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Fejer-Korovkin Wavelet Based MIMO Model For
Multi-step-ahead Forecasting of Monthly Fishes

Catches
Nibaldo Rodriguez and Lida Barba

Abstract—This paper proposes a Multiples Input-Multiples Ouput Autoregressive (MIMO-AR) model based on two
stages to improve monthly anchovy catches forecasting of the coastal zone of Chile for periods from January 1958 to
December 2011. In the first stage, the stationary wavelet transform (SWT) based on Fejer-Korovkin (FK) wavelet filter
is used to separate the raw time series into a high frequency (HF) component and a low frequency (LF) component. In
the second stage, both the HF and LF components are the inputs into a FK+MIMO-AR model to predict the original time
series. The performance of the FK-MIMO-AR model is evaluated by comparing its prediction with MIMO-AR model based
on SWT with Daubechies (Db) wavelet filter (Db+MIMO-AR). Results show that the FK+MIMO-AR model outperforms
the Db+MIMO-AR model in terms of root mean square error, modified Nash-Sutcliffe efficiency and coefficient of
determination for 15-month-ahead anchovy catches forecasting.

Index Terms—Wavelet analysis, MIMO model, Forecasting model
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1 INTRODUCTION

Citizens of fishing countries today (Chile, Peru,
China, Japan, New Zealand, Mexico, etc.) are
demanding that their governments develop
new sustainable policies for the exploitation of
fishing resources. However, the development
of such policies requires an understanding of
the variability of abundance of certain species
in the marine ecosystem. The development of
models to aid in understanding and predicting
fluctuations in abundance of fishing resources
is a complex task due to the dynamics under-
lying the marine ecosystem.

In recent years, linear regression models [1]–
[3] and artificial neural network models have
been proposed for 1-step-monthly time series
forecasts of pelagic species [4], [5]. The dis-
advantage of linear regression models is the
assumption that time series of pelagic species
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abundance are stationary. Although artificial
neural networks can model the non-linear be-
havior of a time series, they also have some
disadvantages due to the learning algorithm
based on a descending gradient, as this type
of algorithm shows rapid convergence to local
minimums during the learning process. Gutier-
rez et al. [4], [5] proposed multi-layer neural
network models to forecast catches in the fol-
lowing month (1-step-ahead) for anchoveta and
sardine in northern Chile. The results obtained
from the use of a neural network achieved a
variance of 87%. In order to better understand
the underlying dynamics of fishing resource
abundance in Chile, it is necessary to develop
new models to explain and predict the oscil-
latory behavior of pelagic resources along the
Chilean coastline.

In recent decades some researchers in order
to improve non-stationary time series forecast-
ing models have used the wavelet analysis. The
advantage of wavelet analysis is its ability to
detect and separate high frequency and low
frequency components from a non-stationary
time series. After separation, each component
is more regular than the original time series,
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which may help improve the forecasting per-
formance [6], [7]. Wavelet analysis has also
been evaluated successfully in one − step −
ahead forecast models in different areas, such
as the electricity market [6], [7], the finance
market [8]-[9], smoothing methods [10]-[11]
and in ecological time series modeling [12],
[13]. In addition, wavelet analysis at different
timescales has also been used to show that cli-
mate oscillations such as the El Nino-Southern
Oscillation significantly affect marine species
abundance [14]-[15].

In this paper, a multi-step-ahead forecasting
model of monthly anchovy catches is proposed.
Our proposed forecasting model is based on
two phase. In the first phase, the station-
ary wavelet transform (SWT) based on Fejer-
Korovkin wavelet (FK) filter is used to extract a
high frequency (HF) component of intra-annual
periodicity and a low frequency (LF) compo-
nent of inter-annual periodicity. In the second
stage, both the HF and LF components are
the inputs into a MIMO-AR model to predict
the original time series. Besides, the proposed
MIMO-AR model is compared with a MIMO-
AR model based on SWT with Daubechies
wavelet filter [16], [17] denoted as Db+MIMO-
AR.
This paper is organized as follows. In the next
section, we present hybrid multi-step-ahead
forecasting model. The simulation results are
presented in Section 3 followed by conclusions
in Section 4.

