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Abstract—The development of techniques to solve the Set
Covering Problem (SCP) have given rise a wide range of
metaheuristic alternatives, some of them designed from the
beginning to operate in binary search spaces, and other
considering continuos spaces that requires adaptation intended
to work with binary spaces. Black Hole and Soccer League
Competition they were designed to work with continuous spaces
and they have been adapted to operate in binary spaces: Binary
Black Hole and Binary Soccer League Competition, respectively,
aimed to solve problems in a binary domain, particularly the SCP.
The present paper compare both implementation in a statistical
way, involving the use of non-parametric tests and supported by
R statistical computing enviroment, considering regularity and
consistency of their results when both algorithm implementations
are tested on the same benchmark sets.

Index Terms—Optimization, set covering problem, constraint
satisfaction, binary black hole algorithm, soccer league competi-
tion algorithm, algorithm adaptation, algorithm comparison

I. INTRODUCTION

THE need to find solutions to optimization problems
either using complete or approximative techniques, has

allowed the development of several alternatives with different
approaches and models. Metaheuristic alternatives are suitable
for high dimensionality problems where the main target is to
find good solutions, but not the ideal optimal, in an acceptable
time spend. The question that arises is how to establish if one
algorithm implementation has better behavior than other one,
or how to quantify the improvements achieved when some
modifications or tuning have been introduced to a specific
implementation.

This paper address the comparison of two population-based
metaheuristic algorithms adapted to work on binary search
spaces to solve the Set Covering Problem (SCP). The
comparison is performed from an statistical point of view
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considering the regularity and consistency of their results when
they are tested in the same set of benchmarks.

As is the usual in the domain of complex optimization
problems helped by the metaheuristics field, each solution
strategy arises from behaviors observed from the nature and
then mapped to algorithms. The first one, named Soccer
League Competition Algorithm (SLC), is based on soccer
competitions where the best teams conformed by exceptional
players improve their chances to win each match and each
player attempts to become a soccer star or a super soccer
star player [1]. The second one, named Black Hole Algorithm
(BH) [2], [3] is based on previous work of the particle swarm
optimization algorithm with newly convergence elements [4],
[5]. It defines an universe of a constant number of stars moving
around static locations called black holes and when a star is
swallowed by a black hole then a new random star is born.

Both algorithms work with a set of individuals moving
around a search space but with different strategies, all of them
aimed to reach best regions that improve they fitness and
escape from the local optima. Both SCP and BH were designed
to work in continuous search spaces and its adaptation to
a binary domain have been performed by different ways:
the Binary Black Hole (BBH) algorithm lies on transfer and
binarization functions [6], Binary Soccer League Competition
(BSLC) lies on the Hamming distance reduction approach
instead.

As mentioned above, the comparison is performed
considering a statistical approach based on regularity
and consistency of the results. A methodological
mean-analysis applying non-parametric statistical tests
is performed according preconditions required by each
of them. Shapiro-Wilk, Kolmogorov-Smirnoff-Lilliefors,
Wilcoxon-Mann-Whitney, Levene, ANOVA an unpaired t-test
are used to define a best choice in each of the 55 different
scenarios.

The section II formulates the SCP with its main elements.
The BH and how it works in searching for optimal is discussed
in section III. The section IV describes the original SLC
designed for continuous search spaces, while in section IV-C
a binary adaptation of SLC is introduced. The comparison for
both algorithm implementations are addressed in section VII
and in section IX the conclusions are drawn.
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II. THE SET COVERING PROBLEM

The Set Covering Problem is one of 21 NP-Hard problems
[7] presents in a wide variety of optimization scenarios.

Since its introduction in 1972 by Karp [8] it has been
used in optimization problems of elements locations providing
spatial coverage such as telecommunications antennas [9],
community services [10], urban transportation crews planning
[11], metallurgical industry [12], safety and robustness of data
networks [13], construction structural calculations [14], focus
of public policies [15] among others.

min C =

n∑
j=1

cjxj (1)

n∑
j=1

aijxj ≥ 1 ∀i ∈ {1, 2, ...,m} (2)

xj ∈ {0, 1} ∀j ∈ {1, 2, ..., n} (3)

In general words, let S be the union of n sets. An element
is covered by a set if the element is in the set. A cover of
S is a group of the n sets such that every element of S is
covered by at least one set in the group. The SCP challenge is
to find a cover of S with minimum size. That is, minimizing
expression Eq. (1) and complying with Eq. (2) and Eq. (3).

III. THE BLACK HOLE ALGORITHM

Farahmandian and Hatamlou presents in [2] a strategy
intended to find solutions for optimization problems,
conceiving the idea of an universe conformed by stars orbiting
a unique and fixed center, a black hole refered as XBH , in a
population-based algorithm approach similar to those used in
genetic techniques [16] or particles swarm [17].

The XBH is a fixed star in the search space, having the best
fitness value regarding other stars or, equivalently, the lowest
value for a defined function called objective function intended
to minimize.

The star’s motion is performed by an operator of rotation
that moves each of them iteratively around XBH , causing
along the process the collapse of some stars into the black
hole by gravitational effect, the creation of new stars randomly
as an exploration strategy, or bringing the creation of a new
black hole as an exploitation strategy. The universe’s motion
process ends when a detention criteria is reached, being the
current XBH the best known solution found for the problem.

