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Abstract. Independent Component Analysis (ICA) is 
an effective instrument for separating mixture signals 
from their blind sources that are specified or over-
determined in the fields of signal processing, machine 
learning, data mining, finance, bio-medical, 
communications, artificial intelligence etc., ICA focuses 
primarily on finding an Objective Function (Contrast 
Function) and an appropriate optimization method to 
solve the problem. Different methods of ICA work out 
variously depending on how one models the contrast 
functions between themselves. ICA focuses mainly on 
finding components that are as independent as 
possible and as non-Gaussian as possible of an 
observed unexplained non-Gaussian Signal Mixture. 
ICA is an extremely important subject of great interest 
in numerous technological and scientific applications. 
In this article, we review a few different contrast 
functions in addition to the much earlier survey of Aapo 
Hyvarinen and widely used existing ICA algorithms in 
different scenarios for source separation. This article 
presents basic ideas on ICA, ICA algorithms and 
contrast functions. 

Keywords. Independent component analysis, 
unsupervised learning, particle swarm optimization, 
higher order statistics, blind source separation. 

1 Introduction  

In data-driven era, data generation, data 
measurement and data processing are important 
steps of computation. With the advent of 
information technology that has successfully 
percolated to the bottom-most layers of our daily 
lives, enormous amount of data is being 
generated, effortlessly and inadvertently. In 
addition, to add to our misery, relevant and not-
so-relevant data are generated indistinguishably 
and measured together, and one needs to put 
extra effort to separate the relevant data for the 
irrelevant one.   

In that sense, the data that we access is of 
enormous volume, but might contain relatively 
less information than we might need. The problem 
persists in many aspects of life and in many 
disciplines of scientific research. Typical real-life 
situations are mixtures of simultaneous sounds or 
human voices that have been picked up by 
several microphones, brain signal measurements 
from multiple EEG sensors, several radio signals 
arriving at a portable phone, or multiple parallel 
time series obtained from some 
industrial process.  
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A well-known example of noisy room, known 
as Cocktail Party Problem, is appropriate to state 
here.  Suppose in a cocktail party many people 
are talking at the same time and isolation of the 
individual signals is of interest. A guest at a 
cocktail party must focus on one person’s voice in 
a room filled with competing voices and other 
noises. This ‘cocktail-party problem’ is solved 
effortlessly by humans with binaural hearing. 
Another example in the context of image 
processing can also be stated here.  Consider the 
problem of removing blur from an image due to 
camera motion. 

A photographer tries to take a photo, but their 
camera is not steady when the aperture is open. 
Each pixel in the sensor array records the 
combination of all lights within an integration 
period from the intended image along the camera 
motion trajectory. Thus, in blurred image each 
recorded pixel is the mixture of multiple image 
pixels. De-blurring an image requires recovering 
the original image as well as the underlying 
camera motion trajectory from the blurry image. 
Both the cocktail party and de-blurring problems 
are ill-posed and additional information must be 
employed to recover a solution. 

The term Blind Source Separation (BSS) is 
coined to characterize this problem. Simply 
speaking, any real-life data measurement 
process measures the combined data of relevant 
and irrelevant data, which result from their 
respective independent sources and therefore, it 
is necessary to separate out the data of relevant 
source from the data of other sources. That said, 
progress has been made when the interactions 
between signals are simple in particular, linear 
interactions, as in both examples. When the 
combination of two signals results in the 
superposition of signals, we term this problem a 
linear mixture problem. 

In mathematical terms, we need to find a 
suitable, proper multivariate description of 
random vectors. The representation is also 
referred, for simplicity, as linear transformation of 
initial data. To put it another way, each 
representative component is a linear blend of 
initial variables. There are renowned linear modes 
of transformation which includes Factor Analysis 
[1], Principal Component Analysis (PCA) [2, 3], 
and Projection Pursuit [4] etc. 

Independent Component Analysis is a 
technique of data transformation that finds 
independent sources of activity in recorded 
mixtures of sources. Independent Component 
Analysis (ICA) is a computational technique for 
revealing hidden factors that underlie sets of 
measurements or signals. ICA assumes a 
statistical model whereby the observed 
multivariate data, typically given as a large 
database of samples, are assumed to be linear or 
nonlinear mixtures of some unknown 
latent variables. 

Independent Component Analysis (ICA) was 
introduced in 1986 [5]. However, in that paper, 
there is no theoretical explanation was presented 
and the proposed algorithm was not applicable in 
several cases and in 1991 partial theoretical 
structure was laid down [6]. Thus, the ICA 
technique remained mostly unknown till 1994, 
where the name of ICA appeared and introduced 
as a new concept [7] where in it is suggested that 
signals of the sources are independent. 

Several algorithms have been proposed since 
then for calculating ICA techniques, which differ 
among themselves in the handling of statistical 
independence, on estimation of the separation 
matrix, and use of statistics of higher order. For 
BSS, presumably, the source signals may be 
combined linearly or nonlinearly. ICA is ideal if the 
signals are supposed to be combined linearly. 
Several other methods with a nonlinear mixture 
assumption exist for BSS [8, 9, 10]. ICA's linear 
mixture model attempts to separate source 
signals according to certain assumptions: 

1. The source vectors are statistically 
independent. 

2. The mixing matrix (A, as defined in the next 
section) should be a square and full rank. 

3. The source matrix (S, as defined in the next 
section) does not have any external noise. 

4. The data are centered (zero mean).  
5. The signals from the source should be non-

Gaussian probability density function (pdf) 
with one source expected, which may 
be Gaussian. 

Independent Component Analysis (ICA) has 
been employed for nearly 30 years for unmixing 
of complex signals. 
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Unmixing the signals without the use or even 
providing any background knowledge about 
signals of the source without mixing them up is 
generally identified as Blind Source Separation 
(BSS). ICA is the unique BSS technique 
developed with respect to signal processing. The 
key concern of the ICA is extraction of "source 
signals" from a set of observed signal mixtures 
and their mixing coefficients (proportion). That 
means, this way the derived information can be 
translated further straight. 

Independent components analysis (ICA) is a 
probabilistic method, whose goal is to extract 
underlying component signals that are maximally 
independent and non-Gaussian, from mixed 
observed signals. The mixing coefficients are also 
unknown. The latent variables are non-Gaussian 
and mutually independent and they are called the 
independent components of the observed data. 
By ICA, these independent components, also 
called sources or factors, can be found. 

Thus, ICA can be seen as an extension to 
Principal Component Analysis and Factor 
Analysis. ICA is a much richer technique, 
however, capable of finding the sources when 
these classical methods fail completely. In many 
cases, the measurements are given as a set of 
parallel signals or time series. 

With the aim of maximizing non-Gaussianity or 
minimizing Gaussianity in order to reach source 
as independently as possible, ICA is therefore an 
optimization problem. The hypothesis for 
independence has to be approximated, thus 
turning the estimation of the sources into an 
optimization problem described by a contrast 
(cost) function that is minimal when the sources 
estimation are as far as independent. 