2 PROPOSED MULTI-STEP-AHEAD
FORECASTING

In order to predict the future values of time
series x(n), we can separate the raw time series
x(n) into two components by using SWT. The
first extracted component xH of the time series
is characterized by fast dynamics, whereas the
second component xL is characterized by low
dynamics. Therefore, in our forecasting model
a time series is considered as a functional re-
lationship of several past observations of the
components xL and xH as follows:

x̂(n+ h) = F (z(n)) (1)

where the h value represents forecasting
horizon, m denotes lagged values of both
the LF and HF components and z(n) =
[xL(n), . . . xL(n − m), xH(n), . . . xH(n − m)] de-
notes regressor vector. Besides, the functional
relationship F (·) in this paper is estimated
by using a MIMO-AR model. The proposed
MIMO-AR model calibrates only one MIMO-
AR model to predict the h future values. The
following equation is used to represent the
linear MIMO-AR model:

[x̂(n+ 1), x̂(n+ 2) . . . , x̂(n+ h)] = F [z(n)] + e(n)
(2)

The MIMO-AR model is used to estimate the
function F̂ (·). Given a set of training data
zi, di, i = 1, . . . , N , with zi ∈ R2m and di ∈ Rh,
then the output forecasting in matrix form is
obtained as

Y = ZA (3)

where Y is the matrix dependent variables of N
rows by h columns, Z is the regressor matrix of
N rows by 2m columns and A is the parameters
matrix of 2m rows by h columns. In order
to estimate the parameters A the linear least
squares method is used, which is given as

A = Z†Y (4)

where (·)† denotes the Moore-Penrose pseu-
doinverse [18].

2.1 Stationary wavelet transform
Let x(n) denote the value of a time series at
time n, then x(n) can be represented at multiple
resolutions by decomposing the signal on a
family of wavelets and scaling functions [10].
The approximation (scaled) signals are com-
puted by projecting the original signal on a set
of orthogonal scaling functions of the form:

φjk(t) =
√

2−jφ(2−jt− k) (5)

or equivalently by filtering the signal using a
low pass filter of length r, h = [h1, h2, ..., hr],
derived from the scaling functions. On the
other hand, the detail signals are computed by
projecting the signal on a set of wavelet basis
functions of the form

ψjk(t) =
√

2−jψ(2−jt− k) (6)
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or equivalently by filtering the signal using a
high pass filter of length r, g = [g1, g2, ..., gr],
derived from the wavelet basis functions. Fi-
nally, repeating the decomposing process on
any scale J , the original signal can be repre-
sented as the sum of all detail coefficients and
the last approximation coefficient.

In time series analysis, discrete wavelet
transform (DWT) often suffers from a lack of
translation invariance. This problem can be
tackled by means of the un-decimated sta-
tionary wavelet transform (SWT). The SWT is
similar to the DWT in that the high-pass and
low-pass filters are applied to the input signal
at each level, but the output signal is never
decimated. Instead, the filters are up-sampled
at each level.

Consider the following discrete signal x(n)
of length N where N = 2J for some integer J .
At the first level of SWT, the input signal x(n)
is convolved with the h1(n) filter to obtain the
approximation coefficients a1(n) and with the
g1(n) filter to obtain the detail coefficients d1(n),
so that:

a1(n) =
∑
k

h1(n− k)x(k) (7a)

d1(n) =
∑
k

g1(n− k)x(k) (7b)

because no sub-sampling is performed, a1(n)
and d1(n) are of length N instead of N/2 as in
the DWT case. At the next level of the SWT,
a1(n) is split into two parts by using the same
scheme, but with modified filters h2 and g2
obtained by dyadically up-sampling h1 and g1.

The general process of the SWT is continued
recursively for j = 1, ..., J and is given as:

aj+1(n) =
∑
k

hj+1(n− k)aj(k) (8a)

dj+1(n) =
∑
k

gj+1(n− k)aj(k) (8b)

where hj+1 and gj+1 are obtained by the up-
sampling operator inserts a zero between every
adjacent pair of elements of hj and gj ; respec-
tively.

Therefore, the output of the SWT is then
the approximation coefficients aJ and the detail

coefficients d1, d2, ..., dJ , whereas the original
signal x(n) is represented as a superposition of
the form:

x(n) = aJ(n) +
J∑

j=1

dj(n) (9)

The wavelet decomposition method is fully
defined by the choice of a pair of low and high
pass filters and the number of decomposition
steps J .

2.2 Measures of accuracy applied in the
model performance
In this study, three criteria of forecasting ac-
curacy called root mean square error (RMSE),
modified Nash-Sutcliffe efficiency (mNSE) and
coefficient of determination (R2) were used to
evaluate the forecasting capabilities of the pro-
posed forecasting models, which are defined as

RMSE =

√√√√ 1

L

L∑
i=1

(
x(i)− x̂(i)

)2 (10)

mNSE = 1−
∑L

i=1

∣∣x(i)− x̂(i)
∣∣∑L

i=1

∣∣x(i)− x̄
∣∣ (11)

R2 = 1−
∑L

i=1

(
x(i)− x̂(i)

)2∑L
i=1

(
x(i)− x̄

)2 (12)

where x(i) is the actual value at time i, x̂(i) is
the forecasted value at time i, x̄ is the mean of
observed data and L is the number of forecasts.