A. The Big Bang stage
This stage consists in the creation of an initial universe

conformed by a set of nStar stars built randomly. Stars
may be replaced during the iteration process but its amount
remains fixed throughout the process. The algorithm 1 shows
the mechanism for building a new universe, also applied
in intermediate steps of star replacement. Let Xi be a
star, then: where StarBuilder(n) function creates a new
feasible random binary star, i.e. a feasible solution vector with
dimension n.

Algorithm 1 Initial random star builder
1: for i← 1, nStar do
2: Xi ← StarBuilder(n)

B. Fitness evaluation

Let fBH(Xi) be a fitness evaluation function, fBH : Rn →
R. The black hole XBH will be those Xi with the lowest
fitness value regarding the rest of stars in the universe.

C. The rotation operator

The operator of rotation sets a new position for each star
Xi other than XBH which remains in a fixed position. The
new position of Xi at iteration t + 1, considering its initial
position at t iteration is defined by Eq. (4) below:

Xd
i (t+ 1) = Xd

i (t) + rand()(Xd
BH −Xd

i (t)), (4)

where i ∈ {1, 2, ..., nStars}, Xd stands for any d-dimension
of the solution, XBH is black hole position, rand() is a
random number with uniform distribution in [0,1].

D. Collapsing into the black hole

A star closer to the black hole at a distance called event
horizon is inevitably captured and permanently absorbed by
it, being replaced by a new star generated randomly. In other
terms, the collapse of a star occurs when it exceeds the radius
of Schawarzchild (R).

Farahmandian and Hatamlouy intend in [16] to determinate
the distance of a star Xi to the radius R as:

R =
fBH(XBH)∑nStars
i=1 f(Xi)

(5)

where fBH(XBH) and fBH(Xi) are the black hole and the
Xi star fitness value, respectively.

A star Xi will collapse when its distance at the black hole
is less than R as indicated in Eq. (5). Aimed to manage
the tolerance threshold calculating the event horizon, we
incorporate an additional parameter s ∈ [0, 1] to the algorithm,
to modify the minimum allowable proximity to the black hole,
measured in function of its fitness. Thus, a star Xi will colapse
into the black hole if:

|fBH(XBH)− fBH(Xi)| < sR (6)

IV. THE SOCCER LEAGUE COMPETITION ALGORITHM

SLC is introduced by Moosavian in [1] and defines a set
of nteams set of players or feasible solutions called teams.
Each team T is conformed by nfp fixed players FP and nsp
substitute players SP.

A player X = (x1, x2, ..., xd) will belong to the fixed or
substitute class depending of its performance level rank. The
performance level or power player is defined by a function
PP : Rn → R. If two solutions Xi and Xj verifies that
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PP (Xi) > PP (Xj), then we will say that Xi has a better
performance than Xj .

For each team T , the player having the higest player power
value is called super player, XSP . Likewise, considering all
teams we can find the super star player, XSSP , as the player
with the best power player.

Given the player power function PP , we can generalize and
define the team power TP as follow:

TP =
∑

Xk∈T

PP (Xk)

nfp + nsp
(7)

A. Stochastic criteria

Two teams faced in a match will result in one single winner
always. If TPA and TPB are the team power for TA and TB ,
respectively, the probability of victory for TA facing TB is
given as follow:

PVA =
TPA

TPA + TPB
(8)

In a similar way, we can calculate the probability of victory
for TB , PVB . It results that PVA + PVB = 1. Then, given a
random number r ∈ [0, 1] and PVA defined as Eq. (8) we can
define the winner team in a time t as shown in algorithm 2:

Algorithm 2 Definition of the winner team between TA and
TB

1: PVA ← GetProbabilityOfV ictory(TA, TB)
2: r ← rnd(0, 1)
3: if 0 ≤ r ≤ PVA then
4: TA is the winner
5: else
6: TB is the winner

B. Movement operators

For the winner team defined above, the imitation and
provocation operators are defined. In the other hand, the
mutation and substitution operators are defined for the looser
team. The imitation operator will attemp to move each fixed
player of the winner team towards XSSP or XSP aimed to
improve its player power, calculating two feasible candidate
solutions, Xa and Xb, using Eq. (9) and Eq. (10) as follow:

Xa = µ1FP(t)+τ1(XSSP−FP(t))+τ2(XSP−FP(t)) (9)

Xb = µ2FP(t) + τ1(XSSP − FP(t)) + τ2(XSP − FP(t))
(10)

where µ1 ∼ U(θ, β), µ2 ∼ U(0, θ), θ ∈ [0, 1], β ∈ [1, 2] and
τ1, τ2 ∼ (0, 2) are random numbers with uniform distribution
as is indicated in [1]. The algorithm 3 shows how imitation
operation does work, moving FP(t) to the new position
FP(t+ 1) when its player power is improved.
The provocation operator will attempt to move each substitute

Algorithm 3 Imitation operator
1: Xa ← GetCandidatea()
2: Xb ← GetCandidateb()
3: if PP (Xa) > PP (FP(t)) then
4: FP(t+ 1)← Xa

5: else if PP (Xb) > PP (FP(t)) then
6: FP(t+ 1)← Xb

player SP towards the centroid or gravitational center G
defined by Eq. (11), aimed to improve its player power.