Somehow or other, contrast function is an 
independent measure. This idea led to the 
concept of a contrast function: by definition, it is a 
criterion, which leads to an acceptable solution of 
the BSS problem by maximizing the separator, 
that is every row of the mixing-separating system 
is extracted one by one, that is, source signal is 
built component by component. This approach is 
called deflation.  When the entire source signal 
(multi-unit) is simultaneously collected, it is called 
symmetric approach. ICA method in particular 
can be expressed as a sum of the Contrast 
Function and Optimization Algorithm. 

More than 30 different ICA algorithms are 
already available so far [11]. ICA technique 
basically deals with two independent classes, i.e. 
Single method of optimization used for different 
contrast functions or different method of 
optimization used for single contrast functions. 

The widespread and interdisciplinary 
applications of ICA in the context of image 
processing, text mining, data mining, audio signal 
processing, biomedical signal processing, and 
time series applications motivate us to present 
ICA theory and its most used methods in 
one article. 

The goal of this review is to explain ICA and to 
present some of the widely used algorithms for 
ICA computation as well as some more contrast 
functions in addition to Aapo Hyvarinen's much 
earlier survey in 1999 [12]. 

The remainder of the survey is organized in 
the following way. We give introduction to ICA in 
section 2. Section 3 addresses different higher 
order statistical notations that are useful in ICA. 
Section 4 gives six different ICA algorithms. 
Section 5 describes the various ICA contrast 
functions. Section 6 gives applications of ICA in 
real world. Finally, section 7 of the survey is 
conclusion and references.   

2. Independent Component Analysis 
(ICA) 

Independent Component Analysis (ICA) [12, 13, 
14, 15, 16] is a statistical tool for the 
transformation of an observed multidimensional 
random vector into statistically independent 
components. This approach is used to separate 
the mixed signals. PCA functions only in second-
order statistics and provides optimal data for the 
Gaussian distribution sets. ICA is a PCA 
extension designed to optimize non-Gaussianity 
or minimize the Gaussianity of the datasets. ICA 
attempts to find independent components by 
assuming their statistical property of higher order. 

The random vectors, 𝑥  and 𝑠  represent the 
data in ICA and the independent 
components respectively. ICA has many 
algorithms such as FastICA [17], projection 
pursuit [15], and Infomax [15, 18]. 
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The main goal of these algorithms is to extract 
independent components by (1) maximizing the 
non-Gaussianity, (2) minimizing the mutual 
information, or (3) using maximum likelihood (ML) 
estimation method [19]. However, ICA suffers 
from a number of problems such as over-
complete ICA and under-complete ICA. 

Let us consider an observed  𝑚 dimensional 

column vector T
mxxxmx ],...,,[)( 21  which 

represents a linear combinations of 𝑛 
elements (𝑛 ≤ 𝑚 ) 𝑛 -dimensional elements 

T
nsssns ],...,,[)( 21  those are different from the 

statistics (or are as independent as possible). So 
the ICA model is: 

𝑥(𝑚) = 𝐴𝑠(𝑛), (1) 

where 𝐴  is a linear matrix mixture of order 𝑚 × 𝑛. 
The input elements are usually statistically 
dependent due to the mixing phase although the 
elements were not original. Both the mixing matrix 
and independent components (ICs) - 𝑠௜ , 𝑖 =
1,2, … , 𝑛 are unknown. If a demixing matrix𝑊,that 
produces 𝑦(𝑚) can be found then that will give 
components which are statistically independent: 

𝑦(𝑚) = 𝑊𝑥(𝑚) = 𝑊𝐴𝑠(𝑛). (2) 

The model assumed that the data variables 
were linear or nonlinear mixtures of these latent 
variables, and the type of mixing was also 
unknown. The latent variables are not Gaussian 
and should be mutually independent. They are 
referred to as independent components of the 
data observed. 

This approach is called blind because there is 
no much knowledge about both the mixing 
matrix A and the matrix of the source 𝑠. In addition 
to this, ICA method can be described as finding a 
linear transformation, which maximizes the �̂� non-
Gaussianity. The Matrix 𝑊  is de-mixed by 
optimizing cost function. Specific cost functions 
such as negentropy, kurtosis, etc. can be used for 
ICA method. Therefore, various methods for 
computing 𝑊 exist in ICA method. 

That said, progress has been made when the 
interactions between signals are simple – in 
particular, linear interactions, as in both of 
these examples. 

When the combination of two signals results in 
the superposition of signals, we term this problem 
a linear mixture problem. The goal of ICA is to 
solve BSS problems, which arise from a 
linear mixture. 

Furthermore, the metrics of cumulants, 
likelihood function, negentropy, kurtosis, and 
mutual information have been developed to 
obtain a demixing matrix in different adaptations 
of ICA-based algorithms. FastICA [18], [16] was 
developed to maximize non-Gaussianity with 
relative speed and simplicity. Recently, Zarzoso 
and Comon [20, 21] proposed the Robust 
Independent Component Analysis (R-ICA) 
method for better convergence performance. 

They used a truncated polynomial expansion, 
rather than the output marginal probability density 
functions, to simplify the estimation process. 
Moreover, in [19], the authors developed the rapid 
ICA algorithm which takes advantage of multi-
step past information with respect to a fixed-point 
method in order to augment the non-Gaussianity 
among the estimated signals. In [7, 22, 23], the 
authors have presented ICA methods using 
mutual information. They constructed a 
formulation by minimizing the difference between 
the joint entropy and the marginal entropy among 
the estimated sources. Moreover, the Euclidean 
distance divergence (ED-DIV) and the Kullback 
divergence (Kl-DIV) were used as the measure 
functions for nonnegative matrix factorization 
(NMF) problems in [24]. 

3. Definition of Independence and 
Higher Order Statistics  

The various ICA algorithms could be divided into 
two classes due to their independent descriptions: 
algorithms, which maximizes the non-Gaussian 
complexity of the components or minimizes 
mutual information.  ICA makes sense when you 
look for components which are absolutely as non-
Gaussian as possible. 

In fact, when a Gaussian distribution fits a 
random variable, all of those moments and order 
cumulants above 2 are null [15, 25]. Locating the 
ICs therefore implies detecting signals of its 
moments and order cumulants above 2. 
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Therefore, different notations need to be 
introduced to present and define contrast 
functions used in ICA. 

3.1 Moments 

For a variable, the 𝑖௧௛  moment 𝑚௜   is equal to: 

}{ i
i xEm  , (3) 

where E is the expectation and for  𝑖 = 1, 𝑚ଵ =
𝑚𝑒𝑎𝑛(𝑥). 

A variable's moments define its function of 
probability density, that is, its distribution. 

