In the end, section 5 concludes this paper. 

II. ANALYSIS 

A. Why Huffman Tree Works? 

The skip-gram model predicts the probability over all words 

given one word in its context. The training objective function is 

the log likelihood: 
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A linear classifier with |V| outputs is used to predict the 

conditional probability p(wj|wi). In order to avoid an output 

layer with |V| outputs, which is very computationally expensive, 

hierarchical softmax organizes all words as a binary tree. Then, 

the conditional probability p(wj|wi) of wj is decomposed as the 

product of probabilities of going from the root of the tree to the 

leaf node representing wj. When skip-gram is used with 

hierarchical softmax, the objective function can be written as: 
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where path(wj) is the set of internal nodes on the path from 

the root of the tree to the leaf node representing wj. And d  

(abbreviation for direction) is defined as: 
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The above objective function sums over every word and its 

context words in the corpus. We can group the summation by 

(wi, wj) pairs so that the equation can be written as: 
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where #(wi, wj) is the total number of observed (wi, wj) pairs in 

the corpus. We can divide the equation by the total number of all 

observed pairs, so that the count can be treated as probability: 
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Then we change the order of the summations: 
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where p(wi|wj) = p(wi, wj) / p(wj) is the conditional probability of 

wi occurs in the context of wj. When hierarchical softmax is used 

with the skip-gram model, p(d(wj, n)| n, wi) is computed by a 

logistic regression: 
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If word embeddings and classifier weights are independently 

random initialized from a uniform distribution with zero mean, 

the expectation of p(d(wj, n)| n, wi) is 1/2. And the expectation of 

L with respect to word embeddings is: 
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Since p(wi|wj) is a distribution, it sums to 1: 
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This is also the objective function of the Huffman tree. 

From this result, we can see why the idea of using Huffman 

tree as the hierarchical softmax tree works in practice, since it 

maximizes the objective function when word embeddings are 

random. It also points out the structure of the hierarchical tree 

should consider the frequency of the words besides the meaning 

of the words. 

B. Why Similar Words Should Be Placed Together? 

The motivation of placing similar words in nearby positions 

in the tree is straightforward: the training samples for the 

classifier in each internal node will be more separable because 

similar words will have similar contexts by the distributional 

hypothesis of Harris [5]. We can explain this idea more clearly 

from the perspective of the training objective functions. It will 

also show some connections between the hierarchical softmax 

and decision trees.  

In the training objective function (1), we can sums over all 

internal nodes first: 
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If we assume the classifier in node n is perfectly trained, its 

estimation of the probability of going to the left subtree when 

the input word is wi should be the ratio of training samples 

leading wi to left, that is: 
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Hence an upper bound of the log-likelihood is: 
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where Hn[d | W] is the conditional entropy between the direction 

d and the word embedding W treated as a random variable, at 

internal node n. If we adopt a top-down splitting tree 

constructing scheme like the decision tree, the dividing criteria 

should be the conditional entropy. If we want to minimize the 

conditional entropy, placing words with similar contexts in the 

same subtree is likely to reduce the entropy.  

III. SEMHUFF 

In this section, we propose our hierarchical tree constructing 

scheme: SemHuff. Noticed that if we rearrange the nodes or 

subtrees of a Huffman tree within the same level, the resulting 

tree remains a Huffman tree, since all leaves keep their original 

depths unchanged. So our strategy is to rearrange nodes in the 

same level so that similar words can be placed together in the 

Huffman tree. 

A. Description 

Assuming we already have word similarity knowledge: Sij is 

the similarity between word wi and wj. We generate an arbitrary 

Huffman tree from the corpus first. Then we adopt a bottom-up 

adjusting strategy: (1) from the bottom level to the top level, for 

level i, we calculate the similarity between all subtrees. The 
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similarity of two subtrees is defined as the average similarity 

between theirs leaves (i.e. words). (2) Then we apply the 

weighted maximum matching algorithm to the similarity graph 

of subtrees. (3) Now, we rearrange these subtrees in level i 

according to the matching results. Matched subtrees are 

organized as siblings and subtrees without matching are paired 

arbitrarily. (4) go back to step (1) for level i-1 The algorithm is 

described by pseudo code in Figure 1. 

 

The word similarity knowledge can be extracted from 

different kinds of language resources like WordNet [12] and 

PPDB [2] for the English language. For the Chinese language, 

we extract the similarity knowledge from the ontology 

generated by He et al. [6] in our experiments. The word 

similarity knowledge used by SemHuff is not limited to use 

external prior knowledge. It is also possible to use the word 

embeddings being trained by a bootstrapping process similar to 

Mnih and Hinton [15]. 

B. Demonstration 

To illustrate our algorithm more clearly, a hand-crafted demo 

is provided for further investigation. We choose only 6 words 

and set the corresponding similarity matrix intuitively. Then the 

adjusting procedure is presented in Figure 2. 