Gd =

∑
FPi∈T

FPd
i

nfp
(11)

Then, two new candidates Xr and Xs are calculated as follow:

Xr = G+ χ1(G− SP) (12)

Xs = G+ χ2(SP−G) (13)

where χ1 ∼ U(0.9, 1), χ2 ∼ U(0.4, 0.6) are random
numbers with uniform distribution as is indicated in [1]. The
algorithm 4 shows how the provocation operator does work,
moving SP(t) to the new position SP(t+1) when its player
power is improved. In other case, it is replaced by a new
random generated feasible solution.

Algorithm 4 Provocation criteria
1: Xr ← GetCandidater()
2: Xs ← GetCandidates()
3: if PP (Xr) > PP (SP(t)) then
4: SP(t+ 1)← Xr

5: else if PP (Xs) > PP (SP(t)) then
6: SP(t+ 1)← Xs

7: else
8: SP(t+ 1)← NewPlayer()

For the looser team, the fixed players will attempt to apply
small changes to avoid repeating the match failure by using
some mutation operator like Genetic Algorithm (GA). Also,
some substitute players will be replaced by promising young
talents by applying a crossover operator but not considered in
the binary adaptation of SLC.

C. Binary versions of BH and SLC

Gómez introduces in [18] a strategy to allow BH to work in
binary search spaces, using transfer and binarization functions,
thus mapping non-binary values to the {0, 1}n domain.
Jaramillo presents in [19] a binary adaptation approach
using Hamming distance reduction instead vectorial algebra,
dicretization and binarization functions. For the imitation
operator it proposes two new candidates Xa and Xb as follow:

Xd
a =

{
Xd

SP if rand() ≤ pimitation

FPd(t) other case
(14)
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Xd
b =

{
Xd

SSP if rand() ≤ pimitation

FPd(t) other case
(15)

where rand() ∼ U(0, 1) is a random generated value with
uniform distribution and pimitation is a probability of imitation
defined as an initial parameter of the model. The provocation
operator uses a new centroid point definition, BG built from
G in Eq. (11) but considering the probability to have 1 or 0
in the dimension d as follow:

BGd =

{
1 if Gd ≥ 0.5
0 other case (16)

A mutation operator for fixed players could be considered as
follow:

FPd(t+1) =

{
FPd(t) if rand() ≤ pmutation

¬FPd(t) other case
(17)

where rand() ∼ U(0, 1) is a random generated value with
uniform distribution and pmutation is a probability of mutation
defined as initial parameter of the model.

V. SOLVING SCP USING BBH AND BSLC
BBH and BSLC require both a fitness function definition.

For BBH the Eq. (1) of SCP can be used to define fBH(X) =
1/
∑
xici when SCP faces a minimum optimization problem,

or its inverse in case of maximum. In the same way, BSLC can
define its player power function as PP (X) = 1/

∑
xici when

SCP faces a minimum optimization problem, or its inverse in
case of maximum. Feasibility based on constraints Eq. (2) and
Eq. (3) are specific of each implementation and are not covered
in this paper.

VI. PERFORMING BBH AND BSLC EXPERIMENTS

The implementation of both algorithms were tested using
the same SCP benchmark problem sets. Problem sets 4 - 6
are taken from Balas and Ho [20]. Problem sets A - D are
from Basley [21]. Problem sets NRE and NRF are taken from
[22]. The data sets is provided by the OR-Library website [23]
and available for free download in Internet. Problem sets 4 and
5 contain 10 instances each. Problem sets 6, A - D, NRE and
NRF contain 5 instances each. Table I shows details for each
problem set. The density value corresponds to the percentage
of ones in the constraint matrix.

The goal of the comparison is focused in contrasting
regularity in the BBH and BSLC outcomes and proximity to
the best known solution for each instance tested.

BSLC did use 10 teams, conformed each one of them by
15 fixed and 10 substitute players. BBH did use an universe
conformed by 250 stars. Each instance test was run 31 times
for both BBH and BSLC in order to obtain a median value
for each experiment.

The summary of results is shown in the Table II. The
number of constraints, dimensions and the best known solution
value ZBKS are shown. The relative percentage difference rpd
is defined as rpd = min−ZBKS

ZBKS
. Each implementation shows

min, max, mean and median values obtained per instance.

VII. STATISTICAL COMPARISON APPROACH

In the metaheuristic field, performing a statistical analysis
using parametric tests is not suitable as result of the stochastic
nature of the evolutionary algorithms. This due to the fact
that required conditions as normality, homoscedasticity and
independence are not satisfied, as is demonstrated in [24] and
[25]. However, when normality is not guaranteed, Wilcoxon
and Wilcoxon-Mann-Whitney might be an appropriate option
in order to compare populations, considering medians instead
means.

Lanza and Gómez use in [26] a methodological approach
to compare different algorithms implementation, considering
the regularity and consistency of their results, as is shown in
Fig. (1).

Using the Mann-Whitney-Wilcoxon test is possible to check
if the population distributions of two evolutionary algorithm
outcomes are identical without assuming them to follow the
normal distribution. For this purpose, the non-normality and
independence conditions must be checked first in order to
choose a suitable contrast test.

A. Non-Normality condition

In order to check that a normal distribution is not present
in the outcomes, Kolmogorov-Smirnov-Lilliefor (KSL) and
Shapiro-Wilk (SW) tests are performed for each instance,
helped by R statistical computing environment.