3.2 Central Moments 

For a variable, the 𝑖௧௛    central moment 𝜇௜   is 
equal to the moment of the centered variable 𝑥, 
i.e.: 

  ii mxE 1 . (4) 

Hence:  
The mean of 𝑥   is  𝜇ଵ = 0  and, the variance 

of 𝑥  is    𝜇ଶ = 𝜎ଶ. 
The third moment }){( 3

13 mxE   is 

classified as skewness, and is a measure of 
distribution asymmetry. Skewness may be 
positive, negative or null for Gaussian distribution. 

For variable 𝑥  the fourth moment is
}){( 4

14 mxE  . It's related to its kurtosis, 

which reflects the pointedness or flatness of the 
distribution of the value. 

3.3 Kurtosis 

Under Central Limit Theorem, that declares the 
linear combination of independent random 
variables on finite support probability density 
functions (pdfs) tend to a Gaussian distribution. In 
general, higher-ordered statistics such as fourth 
order cumulant or kurtosis are used for non 
Gaussian measurement. When the data is pre 
processed to show unit variance, the kurtosis 
shall be equal to the fourth moment in the data. 

Kurtosis, defined for a centered variable 𝑥, as: 

224 }]{[3}{ xExEk  , (5) 

which is a non-Gaussianity measurement 
for distribution. 

When the data is whitened and centered i.e.,

1}{ 2 xE , kurtosis is same as : 

3}{)( 4  xExk , 

when 0)( xk , the distribution declared as 

Gaussian, similarly when 0)( xk  and 0)( xk  

the distribution is declared as super-Gaussian 
and sub-Gaussian respectively. The probability 
density function peak is very sharp for super-
Gaussian and peak is rather flat in case of 
sub- Gaussian. 

It is thus possible to calculate non-Gaussian 
components, maximizing their kurtosis absolute 
value. It is possible to optimize the components’ 
independence by maximizing each individual 
kurtosis (maximum non-Gaussianity) while 
minimizing their mutual kurtosis (minimum non-
Gaussianity), that may be described as the fourth 
– order cumulant function. 

Thanks to its computational and mathematical 
simplicity, kurtosis has already been used in ICA 
as a measure of non-Gaussianity and in related 
fields. It has a linear structure, so mathematically: 

and 

)()( 1
4

1 zkurtzkurt   , 

where 𝛼 is constant. 
Kurtosis is easy to calculate but is of poor 

statistical significance. Therefore, a better 
measure of non-Gaussianity is required 
for  kurtosis. 

3.4 Cumulants 

Covariances applied in second-order statistics 
can be compared with cumulants. The first three 
cumulants have their moments equal, for 
centered variables, i.e.: 

01 k , 

}{ 2
2 xEk  is the variance of 𝑥, 

)()()( 1121 zkurtzkurtzzkurt  , 
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}{ 3
3 xEk  . 

The cumulant of fourth-order is expressed as: 

)(}]{[3}{ 224
4 xkxExEk  , (6) 

and hence is same with kurtosis. 
Fourth-order auto- and cross-cumulants of 4 

vectors  iu  , ju , ku and lu   are specified as: 

}{}{}{}{

}{}{}{},,,{4

kjliljki

lkjilkjilkji

EEEE

EEEk

uuuuuuuu

uuuuuuuuuuuu




 (7) 

From the general viewpoint, one may note that 
the auto-cumulant fourth order of a centered 
variable is identical to its kurtosis. Cumulants may 
be represented as a tensor. Cumulant tensor is 
the simplification of the covariance matrix with 
diagonal auto-cumulants. One vector is 
characterized with auto-cumulants that 
corresponds to variable variance, whereas two 
vectors are characterized by cross-cumulants that 
corresponds to variance of two variables. The 
independent vectors statistically generate 
maximum auto-cumulant and cumulant tensor of 
null off-diagonal elements. 

Kurtosis is highly sensible to outliers and is a 
reasonable approximation of non-Gaussianity; 
therefore it is non-robust estimation of non-
Gaussianity. Negentropy is another measure of 
the (non-)Gaussianity variable and robust, hence 
preferred in place of kurtosis. 

3.5 Negentropy 

Negentropy, which is based on the information 
theoretic quantity of (differential) entropy, can 
calculate non-Gaussianity. The sum of the 
product of each observation’s probability and their 
log probabilities is called as entropy of a discrete 
variable. As Hyvarien explains, “Random-variable 
entropy may be understood as the degree of 
information provided by variable observation. 

The more the variable is 'random', the greater 
its entropy, i.e., unstructured and unpredictable. A 
Gaussian variable is the biggest entropy with 
equal variance of all the random variables” [26]. 

Hence, entropy may also be a valid criterion 
for estimating a variable 's non-Gaussianity. For a 
variable 𝑥, it is specified as: 

)(log)()( i
i

i ayPaxPxH    
(8) 

and hence, it carries a negative value. At the other 
hand, entropy is called differential entropy for a 
continuous function, as given by the function 
integral times of the function log i.e.: 

 dsspxpxH )(log)()(  (9) 

Negentropy is never negative, so if 𝑥  has a 
Gaussian distribution, it is zero. Negentropy has 
a valuable property and its invertible linear 
transformation is invariant. It is also a robust non-
Gaussian measure. One downside of negentropy 
is very hard to measure. This is why it needs 
approximation. The approximation is 
expressed by: 

)()()( xHxHxJ Gauss  , (10) 

where Gaussx  is a random Gaussian variable 𝑥 

with the same matrix of covariances. The more 
the variable is "non-Gaussian", the higher the 
negentropy value. Hence, one should seek to 
maximize the negentropy of component when 
looking for ICs. In real cases, the value of the 
negentropy is nevertheless hard to estimate, so 
usually one needs to work with a more simple 
approximation. Hyvarinen [26] includes a number 
of such approximations as shown below: 

23 )(
48

1
}{

12

1
)( xkurtxExJ   (11) 

where 𝑥  is the variable of zero mean and unit 
variance. This estimate however is based on 
kurtosis, that is not a dependable estimator. A 
further approximation may instead be used: 

2)}]({)}({[)( vGExGEkxJ  , (12) 

where 𝑣  is a variable with mean 0 and unit 
variance, 𝑘 is a constant and G is a non quadratic 
function. Again, Hyvarinen suggests two 
important choices of G: 

ua
a

uG 1
1

1 coshlog
1

)(   
(13) 

and 








 


2
exp)(

2

2

u
uG . (14) 
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3.6 Maximum Likelihood Estimation 

Maximum Likelihood is a traditional method used 
for independent component estimations. This is 
built on the density of a linear transform using 
well-known results. Taking the basic ICA model 
into consideration, )()( nAsmx  , the density 

xp of the mixture signal observed may be 

formulated as: 

)]([det)]([
det

1
)]([ mWxpWnsp

A
mxp ssx   

(15) 

where 1 AW . As the source is considered to 
be statistically independent and the mixture signal 
density is the product of the sources' marginal 
densities, so eq. 15 can be expressed with a 
function of T

nwwwW ),...,,( 21  and 𝑥, giving: 