In the first step, we consider all possible matches among the 

leaves, cat, dog, tree, grass and find out the best match is 

obviously <cat, dog> and <tree, grass>, so cat and dog are set as 

siblings and so are tree and grass. When it comes to the 

penultimate layer, the four nodes/subtrees to be matched are 

plant, {dog, cat}, animal, {tree, grass}. In this layer, the best 

matches are <animal, {dog, cat}> and <plant, {tree, grass}>. 

Now we see that all similar words are grouped together. After 

this step, adjusting procedure stops, because no upper layer has 

more than two nodes. 

C. Implementation Details 

Our implementation of SemHuff is modified from the original  

word2vec package. In our program, we use the highly efficient 

Blossom V package written by Kolmogorov & Vladimir [7] to 

perform weighted maximum matching. However, it's not 

practical to find the exact weighted maximum matching of a 

dense graph which has tens of thousands vertices and about a 

billion edges, since the complexity of the matching algorithm is 

O(|E||V|3). As a result, some approximation is made: for each 

word, we only keep its 30 most similar words and thus speed up 

the computation. With this method, adjusting can be done in less 

than 20 minutes for a Huffman tree of 80k leaves and 24 layers 

on a typical workstation. 

We'd like to show a snippet of the adjusted Huffman tree in 

Figure 3. We see that similar words have been put together and 

it demonstrates the effectiveness of our adjusting algorithm. 

IV. EXPERIMENTS 

We conduct experiments to compare the performance of 

different hierarchical tree structures. Following Lai et al. [8], we 

evaluate word embeddings by tasks from two perspectives: 

semantic properties of word embeddings and using word 

embeddings as features for downstream NLP applications. 

Our experiments were conducted on the Chinese language. 

function SemHuff(Corpus, S) 

T ← GenerateHuffmanTree(Corpus) 

for d from Depth(T) down to 1 do 

 N ← {s | subtree s in level d of T} 

for i in N and j in N do 

d
jiS ,
←Average({Su,v |wu∈i and wv∈j}) 

end for 

matching ← WeightedMaximumMatching(N, Sd) 

for i∈N do 

if i is matched then 

 rearrange i and its match as siblings in level d of T 

else 

 randomly pick another unmatched subtree as its sibling 

end if 

end for 

end for 

return T 

end function 

Fig. 1.  The pseudo code of SemHuff. The function takes the corpus 

and a similarity measure S between words as input and returns the 

adjusted Huffman tree. 
 

Fig. 2. Top: Huffman tree generated from corpus. Middle: 

Huffman tree after adjusted the bottom layer. Bottom: the 

final Huffman tree. 
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The training corpus used is Xinhua News [3] of two years: 1997 

and 2004. There are about 50 million tokens in the corpus and 

80 thousand words occurring at least 5 times. 

The following models are compared in our experiments: 

a) HS-Huffman: hierarchical softmax with Huffman tree. 

b) HS-SemHuff: hierarchical softmax with SemHuff. The 

similarity knowledge used is the ontology generated 

by the hierarchical clustering algorithm by He et al. 

[6]. 

c) NS: negative sampling with 7 negative samples. 

All models are used with skip-gram and run 20 iterations over 

the entire corpus. The subsampling rate is set to 10-5. 

A. Word Similarity Task 

We extract 3020 pairs of synonyms from Tongyici Cilin 

(available at http://ir.hit.edu.cn/demo/ltp/Sharing_Plan.htm), 

which is a manually built Chinese thesaurus. Tongyici Cilin 

comprises sets of Chinese synonyms. The synonym pairs are 

chosen from synonym sets whose size is not greater than 10, 

because large synonym set in Tongyici Cilin tends to be 

inconsistent. 

For each extracted synonym pair <A, B>, we measure the 

rank of B in a set of candidate words by the distance of its word 

embedding to the word embedding of A. The mean rank (MR) 

and mean reciprocal rank (MRR) is used to evaluate the quality 

of learned word embeddings. For MR, lower is better; while for 

MRR, higher is better. The result for different models in 

different settings is showed in Figure 4 and Figure 5. 

The MR and MRR give consistent evaluation: NS > 

HS-SemHuff > HS-Huffman. Though, the MR value of several 

hundred is somehow counterintuitive. After investigation, the 

reason can be explained as follows. Only one word embedding 

is learned for a certain word, while it is always the case that one 

word has multiple meanings and usages. Take 团长 and 参谋长 

for an example, 参谋长 means "a chief of staff in an army'', 

while 团长 have many meanings. One of its meanings is "a 

regimental commander'', which is used in the context of military 

affairs, so it may co-occur with 参谋长 frequently. Besides, 团

长 can also be used to refer to the head of a delegation, a circus 

troupe, an opera troupe, and many other groups. This 

asymmetry in word usage leads to the following phenomenon: 

for the word 参谋长, 团长 is its close neighbor, because 参谋

长 is only used in military topics and 团长 is also salient in this 

context. But when we stand in the view of 团长, 参谋长 is not 

similar to 团长, because many other words such as 演员(actor), 

代表(representative) will occupy the vicinity of 团长, and 参谋

长 will get a rank worse than 1000. If we average a small 

number and a large number, say 10 and 1000, the result will be 

several hundred. What's more, the training corpus and the 

testing word pairs are not exactly in-domain, which contributes 

to this large rank, too. 