KSL-test [27] is used to compare the accumulative
distribution observed with a reference probability distribution,
in this case a normal distribution; a pvalue > 0.05 implies
that there is no evidence to reject the null-hypothesis H0,
that accumulative distribution observed and the reference
distribution are the same. In the other hand, SW-test [28]
defines a null-hypothesis H0 as the population is normally
distributed; a pvalue > 0.05 implies that there is no evidence
to reject H0.

As the result sets were obtained by evolutionary algorithms,
the main idea of this stage is to prove that there is evidence
to reject a normal distribution, i.e. the null-hypothesis H0 in
KSL, or SW or both, for each instance.

B. Independence of the samples

Two data samples are independent if they come from distinct
populations and the samples do not affect each other. Each run
executed corresponds to independiente process running in a
virtualized computing environment; the values in one sample
(run result) does not affect the values in the other sample, and
values in one sample reveal no information about those of the
other samples, thus we can establish the sample independence.

C. Statistical results

1) Non-normality.: The results obtained using the R’s
parametric tests ks.test and shapiro.test are summarized in
Table III. It shows the pvalue obtained per test, algorithm
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TABLE I
DETAILS OF SCP PROBLEM SETS.

Problem set Constraints Dimensions Density Instances
4 200 1000 2% 10
5 200 2000 2% 10
6 200 1000 5% 5
A 300 3000 2% 5
B 300 3000 5% 5
C 400 4000 2% 5
D 400 4000 5% 5

NRE 500 5000 10% 5
NRF 500 5000 20% 5

TABLE II
RESULTS PER BENCHMARK INSTANCE AND ALGORITHM IMPLEMENTATION.

Instance Constr. Dimension ZBKS
BBH BSLC

min median mean max rpd % min median mean max rpd %
4.1 200 1000 429 447 735.5 685 1268 4.2 429 723.3 722 1395 0
4.2 200 1000 512 517 741.5 696 1154 0.98 512 862.9 831 1375 0
4.3 200 1000 516 527 860.8 769 1780 2.13 517 898.7 824 1450 0.19
4.4 200 1000 494 499 900.8 843 1945 1.01 504 835.2 791 1290 2.02
4.5 200 1000 512 518 863.5 758 1452 1.17 518 851.2 777 1367 1.17
4.6 200 1000 560 612 983.8 861 1821 9.29 562 902.5 815 1496 0.36
4.7 200 1000 430 460 728.7 668 1187 6.98 435 707.8 650 1352 1.16
4.8 200 1000 492 496 843.1 773 1506 0.81 492 772.7 691 1406 0
4.9 200 1000 641 649 1052.8 1079 1818 1.25 646 1002.3 1029 1494 0.78

4.10 200 1000 514 575 837.1 813 1423 11.87 548 832.6 758 1419 6.61
5.1 200 2000 253 255 440.5 414 756 0.79 254 448.3 425 738 0.4
5.2 200 2000 302 316 535.6 489 1109 4.64 305 506.5 483 902 0.99
5.3 200 2000 226 227 372 334 804 0.44 232 387.2 360 684 2.65
5.4 200 2000 242 251 382.6 316 702 3.72 264 369.8 357 614 9.09
5.5 200 2000 211 217 338.2 321 613 2.84 213 329.6 312 519 0.95
5.6 200 2000 213 216 332.8 293 658 1.41 218 325.5 308 456 2.35
5.7 200 2000 293 304 468.5 430 1066 3.75 299 468.8 478 911 2.05
5.8 200 2000 288 302 499.8 487 804 4.86 309 471.2 424 911 7.29
5.9 200 2000 279 311 480.2 459 854 11.47 286 455.9 413 840 2.51

5.10 200 2000 265 287 435.1 399 890 8.3 290 451.4 421 653 9.43
6.1 200 1000 138 139 227 221 381 0.72 144 234.5 212 430 4.35
6.2 200 1000 146 149 251.3 247 410 2.05 154 241 233 453 5.48
6.3 200 1000 145 149 234.5 217 450 2.76 154 230.2 194 379 6.21
6.4 200 1000 131 131 208 181 396 0 136 224.9 223 382 3.82
6.5 200 1000 161 167 239.5 238 386 3.73 161 254.8 237 483 0
A.1 300 3000 253 258 397.1 351 654 1.98 258 397.7 383 722 1.98
A.2 300 3000 252 253 411.9 361 739 0.4 254 424.9 413 689 0.79
A.3 300 3000 232 234 355.4 336 687 0.86 237 375.2 337 709 2.16
A.4 300 3000 234 238 360.8 352 582 1.71 257 392.8 360 703 9.83
A.5 300 3000 236 240 343.9 308 700 1.69 238 352 349 569 0.85
B.1 300 3000 69 70 108.1 100 188 1.45 70 103.6 100 159 1.45
B.2 300 3000 76 78 124.5 116 195 2.63 77 122 112 201 1.32
B.3 300 3000 80 81 133.1 116 228 1.25 83 121 113 212 3.75
B.4 300 3000 79 80 134.8 133 250 1.27 80 127.8 118 283 1.27
B.5 300 3000 72 73 114.3 103 204 1.39 74 114.3 107 225 2.78
C.1 400 4000 227 232 360 322 695 2.2 229 365.1 362 578 0.88
C.2 400 4000 219 220 344.1 321 550 0.46 223 336.5 337 534 1.83
C.3 400 4000 243 246 419.2 381 815 1.23 248 384.9 383 626 2.06
C.4 400 4000 219 219 367.9 344 621 0 219 361.7 334 576 0
C.5 400 4000 215 222 385.3 379 644 3.26 220 333.5 291 569 2.33
D.1 400 4000 60 65 100 91 179 8.33 73 111.6 109 164 21.67
D.2 400 4000 66 72 109.9 100 176 9.09 67 99.6 90 172 1.52
D.3 400 4000 72 74 108.3 95 194 2.78 73 122.3 117 214 1.39
D.4 400 4000 62 66 99.6 96 155 6.45 69 101 93 178 11.29
D.5 400 4000 61 62 92.7 94 147 1.64 63 97.9 86 162 3.28