N

i

T
isx mxwpWmxp

1

)]([det)]([  (16) 

Suppose we have 𝑥(𝑚) of 𝑇 observations, so 
this likelihood can be obtained as the density 
product assessed at 𝑇  points. The likelihood of 
matrix 𝑊 is given by: 


 


T

m

N

i

T
isix mxwpWwmxpWL

1 1

)]([det])([][  
(17) 

Very often, the use of the logarithm of 
likelihood is more practical, as it is algebraically 
simpler. This makes no difference here since the 
logarithm maximum is found at the same point as 
the maximum likelihood. Thus the log likelihood 
function regarding the parameter 𝑊 is: 


 


T

m

N

i

T
ii mxwpWTWL

1 1

)]}([log{detlog][log  
(18) 

Simplifying the notation and dividing by 𝑇 to 
the likelihood, to get the equation as: 









 


N

i

T
ii mxwpEWWL

T 1

)]}([log{detlog][log
1  

(19) 

The log probability here is the function of the 
separation matrix 𝑊 and the marginal density of 
the estimated sources. The estimation of 
estimated source densities is a non-parametric 
problem. The non-Gaussianity is used for non-
parametric problem solving. 

4. Different ICA Methods 

4.1 FastICA 

FastICA algorithm was first introduced by 
Hyvarien et al. [19]. FastICA is a fixed-point 
iterative algorithm to maximize non-Gaussianity, 
which is an alternative to gradient-based ways 
that illustrates rapid (cubic) convergence.  

The approach is used to optimize various 
forms of contrast functions like 
kurtosis/negentropy. Unlike gradient-based 
methods, the Fast-ICA method lacks the learning 
rate or other personalized parameters. It is a 
major advantage as a poor learning rate choice 
destroys convergence in general. 

The Hyvarinen algorithm quickly converges as 
it seeks component one by one. For independent 
component estimation, FastICA uses kurtosis 
[19]. Whitening is generally done on the data 
before the algorithm is executed. This ensures 
that all correlation inside the data is eliminated, 
i.e. the data has to be uncorrelated.  

The information-theoretical amount of entropy, 
which is the base of negentropy is robust but 
computationally complicated than kurtosis. 

Nevertheless, computationally simple 
negentropy approximations are available to 
relieve the complexity of negentropy computation.  

The followings are two different algorithms to 
perform FastICA. 

4.2 INFOMAX 

This approach maximizes the entropy of a 
nonlinear output (information flow) of neural 
network and is called as InfoMax [18]. Infomax 
specializes in locating ICs by optimizing member 
joint entropy.  

Bell and colleagues tried to formulate a 
method, which was based on the Linsker’s 
Infomax principle [27] to create unsupervised 
neural network learning rules and this was 
successful in solving the Blind Source separation 
(BSS) problem. 
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The non-linearities in the transform function can 
take input distribution higher-order moments and 
reduce redundancy. This helps the neural 

network identify components, which are 
statistically independent in the data input. This 
method is also shown to be equivalent to the 

Table. 1. Algorithm FastICA (single independent source component) 

1. Data center to zero the mean and so whiten the outcome of giving 𝑥. 
2. Select a primary version of the 𝑝-vector 𝑤 with unit norm. 
3. Consider G, be any of these non-quadratic density with partial derivatives g (first) and 'g  (second). 

4. Let    x)))((wE(gwx))x g((wEw T'T   . In practice, expectations are estimated by using sample averages. 

5. Let 



 

w

w
w . 

6. Iterate among steps 4 and 5. End once convergence has been reached. 

Table. 2.  Two FastICA algorithms (extracting multiple independent source components) 

Deflation algorithm 

1. Data center to zero the mean and so whiten the outcome of giving 𝑥. 
2. Choose a number,𝑚, independent components to be extracted. 
3. For  ml ,...,2,1 : 

– Initialize (e.g., randomly) the 𝑝-vector lw  to have unit norm. 

– Let    x))((wgEwx))x g((wEw T
l

'
l

T
ll

    be a single-component update to FastICA 

for  
lw , where g and 'g  defined as earlier. In practice, expectations are estimated by using sample 

averages. 

– Use Gram-Schmidt to orthogonalize  𝑤௟
ା with regard to previously chosen 





1l1 ,...,ww : 






  j

1l

1j
j

T
lll w)w)((www  

– Let     



 

l

l
l

w

w
w . 

– Iterate 
lw  until convergence. 

4. Set 𝑙 ← 𝑙 + 1. If  𝑙 ≤ 𝑚, return to step 3. 

Parallel algorithm 

1. Data center to zero the mean and so whiten the outcome of giving 𝑥. 
2. Choose a number,𝑚, independent components to be extracted. 
3. Initialize (e.g., randomly) the 𝑝-vector 

n1 ,...,ww , every of them must have unit norm. 

a. let T
n1 ),...,w(wW  . 

4. Conduct a symmetric orthogonalization of  𝑊by W)(WWW 1/2T  . 

5. For each 𝑙 = 1,2,…,n , let    x))((wgEwx))xg((wEw T
l

'
l

T
ll

   be the FastICA single  

6. Component update for 
lw , where g and g’are defined earlier. In practice, expectations estimated by using 

sample average estimation. 
7. Conduct another symmetric 𝑊 orthogonalazation. 
8. If there is to be convergence, return to step 5. 
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methods of maximum likelihood [15]. Amari et al. 
(1996) proposed the algorithm as follows to 
calculate the unmixing matrix W (called 
Infomax) [28]. 

Being )(t a learning-rate function and )(f  

a function related to the distribution nature (i.e., 
super Gaussian or sub Gaussian). It is important 

to bear in mind that a  W  initial value is a 
random matrix usually [22]. For more detail on 
Infomax's procedure see [22, 28]. 

4.3 JADE 

The Joint Approximated Diagonalization of Eigen 
matrices (JADE) [20, 29] is a joint diagonalization 
method of the cumulant matrices, especially with 
regard to signal treatments for application in 
chemometrics [30]. Cumulants orders two and 
four are involved, and Joint diagonalization is 
carried out with Jacobi technique. The JADE 
algorithm also has no customizable parameters, 
and hence it is robust. However, this approach is 
very computationally intensive, since all cumulant 
matrices are diagonalized at once. 

This algorithm works well in small dimension 
but is poor in high dimensional spaces. The Matrix 
𝑋  is first converted to a reduced set of PCA 
loadings, and then these are centered and 
whitened to equal variances. The auto-and cross-
cumulants of these loadings are then put to a 
dimension tensor of fourth order nnnn  (  is 
the load count). 

The tensor is projected into orthogonal Eigen 
matrices and is diagonalized into a rotation matrix 
(using Jacobi algorithm). In the pre-processing 
stage, the rotational matrix is applied to the 
whitening matrix. Providing the computation of 
matrix 𝑊. 