3 EXPERIMENTS AND RESULTS

In this section, we apply the proposed wavelet
MIMO-AR model for multi-step-ahead fore-
casting. The data set used corresponded to
landing of anchovy in the south of Chile. These
samples were collected monthly from 1 January
1958 to 31 December 2011 by the National Fish-
ery Service of Chile (www.sernapesca.cl). The
raw anchovy data set have been normalized to
the range from 0 to 1 by simply dividing the
real value by the maximum of the appropriate
set. On the other hand, the original data set was
also divided into two subsets. In the first subset
the 80% of the time series were chosen for
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Fig. 1. Monthly anchovy catches

the calibration phase (parameters estimation),
whereas the remaining data set were used for
the testing phase.
The normalized raw time series and the Fourier
power spectrum are present in the Figure 1(a)
and 1(b); respectively. The red thick line in Fig-
ure 1(b) designates the confidence level against
red noise spectrum. From Figure 1(b) it can
be observed that there are one peak of signif-
icant power, whose peak has periodicity of 12
months. After we applied the Fourier power
spectrum to the raw time series, we decided
to use 3-level SWT due to the significative
peak of 12 months. Both the HF and LF times
series are presented in Figures 2 and 3; respec-
tively, whereas the power spectrum of both
time series are illustrated in Figure 2(b) and
3(b); respectively. Find the order of the MIMO-
AR model is a complex task, but here we will
use 30 months due to significant period of the
low frequency component.

The multi-step-ahead forecasting methodol-
ogy used in this paper is based on SWT com-
bined with MIMO-AR model and in order
to evaluate the contribution of modeling the
monthly anchovy catches using FK+MIMO-AR
model, the latter is compared to Db+MIMO-
AR model. The SWT is implemented by eval-
uating a wavelet families: (i) FK4, (ii) FK6, (iii)
Daubechies db2 (iv) Daubechies db3. The re-
sults of the forecasting performance of different
wavelets are reported in Figure 4.From Figure
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Fig. 2. Low frequency monthly anchovy catches
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Fig. 3. High frequency monthly anchovy catches

4 it is observed that the accuracy decreases as
the time horizon increases; therefore the best
accuracy was obtained for the nearest months,
and the lowest accuracy was obtained for the
farthest months. Also, from Figure 4 it is seen
that the FK4-wavelet (also Db2-wavelet) seems
to perform better than other wavelets due
to their good localization ability. The MIMO-
AR model using FK4-wavelet has a mNSE
equal to 90.45% whereas the models based on
db2-wavelet and Db3-wavelet yielded results
with low mNSE values equal to 80.98% and
67.46%,respectively. The Figures 5 and 6 show
the results obtained with the MIMO-AR(30) for
15-month-ahead anchovy catches forecasting
during the testing phase. Figure 5(a) provides
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Fig. 5. FK4+MIMO-AR: Fifteen-month-ahead
forecasting for test data set

data on observed monthly anchovy catches ver-
sus forecasted catches;this forecasting behavior
is very accurate for testing data with a RMSE
0.017 and a mNSE of 90.45%. On the other
hand, from Figure 5(b) it can be observed a
good fit to a linear curve with a coefficient of
determination of 98.63%.

Figures 6(a) and 6(b) show the results ob-
tained with the Db2+MIMO-AR(30) forecasting
model during the testing phase. Figure 6(a)
illustrates the observed data set versus fore-
casted data set, which obtains a RMSE and a
mNSE of 0.034 and 81%; respectively. On the
other hand, Figure 6(b) shows the scatter curve
between observed values and forecasted values
with a R2 of 94.75%.
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Fig. 6. Db2+MIMO-AR: Fifteen-month-ahead
forecasting for test data set

4 CONCLUSIONS

In this paper was proposed a multi-step-ahead
forecasting model to improve prediction ac-
curacy based on stationary wavelet decompo-
sition combined with MIMO-AR model. The
reason of the improvement in forecasting ac-
curacy was due to use Fejer-Korovkin wavelet
filter to separate both the LF and HF compo-
nents of the raw time series, since the behavior
of each component is more smoothing than
raw data set. It was show that the proposed
FK4+MIMO-AR model achieves a mNSE of
90.45% and a R2 of 98% for 15-month-ahead
anchovy catches forecasting. Besides, the exper-
imental results demonstrated a better perfor-
mance of the proposed model when compared
with a Db2+MIMO-AR prediction model. Fi-
nally, hybrid forecasting model can be suitable
as a very promising methodology to any other
pelagic species.
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