NRE.1 500 5000 29 30 47.5 44 92 3.45 30 49.5 50 80 3.45
NRE.2 500 5000 30 30 49.2 45 88 0 32 52.1 48 88 6.67
NRE.3 500 5000 27 27 40.8 37 83 0 29 45.2 44 68 7.41
NRE.4 500 5000 28 29 46.3 42 77 3.57 29 46.2 43 76 3.57
NRE.5 500 5000 28 28 44.9 44 81 0 28 41.9 42 68 0
NRF.1 500 5000 14 14 22.7 23 45 0 16 22.2 21 36 14.29
NRF.2 500 5000 15 15 26.5 24 45 0 15 23.9 24 36 0
NRF.3 500 5000 14 15 24 24 44 7.14 14 22.7 22 37 0
NRF.4 500 5000 14 14 21.9 21 35 0 14 23.1 23 43 0
NRF.5 500 5000 13 14 20.9 18 43 7.69 14 21.6 20 37 7.69
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Dependent or independent samples 

Wilcoxon Wilcoxon-Mann-Whitney 

Dependent ones Independent ones 

Dependent or independent samples 

At least one of them is not 
normally distributed 

The samples are normally 
distributed 

Test for homoscedasticity  
(Levene) 

Variances 
are not equal 

Variances 
are equal 

Unpaired t-test ANOVA 

Paired t-test 

Independent ones Dependent ones 

Tests for normality 
Shapiro-Wilk and Kolmogorov-Smirnov-Lilliefors 

Fig. 1. Statistical methodology chart for 2 samples

implementation and instance. Values less than 0.05 are marked
with * symbol. The H0 in the labeled column result indicates
that there is no evidence for normality assumption, i.e.
rejecting H0. When BBH and BSLC normality test give
simultaneously evidence to accept H0, then we can be facing
unexpected outcomes, needing a second revision.

Figure (1) addresses the test to apply in each instance and
the Table III shows the results. Note that the Wilcoxon-Mann-
Whitney test is the predominant. This fact is expected due the
no-normality and independence conditions is met by almost
all the instance outcomes.

2) Wilcoxon-Mann-Whitney test execution: A cross test
between the BBH and BSLC outcomes is performed using
R. In both cases, a redefinition of the alternative-hypothesis
H1 is set and the main idea is to reject the null-hypothesis H0

in order to accept H1.
The first test defines a H1 as XBBH > XBSLC . If a

pvalue < 0.05 is obtained, then there is evidence to reject
H0, accepting H1, i.e. BSLC’s outcomes are statistically better
than BBH. In a similar way, the second test defines a H1 as
XBSLC > XBBH . If a pvalue < 0.05 is obtained then there
is evidence to reject H0, accepting H1, i.e. BBH’s outcomes
are statistically better than BSLC.

The summary of results for each instance is shown in
Table IV. Values less than 0.05 are marked with * symbol.
As we can see, there is not significant evidence to choose
one implementation or other for most instances. Figures (2-4)
shows boxplot for each instance.

In respect of instances 4.1, 4.2, 6.5, the unpaired test
was defined as the suitable test to perform according the
methodology in Fig. (1). In a similar way, the ANOVA test
has been selected in order to perform comparison in instances
4.9, 5.5, A.3, NRE.5, NRF.2 and NRF.4. However, a normal
distribution is an unexpected result in evolutionary algorithms,

as previously mentioned in Section VII due to its stochastic
nature.

As suggested by Demšar in [29], the Kolmogorov-Smirnov
and similar normality test have a little power in detecting
abnormalities on small samples. With the purpose of having
a third evidence, D’Agostini-Pearson (DA) normality test is
applied. The values obtained are shown in Table V, keeping
the same evidence of KSL and SW tests. Figures (5-6) show a
boxplot for these instances. Regardless the results evidenced in
Table V, Wilcoxon-Mann-Whitney test is performed on these
datasets to address location comparison under a non-normality
assumption.

VIII. ANALYSIS OF RESULTS

Based on the statistical results obtained by Wilcoxon-Mann-
Whitney test, there is a slight tendency to define the BBH
algorithm as better than BSLC, regarding all instances covered
in the experiments performed in this work.