Equations (2, 1) gives respectively 
independent components and mixing matrix. The 
description of algorithm could be found from 
[29, 30]. 

4.4 KERNEL ICA 

Kernel ICA [31], which is a non-parametric 
approach, works by setting a contrast function to 
replicate kernel Hilbert space. Contrast function 
may be selected either as a canonical correlation 
(KCC) or as a generalized variance (KGV). Here 
mixtures are designed for a higher dimensional 
space, and then the mixing matrix 𝑊 is obtained 
to minimize pair-wise correlations in that space. If 
it does, this could be seen that reproducing kernel 
Hilbert spaces based on Gaussian kernels 
guarantees that the source is independent. In 

Table. 3. Infomax algorithm 

1 Initialize (0)W  (e.g. random), 

2 (t))Wf(Y)Yη(t)(I(t)W1)(tW T   , 

3 If not converged, go back to step 2.  

Table. 4. Jade algorithm 

1 From  sample covariance 
xR  and calculate a 

whitening matrix W . 
2 From the sample 4th –order cumulant 𝑄௭of the 

whitened process )()( mxWmz  ; calculate 

the 𝑛  most significant Eigen pairs 
}.1{ nrr    

3 With a unitary matrixU , Jointly diagonalize the 
set }1{ nrMN rr   . 

4 UWA   is the estimation of A . 

Table 5. Kernel ICA-KGV algorithm 

Input: Data Vectors Nyyy ,...,, 21  

Kernel ),( yxK  

1 Whiten the data 
2 Minimize the contrast function )(WC

(Regarding W ) defined as: 
a. Compute the centered Gram matrices 

mKKK ,...,, 21
 of the estimated sources 

},...,,{ 21 Nxxx ,  where ii Wyx   

b. Define 

  kkm

k

F DKK det/det,...,1 Κ


  

c. Define  

   m

k

FmF KKKKIWC ,...,log
2

1
,...,)( 11



 
 

Output: W  

Whereas  m

k

F KK ,...,1



  the kernel generalized 

variance,   mF KKI ,...,1




 contrast function, D  

stands for block-diagonal matrix of covariance of the 
individual vectors and   jiijk KKΚ .  
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addition, this approach is argued to be more 
stable than previous ICA algorithms as for the 
existence of outliers. 

Bach and Jordan presented the algorithm 
Kernel ICA-KGV [31] as follows. 

4.5 RADICAL 

RADICAL (Robust, Accurate and Direct ICA 
algorithm) is an effective entropy estimator based 
ICA algorithm [32].  

The ICA approach is based on a direct 
minimization of the measurement of the departure 
from independence by estimated divergence of 
Kullback-Leibler between the joint distribution and 
the marginal distribution product. RADICAL’s 
entropy estimator is a function of the order 
statistics.  

The entropy estimator used in particular is 
consistent, and shows rapid convergence. This 
entropy estimate is reliable, fast converging in 
computational efficiency and pretends to be 
robust to outliers. 

The RADICAL algorithm described as follows, 
was proposed by E.G. Learned-Miller and J. W. 
Fisher III [32]. 

4.6 ICA with PSO 

In recent times, Particle Swarm optimization 
(PSO) is a familiar population based-search. 
Particle swarm optimization (PSO) is used to 
detect the search space of a particular problem to 
find the settings or parameters required to 
maximize/minimize a specific objective. The 
algorithm works by maintaining a few candidate 
solutions at the same time in the search space.  
PSO algorithm works in 3 steps; first it estimates 
the fitness of each moving particle, secondly, it 
updates individual and global best fitness and 
position, and finally, it updates the velocity and 
position of each particle. 

There has been much work to solve 
Independent Component Analysis with Particle 
Swarm Optimization. One of the Algorithms was 
presented [33] for optimizing the 
objective function: 

 





 
2)(2)( )(

1
)(

1
)( yy CCyJ , (14) 

where the auto cumulant in fourth order is 
given by: 





kjliljki

lkjilkji
y

ijkl

yyyyyyyy

yyyyyyyyC )(

 (15) 

The objective function J  is kurtosis [34, 35], 
so it can be written as a function of an orthogonal 
matrix U to be determined by the method of 
optimization. It is not directly easy to work with this 
kurtosis objective function, so later on this 
objective function is modified with the help of 
reference vector. Therefore, a reference-based 
contrast function is defined. Reference signals 
are merely signals artificially introduced to 
facilitate the maximization of contrast function. 

Since reference signals are indirectly involved 
in the process of iterative optimization, these 
reference-based contrast functions have a 
common appealing feature and the respective 
optimization algorithms are quadratic regarding 
the parameters searched: 

 
(16) 

where }{E denotes the expectation value and z 

is the reference signal. Considering another 

Table 6. RADICAL, two-dimensional method Algorithm 

Input: Data vectors NXXX ,...,, 21 , assumed 

whitened. 

Parameters: m: Size of spacing equivalent to √𝑁. 

𝜎௥
ଶ: Noise variance for replicated points. 

R: Number of replicated points per 
original data point. 

K: Number of angles from which to 
determine cost function. 

Procedure:   1. Create 𝑋ᇱ  by replicating R points 
with Gaussian noise for each original 
point. 
2. For each 𝜃, rotate the data to this 
angle (𝑌 = 𝑊(𝜃) ∗ 𝑋ᇱ)  and evaluate 
cost function. 
3. Output W  correspond to the 
optimal 𝜃. 

Output:         W  (demixing matrix). 
All parameter and notation are taken from (Learned-
Miller  and  Fisher III  (2003) [32]) 
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(reference) separation matrix V  and 
)()( mVxmz  , now the contrasts function 

specifically in terms W  and V  as follows: 

2

22 }{}{

}{
),(

zEyE

yC
VWI z , 

(17) 

where )()( mWxmy  and )()( mVxmz  . 

Some earlier suggestions have been made 
using PSO to solve ICA problem [36, 37].  The 
method of combining swarm-search with 
gradient-based optimization for ICA is different 
from PSO algorithm proposed in [33], where the 
particle velocity component is modified with 
gradient direction at each iteration, and the 
direction of global best. The two algorithms 
presented by Pati et al., are presented below [33]. 

5. Contrast Function for ICA 

The model of the data estimation in independent 
component analysis is generally carried out by 
formulating an objective function and then 
minimizing or maximizing the function. The 
objective function is called as contrast function. 
Many researchers use the terms, ‘loss function or 
cost function’ in their researches. In simpler 
terms, this can be interpreted as any function 
whose optimization makes it possible to estimate 
independent components.  

Some of the classical optimization methods 
can be used for explicitly formulated objective 
function to optimize the objective function. Some 
such methods are gradient method, Newton 
methods, Iterative method etc. For certain cases 
however, the theory of algorithm and estimation 
is difficult. 