B. Analogy Task 

Our second evaluation method is the analogy task. If the 

relation between word A and B is similar to the relation between 

C and D, then vector(A) - vector(B) ≈ vector(C) - vector(D). 

Since we use Xinhua News as training data, information about 

Chinese cities and provinces should be attained. Thus, we 

choose 20 pairs of <provincial capital city>:<province> to 

 
Fig. 3. Top: Huffman tree generated from corpus. Bottom: 

Huffman tree after adjustment. 
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Fig. 4. Word similarity test results measured by MRR(mean 

reciprocal rank). The x-axis is the number of iterations over 

corpus during the training of the word embedding.  The first 

row presents results for 50-dimensional vectors, while the 

second row is for 200-dimensional vectors. 
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generate 202 = 400 analogy problems. In each problem, a 

city-province pair, say A and A', and another city, say B, are 

given, while the province whose capital city is B is unknown. 

Then, we search the word X from the whole vocabulary to fill in 

the blank such that the analogy identity vector(city A) – 

vector(province A') = vector(city B) – vector(X) is fitted as well 

as possible. 

All models were trained for 20 iterations and the test is 

performed after every iteration. The best result for each model is 

showed in Table 1. The result is encouraging: word embeddings 

always give some province as the answer although we search for 

the word X among all words in the vocabulary. A precision of 

75% can be achieved with our SemHuff model. 

From these results, we see that NS is powerful for dimension 

50 but is surpassed by hierarchical softmax models in the high 

dimensional case. Our HS-SemHuff model improves 

HS-Huffman significantly in the 50-dimensional case, and it 

outperforms HS-Huffman in every experimental setting, and 

gives the best result for dimension 200. 

C. POS Tagging Task 

The third task is using word embeddings as features for POS 

tagging. In this task, we use a very simple POS tagger: for a 

word w, we concatenate the word embeddings of words in the 

context windows of w as features. 

And a linear softmax classifier is trained on these features. 

This simple model is used because we think simpler models can 

better reflect the quality of input features. The results are 

showed in Figure 6. 

In this task, NS performs better. As for two hierarchical 

softmax models, our HS-SemHuff is comparable with 

HS-Huffman in the low dimensional case and gives better 

results for dimension 200. 
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Fig. 5. Word similarity test results measured by MR(mean 

rank). The x-axis is the number of iterations over corpus 

during the training of the word embedding.  The first row 

presents results for 50-dimensional vectors, while the second 

row is for 200-dimensional vectors. 

TABLE I 

ANALOGY TEST RESULTS 

Model Name 
Context 

Window Size 
Word Vector 

Dimension 

# of Correct 

Predictions 

Huff 5 50 143 

NS 5 50 235 

SemHuff 5 50 217 

Huff 9 50 161 

NS 9 50 254 

SemHuff 9 50 220 

Huff 5 200 267 

NS 5 200 194 

SemHuff 5 200 280 

Huff 9 200 294 

NS 9 200 268 

SemHuff 9 200 300 
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Fig. 6. POS tagging test results. The y-axis is the accuracy of 

the resulting POS tagger. The x-axis is the number of 

iterations over corpus during the training of word 

embeddings. 
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V. CONCLUSION 

In this paper, we seek to give some theoretical analysis on the 

widely used hierarchical softmax algorithm. By treating the tree 

structure as a parameter of the training objective function, we 

show that the reason why the common practice of using the 

Huffman tree works well is that the Huffman tree maximizes the 

objective function when word embeddings are random. We also 

show that the dividing criterion is the conditional entropy if we 

adopt a top-down splitting tree constructing scheme. Following 

the theoretical analysis, we propose SemHuff, a tree 

constructing scheme based on adjusting the Huffman tree. From 

the experiments, we show that negative sampling performs well 

in most tasks while hierarchical softmax performs better in high 

dimensional analogy task. And SemHuff further improves the 

original hierarchical softmax algorithm in all of our tasks. 

In fact, a more natural idea is to directly optimize the training 

objective function with respect to the tree structure instead of 

adjusting a Huffman tree. However, the optimization over the 

space of all binary trees seems hard. We think some 

approximation or relaxation is necessary to solve this 

optimization problem. We leave this as future work for this 

research. 
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