For instances 5.3, D.1, D.3, NRE.3, NRF.5 there is evidence
towards BBH and it can be confirmed by their respectives
boxplot in Fig. (2) and Fig. (4) where BBH have better location
of the median than BSLC. In the other hand, instances C.5 and
D.2 show evidence towards BSLC, and its respective boxplots
in Fig. (4) confirms the above, where BLSC shows better
location of the median than BBH.

The non-normality condition appears to be not required in
order to perform a Wilcoxon-Mann-Whitney test when data
sets have been generated by an evolutive algorithm. This is
evidenced comparing numerical results in Table VI against the
boxplot representation for this instances in Fig. (5 - 6), where
both conclusions that can emerge do fit. In particular, the
instance 4.2 shows a better location of the BBH’s median value
than BSLC and it can be evidenced numerically by the result
in Table VI . The other instances referred in the same group
with unexpected normality distribution evidence, as result of
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Fig. 2. Boxplot for outcomes addressed by Wilcoxon-Mann-Whitney test.
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Fig. 3. Boxplot for outcomes addressed by Wilcoxon-Mann-Whitney test.

12POLIBITS, vol. 57, 2018, pp. 5–17 https://doi.org/10.17562/PB-57-1

Adrián Jaramillo, Álvaro Gómez, Broderick Crawford, Ricardo Soto, Fernando Paredes, Carlos Castro
IS

S
N

 2395-8618



BBH BSLC

30
0

50
0

Instance C.4

BBH BSLC

30
0

50
0

Instance C.5

●

BBH BSLC

80
12

0
16

0

Instance D.1

BBH BSLC

80
12

0
16

0

Instance D.2

●

●

BBH BSLC

80
12

0
16

0
20

0

Instance D.3

●

BBH BSLC

80
12

0
16

0

Instance D.4

BBH BSLC

60
10

0
14

0

Instance D.5

●

BBH BSLC

30
50

70
90

Instance NRE.1

BBH BSLC

30
50

70
90

Instance NRE.2

●

BBH BSLC

30
50

70

Instance NRE.3

BBH BSLC

30
50

70

Instance NRE.4

●

BBH BSLC

15
25

35
45

Instance NRF.1

BBH BSLC

15
25

35
45

Instance NRF.3

●

●

●

BBH BSLC

15
25

35

Instance NRF.5

Fig. 4. Boxplot for outcomes addressed by Wilcoxon-Mann-Whitney test.
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TABLE III
SUMMARY OF RESULTS FOR THE NORMALITY PARAMETRIC TEST AND THE TEST TO APPLY FOR ALGORITHM OUTCOMES.

Instance BBH BSLC Levene
pvalue

Test to apply
KSL

pvalue

SW
pvalue result

KSL
pvalue

SW
pvalue result

4.1 0.078 0.933 H0 0.857 0.220 H0 0.012 Unpaired t-test
4.2 0.052 0.065 H0 0.713 0.080 H0 0.019 Unpaired t-test
4.3 0.589 *0.013 H0 0.453 0.053 H0 Wilcoxon-Mann-Whitney
4.4 0.711 *0.029 H0 0.711 *0.046 H0 Wilcoxon-Mann-Whitney
4.5 0.327 *0.025 H0 0.481 0.259 H0 Wilcoxon-Mann-Whitney
4.6 0.411 *0.006 H0 0.327 *0.024 H0 Wilcoxon-Mann-Whitney
4.7 0.364 0.059 H0 0.483 *0.024 H0 Wilcoxon-Mann-Whitney
4.8 0.251 *0.008 H0 0.421 *0.018 H0 Wilcoxon-Mann-Whitney
4.9 0.051 0.370 H0 0.634 0.059 H0 0.319 ANOVA

4.10 0.965 0.378 H0 0.513 *0.036 H0 Wilcoxon-Mann-Whitney
5.1 0.623 *0.039 H0 0.272 *0.021 H0 Wilcoxon-Mann-Whitney
5.2 0.860 *0.007 H0 0.441 *0.049 H0 Wilcoxon-Mann-Whitney
5.3 0.891 0.071 H0 0.495 *0.007 H0 Wilcoxon-Mann-Whitney
5.4 0.079 *0.000 H0 0.655 *0.008 H0 Wilcoxon-Mann-Whitney
5.5 0.690 0.060 H0 0.860 0.084 H0 0.969 ANOVA
5.6 0.271 *0.028 H0 0.639 0.093 H0 Wilcoxon-Mann-Whitney
5.7 0.495 *0.017 H0 0.633 0.074 H0 Wilcoxon-Mann-Whitney
5.8 0.944 0.351 H0 0.632 *0.011 H0 Wilcoxon-Mann-Whitney
5.9 0.309 *0.022 H0 0.539 *0.025 H0 Wilcoxon-Mann-Whitney