The initial phase of BSS comparison works 
focused on Shannon entropy and Kullback-
Leibler divergence (KLD) based on theoretical 
definitions of information independence and its 
approximations through statistics of higher order. 
The other important group of contrasts came from 
the non-Gaussian definitions and their 
approximations of independence [15]. You will 
find more information on these commonly used, 
conventional contrast functions in [12, 20]. 

5.1 General Contrast Functions 

This is a one-unit contrast function developed [38] 
that has statistically attractive properties (contrast 
to cumulant) without prior understanding of the 

Table. 7. Two ICA with PSO algorithms 

Gradient- based PSO 
Input : )(mx : Observed signal, 𝑆: swarm size and 

𝛿: Trade-off parameter 

Output: bestU : Separation vector 

Initialize 0U  and the corresponding reference 
signal 𝑧଴

௣
(𝑚) = 𝑈଴

௣
𝑥(𝑚),∀1 ≤ 𝑝 ≤ 𝑆. 

for 𝑘 = 0,1, … , 𝑘௠௔௫ − 1 do 
      𝐼௣ = 𝐼൫𝑈௞

௉, 𝑈௞
௣

൯, ∀ 1 ≤ 𝑝 ≤ 𝑆 

      𝑏𝑒𝑠𝑡 =
p
maxarg  𝐼௣ 

      𝑑௞
௣

= ∇𝐼(𝑈௞
௣

, 𝑈௞
௣

) 

      𝛼௣ =

maxarg 𝐼(𝑈௞

௣
+ 𝛼𝑑௞

௣
, 𝑈௞

௣
) 

      𝑈෩௞ାଵ
௣

← 𝑈௞
௣

+ 𝛼௣(𝛿𝑑௞
௣

+ (1 − 𝛿)(𝑈௕௘௦௧ − 𝑈௞
௣

))   

      𝑈෩௞ାଵ
௣

←
௎෩ೖశభ

೛

(ா{ห௎෩ೖశభ
೛

௫(௡)ห
మ

})
భ
మ

 

      𝑈௞ାଵ
௣

← 𝑈෩௞ାଵ
௣  

end 
       

Gradient-based PSO with Fixed-point update 

Input : )(mx : Observed signal, 𝑆: swarm size and 

𝛿: Trade-off parameter 

Output:  
bestU : Separation vector 

Initialize 
0U and the corresponding reference signal 

𝑧଴
௣

(𝑚) = 𝑈଴
௣

𝑥(𝑚),∀1 ≤ 𝑝 ≤ 𝑆. 
for 𝑘 = 0,1, … , 𝑘௠௔௫ − 1 do 
    𝑈෩଴

௣
= 𝑈௞

௣
, ∀ 1 ≤ 𝑝 ≤ 𝑆 

    for 𝑙 = 0,1, … , 𝑙௠௔௫ − 1 do 
        𝐼௣ = 𝐼൫𝑈෩௟

௉ , 𝑈௞
௣

൯, ∀ 1 ≤ 𝑝 ≤ 𝑆 

        𝑏𝑒𝑠𝑡 =
p
maxarg  𝐼௣ 

        𝑑ሚ௞
௣

= ∇ଵ𝐼(𝑈෩௟
௉ , 𝑈௞

௣
) 

        ∝෥௣=

maxarg 𝐼(𝑈෩௟

௣
+ 𝛼𝑑ሚ௞

௣
, 𝑈௞

௣
) 

       𝑈෩௟ାଵ
௣

← 𝑈෩௟
௣

+ 𝛼௣(𝛿𝑑ሚ௞
௣

+ (1 − 𝛿)(𝑈௕௘௦௧ − 𝑈෩௟
௣

))  

            𝑈෩௟ାଵ
௣

←
௎෩೗శభ

೛

(ா{ห௎෩೗శభ
೛

௫(௡)ห
మ

})
భ
మ

 

    end 
    𝑈௞ାଵ

௣
← 𝑈෩௟೘ೌೣ

௣      
end             
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densities of the independent components which is 
required to allow  simple algorithmic 
implementation to make it simple. This so-called 
one-unit contrast function as optimization makes 
it possible to estimate a single independent 
component rather than estimate the entire ICA 
model.  A family of such non-normality measures 
could be virtually built using any function G and 
taking into account the gap between G ’s 
expectations regarding actual data and Gaussian 
Data Expectations. Put another way, a contrast 
function J can be defined, which measures the 
non-normality of a zero-mean random variable 
using any case, a non-quadratic, sufficiently 
smooth function G  as follows: 

p

vyG vGEyGEyJ )}({)}({)(  , (18) 

where v  is a standardized Gaussian random 
variable, 𝑦 is supposed to be normalized to the 
unit variance, and  the exponent 𝑝 = 1,2 usually. 
The subscripts indicates expectation regarding 𝑦 
and 𝑣. ( The  𝐽ீ notation not to be confused with 
the notion of negentropy, 𝐽.) 

Clearly, 𝐽ீ  can be regarded a generalization of 

(the modulus of) kurtosis. For 4)( yyG  ,  𝐽ீ 

becomes simply the modulus of kurtosis of 𝑦 . 
Note, 𝐺  is not be quadratic, because  𝐽ீ  or all 
distribution would then be trivially zero. So, 
apparently 𝐽ீ  could be a contrast function just like 
kurtosis. The 𝐽ீ   is really a contrast functions in an 
appropriate sense (locally). 

In [39], the estimators' finite-sample statistical 
properties were evaluated based on the 
optimization of such a general contrast function. It 
was found that for an acceptable choice of G, the 
estimator's statistical characteristics (asymptotic 
variance and robustness) are significantly better 
than those of the cumulant-based estimators. 
Varieties of G were suggested below: 

uauG 11 coshlog)(  , )2/exp()( 2
22 uauG  , 

where 1, 21 aa  are certain adequate constants. 

Without the detail information about the 
distribution of independent components or 
outliers, both of these functions are the optimal 
contrast function, which seem to approximate 
fairly well in most cases. It was experimentally 

observed that the values in particular 
1,21 21  aa  bring good constant 

approximations. One explanation for this is that 
G1 above matches to the log-density of a super-
Gaussian distribution and is therefore closely 
connected to the estimation of 
maximum likelihood. 

Since the BSS problem the linear combination 
of the observed mixtures is discussed𝑥(𝑚)௝, say 
𝑤்𝑥(𝑚), where the weight vector w is constrained 
so that 𝐸{(𝑤்𝑥(𝑚))ଶ} = 1. So the algorithms are 
extreme based on the kurtosis square 
𝐾ଶ(𝑤்𝑥(𝑚)) = (𝐸{(𝑤்𝑥(𝑚))ସ} − 3)ଶ  of such 
linear combinations [7, 23]. The kurtosis square 
could be presented as approximately to the 
negentropy of 𝑤்𝑥(𝑚) . One may see that the 
kurtosis square of 𝑤்𝑥(𝑚) is maximized precisely 
where the linear combination is equal to, up to the 
sign, one of the ICs i.e., 𝑤்𝑥(𝑚) = ±𝑠௜. 

