
Computación y Sistemas Vol. 4 No.3 pp. 230 -241
@ 2001, CIC -IPN. ISSN 1405-5546 Impreso en México

Rafael M. Gasca, Juan A. Ortega and Miguel Toro

Departarnent ofLanguages and Computer Systems
Seville University, Avda. Reina Mercedes s/n41012

Sevilla, Spain.
e-mail: {gasca, ortega, m toro}@ Isi.us.es

Article received on October 03. 2000: acceDted on Januarv 15. 2001

Abstract 1 lntroduction and Motivation

A good algorithmic designer, rather than starting from scratch
to produce a new algorithm for every problem, knows how to
look for known patterns that serve as a starting point to enable
the use of an existing algorithmic design.

The teaching of problem solving by means of algorithmic
design, actually considers every problem as a different problem
and then the student learns to develop and to implement
different algorithms. The results ofthis teaching and leaming
shows serious shortcomings. In order to improve these results
and produce the conceptual change in the students that leam
it, we have reduced the design process to a creative sequence
of steps and templates that the students know, what provides
a path to take from the initial problem statement to a reasonable
solution. The student then looks for the set of schemas and

devices that can be used to solve the problems, rather than
the individual instructions of a particular language.

This articfe proposes the fearning of afgorithm design using
a metaphoric modef. This modef affows us to structure the

knowledge of this domain by mapping onto it concepts and
relationsfrom an existing and already familiar domain, inputl

output devices and schemas.
Abstract design techniques are used to develop a

constructivist view of learning of the students to solve
problems afgorithmicaffy. These techniques have a common
problem sofving strategy that can be appfied to many
problems. The aim is the identification of structural
simifarities among problems and the application of design

patterns.
The singfe most important design technique is modeling,

lhe strategy of abstracting a messy reaf-worfd application
into a clean problem suitabfe for algorithmic attack. This
article presents a construction medium to afgorithm design
by means of an object-oriented pattern. The constructs are
inputloutput sequentiaf devices and a weff-constructed
library of sequential schemas. The appfication of the
sequentiaf schemas or combination of schemas to these
devices allows the learning of a robust methodofogy in order
to solve a broad range of diverse problems.

The constructionist approach to 1eaming is proposed in
the bib1iography (Papert, 1991). The name constructionism
derives as a variant of the re1ated psychologica1 school of
constructivism. The processes of leaming are considered as
both active and creative. The leamer must discover structures
ofknowledge, which are original ideas, at least relative to him.
The active and creative role of the leaming process is based
on the idea that students should be able to use input/output
devices and schemas as a construction medium. These
previous ideas ofthe students can allow a significant leaming
in algorithm design. Constructivism can serve for discussion
of issues in computer science education(Ben-Ari, 1998) and

Keywords: Object-oriented model, Constructionist Leaming,

Algorithm design, Sequential schemas.

230

R. M. Gasca, J. A. Ortega, M. Toro: An Object-Oriented Approach for Learning of AIgorithm Design with Sequential...

software engineering education. In the last years, several
articles have considered the constructivism in teaching ofthe
development and estimation of software projects (Ramos et

a[., 2000), study of the difficulties that students encounter
when learning Java (Fleury, 2000), the implementation ofa

constructivist model for learning programming (Gibss, 2000)
and the investigation of the cognitive processes in students

dealing Data Structures (Aharoni, 2000).

Moreover, the sequential schema encloses an abstract

algorithm described by means of abstract operations provided
by the ISD. The sequential schema is specified by abstracting
the common properties from the problems and ignoring its
non-relevant details. A concrete algorithm can be seen as a
concrete instimce of a schema or combination of schemas.
An abstract sequence is necessary when the students apply
theseschemas. We say that a fmite set of objects ofthe same
type is organized in the form of a sequence if it is possible to

define the following operations:Our main idea accepts that knowledge is not "Iearned",
rather, it is constructed. Then the proposition of concrete

problems allows us:
.To facilitate the students the production ofrelevant

knowledge.
.To provide a diverse set of devices and schemas as

alternative conceptions.
.To facilitate conceptual change in algorithm design

problems.

The first object ofthe sequence that will perrnit the
subsequent access to the other objects of the

sequence.
The next object of a given object, that will allow us to

accede to an object through the object that precedes
to him, and the object i is reached across the i-J

objects that preceded to him.
The operation that defines the last object of the

sequence.During software development there are reusable solutions

to recurring problems, it is named software patterns (Gamma
et al., 1994). In their catalog of pattems, Iterator pattem is

defined as an interface that declares methods for sequential
accessing the objects in a collection. We use this pattem in
the creative process. In more intuitive way we have named it

as input sequential device(ISD). AIso, we have defined a

device to contain the output information, that is named output
sequential device(OSD). The sequential treatment of an ISD

through a schema or corresponding combination of schemas,
permits the ease of leaming of problem solving for many
families of problems by means of algorithmic designs. The

solution ofthe problem is put in an OSD.