5.10 0.398 *0.003 H0 0.350 *0.007 H0 Wilcoxon-Mann-Whitney
6.1 0.543 0.069 H0 0.456 *0.013 H0 Wilcoxon-Mann-Whitney
6.2 0.919 0.214 H0 0.864 *0.030 H0 Wilcoxon-Mann-Whitney
6.3 0.645 *0.043 H0 0.104 *0.000 H0 Wilcoxon-Mann-Whitney
6.4 0.220 *0.032 H0 0.916 0.127 H0 Wilcoxon-Mann-Whitney
6.5 0.052 0.168 H0 0.674 0.056 H0 0.009 Unpaired t-test
A.1 0.294 *0.005 H0 0.847 0.070 H0 Wilcoxon-Mann-Whitney
A.2 0.085 *0.001 H0 0.357 0.072 H0 Wilcoxon-Mann-Whitney
A.3 0.938 0.095 H0 0.508 0.061 H0 0.256 ANOVA
A.4 0.937 0.068 H0 0.505 *0.043 H0 Wilcoxon-Mann-Whitney
A.5 0.695 0.072 H0 0.593 *0.050 H0 Wilcoxon-Mann-Whitney
B.1 0.536 *0.029 H0 0.783 0.093 H0 Wilcoxon-Mann-Whitney
B.2 0.630 *0.018 H0 0.475 0.053 H0 Wilcoxon-Mann-Whitney
B.3 0.118 *0.012 H0 0.683 *0.012 H0 Wilcoxon-Mann-Whitney
B.4 0.387 0.137 H0 0.585 *0.049 H0 Wilcoxon-Mann-Whitney
B.5 0.409 *0.036 H0 0.715 0.086 H0 Wilcoxon-Mann-Whitney
C.1 0.515 *0.039 H0 0.908 0.077 H0 Wilcoxon-Mann-Whitney
C.2 0.377 *0.026 H0 0.718 0.089 H0 Wilcoxon-Mann-Whitney
C.3 0.722 *0.010 H0 0.615 0.120 H0 Wilcoxon-Mann-Whitney
C.4 0.709 *0.020 H0 0.608 *0.035 H0 Wilcoxon-Mann-Whitney
C.5 0.602 0.134 H0 0.110 *0.009 H0 Wilcoxon-Mann-Whitney
D.1 0.372 *0.014 H0 0.483 *0.008 H0 Wilcoxon-Mann-Whitney
D.2 0.267 0.063 H0 0.216 *0.001 H0 Wilcoxon-Mann-Whitney
D.3 0.313 *0.014 H0 0.918 0.292 H0 Wilcoxon-Mann-Whitney
D.4 0.713 0.183 H0 0.430 *0.035 H0 Wilcoxon-Mann-Whitney
D.5 0.420 *0.021 H0 0.307 *0.005 H0 Wilcoxon-Mann-Whitney

NRE.1 0.687 *0.015 H0 0.665 0.080 H0 Wilcoxon-Mann-Whitney
NRE.2 0.642 *0.041 H0 0.665 *0.028 H0 Wilcoxon-Mann-Whitney
NRE.3 0.108 *0.001 H0 0.994 0.794 H0 Wilcoxon-Mann-Whitney
NRE.4 0.237 *0.002 H0 0.510 0.051 H0 Wilcoxon-Mann-Whitney
NRE.5 0.763 0.057 H0 0.926 0.222 H0 0.119 ANOVA
NRF.1 0.154 0.051 H0 0.366 *0.005 H0 Wilcoxon-Mann-Whitney
NRF.2 0.070 0.019 H0 0.062 0.098 H0 0.281 ANOVA
NRF.3 0.698 *0.046 H0 0.812 0.082 H0 Wilcoxon-Mann-Whitney
NRF.4 0.919 0.058 H0 0.900 0.055 H0 0.134 ANOVA
NRF.5 0.188 *0.007 H0 0.093 *0.011 H0 Wilcoxon-Mann-Whitney
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Fig. 5. Boxplot for outcomes with normal distribution evidence for unpaired-test.
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TABLE IV
WILCOXON-MANN-WHITNEY TEST RESULTS.

Instance BKS Median RPD Wilcoxon-Mann-Whitney test Algorithm
SelectionBBH BSLC BBH BSLC H1 : XBBH > XBSLC H1 : XBSLC > XBBH

4.3 516 769 824 0.02 0 0.8 0.2 indistinct
4.4 494 843 791 0.01 0.02 0.36 0.64 indistinct
4.5 512 758 777 0.01 0.01 0.54 0.46 indistinct
4.6 560 861 815 0.09 0 0.27 0.74 indistinct
4.7 430 668 650 0.07 0.01 0.2 0.81 indistinct
4.8 492 773 691 0.01 0 0.11 0.89 indistinct

4.10 514 813 758 0.12 0.07 0.75 0.26 indistinct
5.1 253 414 425 0.01 0 0.57 0.43 indistinct
5.2 302 489 483 0.05 0.01 0.76 0.24 indistinct
5.3 226 334 360 0 0.03 0.95 *0.05 BBH
5.4 242 316 357 0.04 0.09 0.7 0.31 indistinct
5.6 213 293 308 0.01 0.02 0.68 0.33 indistinct
5.7 293 430 478 0.04 0.02 0.79 0.22 indistinct
5.8 288 487 424 0.05 0.07 0.12 0.88 indistinct
5.9 279 459 413 0.11 0.03 0.58 0.42 indistinct