This can be used to create a contrast function 
instead of kurtosis, basically on any quadratic well 
behaving even function, say G. Such contrast 
function may generally be described as: 

𝐽ீ(𝑤) = [𝐸௫{𝐺(𝑤்𝑥(𝑚))} − 𝐸௩{𝐺(𝑣)}]ଶ, (19) 

where v is a standardized Gaussian variable and 
Jୋ can be considered as a generalization of the 
kurtosis square, as for   𝐺(𝑢) = 𝑢ସ , 𝐽ீ  turn into 
simple kurtosis of𝑤்𝑥(𝑚). 

𝐽ீ is locally maximized when 𝑤்𝑦(𝑛) = ±𝑠௜.  

Thus 𝐽ீ can be used as a contrast function just 
like the kurtosis square. Widely used one unit 
contrast functions are: 

Skew:  𝑔(𝑥) = 𝑥ଶ 
Pow3:  𝑔(𝑥) = 𝑥ଷ 
            g(x)=x4/4,     x2/2 

Gauss:   :g(𝑥) = 𝑥exp ቀ−
௫మ

ଶ
ቁ , −exp ቀ−

௫మ

ଶ
ቁ, 

Tanh:      𝑔(𝑥) = 𝑡𝑎𝑛 ℎ(𝑥)  ,         𝑙𝑜𝑔𝑐𝑜𝑠ℎ(𝑥). 

The key advantage of the FastICA algorithm is 
its speed (superior to gradient based schemes), 
user-friendly (needs nonprobability distribution or 
collection of other parameters) and its flexibility 
for performance optimization by selection of the 
contrast function 𝐺(𝑥)  or equivalently 𝑔(𝑥) =
𝐺ᇱ(𝑥). 
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5.2 Contrast Function without Permutation 
Ambiguity 

A linear combination of the fourth order marginal 
cumulants (kurtosis) for the separator output is a 
true contrast function for ICA under the pre-
whiting assumption if the weights show the same 
sign of kurtosis as the source.  

If the weights are equal to the source kurtosis 
then the contrast function is a cumulant criterion 
based on the principle of maximum likelihood.  

If the source kurtosis is different from the linear 
weight combination (even not matched from the 
former) then the contrast eliminates the ambiguity 
of the permutation, since at the separator output 
the estimated source is shortened according to its 
kurtosis values in the same order as the weights. 
For more details, see [40]. 

5.3 Non-differentiable Contrast Functions 

For ICA, the contrast function can be global (multi-
unit) or component wise (single unit). When we 
speak of multi-unit, the function 𝐶(y) summarizes 
the level of independence between all pairs of 
components in one scalar value. In single unit 
contrast function measures a quantity associated 
with the 𝑖௧௛  component of 𝑦   which is typically 
higher for independence signals than for mixtures 
of signals.  

The multi-unit algorithm is called symmetric 
approach (all source is extracted simultaneously) 
whereas the single-unit algorithm is called a 
deflation approach (source is extracted one after 
another). For the component wise contrast 
function as 𝐶(𝑦, 𝑖) is written as 𝐶(w୧ z), where w୧ 
is the 𝑖௧௛ row of 𝑊 knowing that  w୧ is orthogonal 
to any other row of w୨ . Positive and negative 
angular variations of  w୧ that preserve unit norm 
defined and note as: 

w୧↑୨ = cos(𝛼) w୧ + sing(𝛼) w୨, 

w୧↓୨ = cos(𝛼) w୧ − sing(𝛼) w୨. 

The relevant contrast values may be written as 
C(w୧↑୨z) and C(w୧↓୨z). 

The maximization of the contrast function here 
is dependent on the assumptions: 

1. The contrast function in relation to  α should 
be continuous or at least almost continuous. 

2. All maxima of the contrast function is 
differentiable with respect to α. 

More information can be found in [41] on the 
Non-differentiability Contrast function. 

5.4 Quadratic Contrast Function  

The most enticing approach to the issue of blind 
equalization is the use of a suitable contrast 
function. A contrast function basically plays the 
role of an objective function in the sense that its 
(global) maximization makes it possible to solve 
problems. In [42] a contrast function for the i.i.d. 
source signals is defined as: 

Definition 1: 

Let 𝐶(. ) be a real function of the signal: 

)(s}g{)(s)(g)(y nkknn
Zk




, 

where 



Zk

knkn )(M)(w)(g .  Is called a 

contrast function when there exists },...,1{0 Ni 

such that:  

P1. Zl such that for all possible output y(n) 
of the equalizer: 

𝐶(y(𝑛)) ≤ 𝐶(s௜బ
(𝑛 − 1)). 

P2. If equality holds in the equation P1, then 
𝑔 ∈ 𝐺ଵ௘ௗ

௜బ . 

Definition 1 cannot be used for non i.i.d. 
source signals since the independence property 
for these signals only leads to one source being 
extracted up to a scale filter. Therefore, a 
generalization of definition 1 is required for non 
i.i.d. source signals. 

Definition 2: 

The real function 𝐶(. )  is called a Contrast 

Function when there exists },...,1{0 Ni 
such that: 

P1. For all possible equalizer output:  

Computación y Sistemas, Vol. 25, No. 1, 2021, pp. 97–115
doi: 10.13053/CyS-25-1-3449

Independent Component Analysis: A Review, with Emphasis on Commonly used Algorithms... 109

ISSN 2007-9737



𝐶൫y(𝑛)൯ ≤ sup
௚∈ீభ೐

೔బ

𝐶൫{g}s(𝑛)൯. 

P2. If equality holds in the equation P2, then 
𝑔 ∈ 𝐺ଵ௘ௗ

௜బ . 

5.5 Reference Based Contrast Function 

A Singular Value Decomposition (SVD) based 
maximization algorithm is substantially faster than 
other maximization algorithms.  

However, because of its sensitivity to a rank 
estimation, the method frequently suffers from the 
need to know the filter orders well. A method of 
gradient optimization with reference signals 
based on Kurtosis gets an optimal step size and 
requires no estimation of the level.  

Thus, the SVD-based methods’ drawback can 
be managed well. During the optimization process 
the reference signals involved in this method are 
fixed, which can result in poor separation output 
due to inappropriate initialization value of the 
corresponding reference signals. We usually 
inject reference signals artificially into an 
algorithm so that the contrast function can 
be  maximized. 

Since we consider linear separator, whose 
output is defined as: )()( mWxmy  , where W  

is the separation matrix of  𝑛 × 𝑚 . 𝑦(𝑚)  is the 
approximate  estimation of 𝑠(𝑛). The "parameters 
searched" here are the 𝑊 vectors in the row. with 
the obvious assumtion of independence in the 
source and the general defination of 𝐶𝑢𝑚{∙} .  
Signal may be apprised in real-valued or complex 
valued. Considering real valued signals for any 
jointly stationary signals )(my and 𝑧(𝑚), let:  

𝐶{𝑦} ≜ 𝐶𝑢𝑚{𝑦(𝑚), 𝑦(𝑚), 𝑦(𝑚), 𝑦(𝑚)}
= 𝐸{𝑦(𝑚)ସ}
− 3𝐸{𝑦(𝑚)ଶ}ଶ, 

(20) 

𝐶௭{𝑦} ≜ 𝐶𝑢𝑚{𝑦(𝑚), 𝑦(𝑚), 𝑧(𝑚), 𝑧(𝑚)} 
{𝑦(𝑚)ଶ𝑧(𝑚)ଶ} − 𝐸{𝑦(𝑚)ଶ}𝐸{𝑧(𝑚)ଶ} − 

2𝐸ଶ{𝑦(𝑚)𝑧(𝑚)}, 
(21) 

where 𝐸{∙} denotes the expection value. 

Introducing a “reference signals”, one can 
consider similar like )()( mWxmy   a 

separating matrix of 𝑛 × 𝑚  denoted by 𝑉 . The 
respective output can be denoted as: 

𝑧(𝑚) = 𝑉𝑥(𝑚), (22) 

where 𝑧(𝑚)  components are the reference 
signals. The reference signals directly influence 
the reference-based contrast functions and their 
values affect the results on optimization, in 
particular the value of initialization. 

With the criteria: 

𝐽(w) = ฬ
𝐶{𝑦(𝑚)}

𝐸{(𝑦(𝑚))ଶ}ଶ
ฬ

ଶ

, (23) 

𝐼 (w, v) = ฬ
𝐶௭{𝑦(𝑚)}

𝐸{(𝑦(𝑚))ଶ}𝐸((𝑧(𝑚))ଶ)
ฬ

ଶ

, (24) 

where 𝐽  is the well known Kurtosis contrast 
function.  𝐼  is the reference-based 
contrast function. 

As described [24], ∇ refers to a gradient and 
partial gradient operator are denoted by ∇ଵand ∇ଶ 
with correspond to the first and second 
parameters, respectively. More accurately, ∇𝐽(w) 
is the vector containing all of the partial 
derivatives of 𝐽(𝑤),  whereas 
∇ଵ𝐼(w, v) and  ∇ଶ𝐼(w, v)  are Partial Derivatives 
Vectors of 𝐼(𝑤, 𝑣)  with respect to 𝑤  and 𝑣  . 
Combined with (21, 24): 

𝐼(𝑤, 𝑣) = ฬ
𝐶௭{𝑦(𝑚)}

𝐸{(𝑦(𝑚))ଶ}𝐸{(𝑧(𝑚))ଶ}
ฬ

ଶ

=

ተ

ተ

𝐸 ቂ൫𝑤𝑥(𝑚)൯
ଶ

൫𝑣𝑥(𝑚)൯
ଶ

ቃ −

𝐸 ቂ൫𝑤𝑥(𝑚)൯
ଶ

ቃ 𝐸 ቂ൫𝑣𝑥(𝑚)൯
ଶ

ቃ − 2{𝐸(𝑤𝑥(𝑚))(𝑣𝑥(𝑚))}ଶ

𝐸{(𝑤𝑥(𝑚))ଶ}𝐸{(𝑦𝑥(𝑚))ଶ}
ተ

ተ

ଶ

. 
(25) 

Because 𝑥(𝑚)  in prewhitened and 𝑤, 𝑣 are 
normalized so 𝐸 ቄ൫𝑤𝑥(𝑚)൯

ଶ
ቅ = 𝐸 ቄ൫𝑣𝑥(𝑚)൯

ଶ
ቅ =

1    and  𝑤𝑤் = 𝑣𝑣் = 1. Then equation (24) can be 
reduced to: 

 𝐼(𝑤, 𝑣) = ቚ𝐸 ቂ൫𝑤𝑥(𝑚)൯
ଶ

൫𝑣𝑥(𝑚)൯
ଶ

ቃ − 3𝑤ଶቚ
ଶ
. (26) 

More details on the reference-based contrast 
can be found at [24, 42, 43]. 
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6. Applications of ICA in Real World 

There is several success of ICA application in a 
number of practical problems apart from the 
signal processing in telecommunications [7, 26]. 
Now the use of ICA has been expanded to a wide 
variety of domains. Some of these 
applications includes: 

− Telecommunications [44], 

− Machine fault detection [45, 46], 

− Feature extraction [47, 48], 

− Sensor Signal Processing [49], 

− Audio signal processing [13, 15], 

− Image processing [50, 51, 52], 

− Text mining [53, 54], 

− Analyzing financial time series [55, 56,57], 

− Pattern recognition [58], 

− Bio medical signal processing [59, 60, 61], 

− In Astrophysics [62, 63], 

− Petrochemical field [64, 65]. 

6.1 Face Recognition by ICA  

Today, data security attacks remain a top 
concern, and the research on reliable recognition 
of humans’ faces has seen a major research area 
of Computer Science, Artificial Intelligence and 
Machine Learning. 

Building a face recognition system to replicate 
the human ability of face recognition is a non-
trivial task and modeling the varying uncertain 
and imprecise condition has posed 
insurmountable challenges to researchers in the 
past few decades.  

The problem of face recognition can be 
expelled as follows. Given a database of face 
images and a query face image, the goal is to find 
the most similar face images from the database. 
By Bartlett et al. (2002) [66] a method for face 
recognition is proposed based on ICA. Two 
architectures are presented for face recognition- 
spatial local images for the faces and factorial 
face code and it is shown that both ways of 
recognition are superior to PCA. 

7. Conclusion 

This review provides basic information about ICA 
and its methodology in addition to the earlier 
surveys; a few more contrast functions and 
advance algorithms for ICA have been clubbed 
together. ICA is a general term for the wide variety 
of applications in the fields of neural computation, 
signal processing and statistics. ICA provides a 
systematic transformation or representation of 
multidimensional data for the subsequent 
processing of information.  

The transformation helps to examine and find 
its own interesting ways, rules and patterns. It was 
clear from the discussion that ICA operates 
mainly with two factors called contrast function 
and its optimization algorithm. Reference-based 
contrast functions are especially attractive, as the 
corresponding problem of maximization is 
quadratic in relation to the parameters searched. 
Non-differentiable contrast function is useful if 
source is extracted one by one (deflation 
approach). 

Maximizing the non-differentiable contrast 
function is based on the assumptions that the 
contrast function is to be continuous or at least 
almost continuous and all contrast function 
maxima are differentiable. Evolutionary 
computing techniques are common methods of 
optimization based on population searches. 
Genetic algorithms and swarm intelligence are 
the most widely applied techniques of 
optimization based on evolutionary computation. 

Particle swarm optimization (PSO) is used in 
ICA technology. The ICA method currently uses 
various biologically inspired 
optimization  algorithms. 
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