5.10 265 399 421 0.08 0.09 0.88 0.12 indistinct
6.1 138 221 212 0.01 0.04 0.51 0.5 indistinct
6.2 146 247 233 0.02 0.05 0.18 0.83 indistinct
6.3 145 217 194 0.03 0.06 0.34 0.66 indistinct
6.4 131 181 223 0 0.04 0.94 0.06 indistinct
A.1 253 351 383 0.02 0.02 0.44 0.57 indistinct
A.2 252 361 413 0 0.01 0.78 0.23 indistinct
A.4 234 352 360 0.02 0.1 0.86 0.15 indistinct
A.5 236 308 349 0.02 0.01 0.91 0.09 indistinct
B.1 69 100 100 0.01 0.01 0.55 0.45 indistinct
B.2 76 116 112 0.03 0.01 0.45 0.56 indistinct
B.3 80 116 113 0.01 0.04 0.09 0.91 indistinct
B.4 79 133 118 0.01 0.01 0.21 0.79 indistinct
B.5 72 103 107 0.01 0.03 0.34 0.67 indistinct
C.1 227 322 362 0.02 0.01 0.92 0.08 indistinct
C.2 219 321 337 0 0.02 0.44 0.56 indistinct
C.3 243 381 383 0.01 0.02 0.35 0.66 indistinct
C.4 219 344 334 0 0 0.43 0.58 indistinct
C.5 215 379 291 0.03 0.02 *0.04 0.96 BSLC
D.1 60 91 109 0.08 0.22 0.97 *0.04 BBH
D.2 66 100 90 0.09 0.02 *0.05 0.95 BSLC
D.3 72 95 117 0.03 0.01 0.99 *0.01 BBH
D.4 62 96 93 0.06 0.11 0.37 0.64 indistinct
D.5 61 94 86 0.02 0.03 0.68 0.33 indistinct

NRE.1 29 44 50 0.03 0.03 0.86 0.14 indistinct
NRE.2 30 45 48 0 0.07 0.77 0.23 indistinct
NRE.3 27 37 44 0 0.07 0.99 *0.01 BBH
NRE.4 28 42 43 0.04 0.04 0.62 0.39 indistinct
NRF.1 14 23 21 0 0.14 0.63 0.38 indistinct
NRF.3 14 24 22 0.07 0 0.22 0.78 indistinct
NRF.5 13 18 20 0.08 0.08 0.97 *0.03 BBH

TABLE V
NORMALITY TEST RESULTS FOR INSTANCES WITH NORMAL
DISTRIBUTION EVIDENCE ACCORDING KS AND SW TESTS.

Instance BBH BSLC
KSL
pvalue

SW
pvalue

DA
pvalue

KSL
pvalue

SW
pvalue

DA
pvalue

4.1 0.078 0.933 0.89 0.857 0.220 0.36
4.2 0.052 0.065 0.07 0.713 0.080 0.12
4.9 0.051 0.370 0.31 0.634 0.059 0.12
5.5 0.690 0.060 0.13 0.860 0.084 0.13
6.5 0.052 0.168 0.26 0.674 0.056 0.11
A.3 0.938 0.095 0.23 0.508 0.061 0.08

NRE.5 0.763 0.057 0.18 0.926 0.222 0.35
NRF.2 0.070 0.019 0.18 0.062 0.098 0.33
NRF.4 0.919 0.058 0.36 0.900 0.055 0.29

KSL and SW tests, show statistically no preference towards
BBH or BSLC. That is a preliminary conclusion that must
be confirmed or rejected by performing more comprehensive
experiments that are beyond the scope of this paper.

IX. CONCLUSIONS

In this paper an approach to compare two algorithms
implementation has been performed using non-parametric test.
The outcomes for each algorithm implementation have been
analyzed by a statistical approach which concludes that BBH’s
outcomes shows in general a better regularity and consistency
than BSLC when they are tested over 55 benchmark for the
SCP. It is possible to observe a correlation between the statical
and the empirical implementation selection, indicating that
85.5% of the instances there is no preferences towards BBH
or BSLC.

The Shapiro-Wilk and Kolmogorov-Smirnov tests could
be not enough in order to confirm o reject evidence for
a normal distribution when a sample is obtained from
an evolutionary algorithm, as has been shown in the
experiments for certain instances in this paper. This can be
due irregularity in the sample or a result related with the
sample size, where small values can give distorted results, as
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TABLE VI
WILCOXON-MANN-WHITNEY TEST RESULTS.

Instance BKS Median RPD Wilcoxon-Mann-Whitney test Algorithm
SelectionBBH BSLC BBH BSLC H1 : XBBH > XBSLC H1 : XBSLC > XBBH

4.1 429 685 722 0.04 0 0.68 0.33 indistinct
4.2 512 696 831 0.01 0 0.96 *0.04 BBH
4.9 641 1079 1029 0.01 0.01 0.31 0.7 indistinct
5.5 211 321 312 0.03 0.01 0.51 0.49 indistinct
6.5 161 238 237 0.04 0 0.76 0.25 indistinct
A.3 232 336 337 0.01 0.02 0.73 0.28 indistinct

NRE.5 28 44 42 0 0 0.17 0.83 indistinct
NRF.2 15 24 24 0 0 0.28 0.73 indistinct
NRF.4 14 21 23 0 0 0.75 0.25 indistinct
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Fig. 6. Boxplot for outcomes with normal distribution evidence for ANOVA test.

is suggested by Demšar in previous papers, requiring more
experiments to be addressed in order to set a conclusion
properly. How ever, regardless Kolmogorov-Smirnov and
Shapirho-Wilk, non-normality condition appears to be not
required in order to perform a Wilcoxon-Mann-Whitney test
when data sets have been generated by an evolutive algorithm.
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