The above operations perrnit the sequential access to the
objects of a sequence. The treatment through this type of
access is designated sequential treatment. In this work, we

propose an iterative design technique for the sequential

treatment.

At this point, we propose that the application of sequential
schemas accomplish the sequential treatment. It consists of

the following:

To determine the basic objects those define the
sequence. This determination permits the best
comprehension ofthe problem at the highest possible
abstraction. It reduces the complexity ofthe problem.
To detect or induce a sequence structure in the set of
objects to treat. For it is necessary to propose the

operations of sequences.
To select a schema among the basic schemas or

combination of schemas most adequate to treat the

objects of the sequence.

This development of algorithmic design strategies has
advantages and disadvantages when taught this way. The
main advantage is that the way of integrating the elements of
an algorithm is not as basic instructions but through more

abstract entities, and furthermore they have been verified such

that they will produce couect programs. Also the development
ofthe basic operations on the sequences will have to be defmed
for each particular implementation at the highest abstract level
of the same way. Nevertheless this technique does not
guarantee a solution for all problems and the obtaining of

solutions can be little efficient.

This article assumes that the students already know

methods o(modeling, specifying and implementing data
structures, in a basic pseudocode. Also, we consider that the
foundations ofthe object-oriented paradigm are known. This

paradigm is a useful way to produce quality software and "the
method which leads to software architectures based on the

objects every system manipulates" (Meyer, 1999).

The abstractions lately used in the teaching ofthe algorithm
design are based on schemas (Burgos et al., 2000) and pattems
(Proulx, 2000). In this work, we use sequential schema. It is

considered as a behavioral template that specifies the common
procedural abstraction influencing the abstract sequence. The

sequential schema applies specific actions during a period of
finite time and it is capable of responding to a specific behavior .
In this article, the only actions considered are those in which
a single action is in progress at any time. Until one action
ends, the other cannot begin. The individual actions can be

executed one or more times.

231

R. M. Gasca, J. A. Ortega, M. Toro: An Object-Oriented Approach for Learning of A Igorithm Design with Sequential..

In this article, a specific notation based on precondition
and postcondition will serve to describe what an algorithm
must solve. The precondition is an assertion that expresses

the properties that must be satisfied whenever the algorithm
is used and the postcondition is the assertion that describes
the properties that the algorithm guarantees when it retums,

supposing that it satisfied the precondition. We usually use
the main Z constructs and logic predicates for the specification
of these assertions. The Z notation has been chosen by its

clarity and utility .

number ofthe sequence. The sequence is defmed as a finité
set of objects of the same type, put in an order that has a

,

cursor that can take the~ositions from 1 to the cardinal position
of the sequence plus o\te. In this way, it is easy to detect
when the sequence is fmished and when the sequence is empty .
A pointer designates the sequence interest point and it point
at an object distinguished within the same. It serves as a

reference for the operations and the task of changing from an
object to another object. In order to accomplish the

specification of a sequence, the following attributes are
considered:

The operational specification or implementation will serve
to express how to solve problems. We will use a basic

pseudocode.

s: sequence of T

i: Integer

Where i is the position where the interest point is found
and T is the type of objects of the sequence.

2.1 Characterization

3 Sequential devices
In order to leam the sequential treatment, we need to

characterize the sequences. Let there be a set of objects of
type T, then is defined the set of sequences of T denoted as s: The students have to solve many problems by means of

algorithms. In these problems there is input/output information,
and it can be abstracted through what is designated as
sequential device. The following problem may be an example:<>ES

S E S: e E T: <e> + s, s + <e> E S

Wrile an algorilhm lhal generales a file wilh lhe sum of
lhe squares of lhe posilive prime numbers lhal end in 7 and
are less lhan 100.

Where <> stands for the empty sequence, and the rest of

the sequences can be defined as the result of adding an object
belonging to the setofobjects oftype T(bythe right orby the
left) to an ~lready existing sequence. The introduction ofthe
empty sequence in the sequence concept can carry two
possibilities oftreatment that depends on considering the case
of the empty sequence as a particular case, or integrating it in

the general case.

In this example, the input sequential device is a sequence
that is formed by the positive prime number less than 100 or
by the positive prime numbers ending in 7 and less than 100,
and an output sequential device that is a file with a single
number. This number is the result ofthe sum ofthe squares of
the prime numbers ofthe initial sequence.

The sequences are represented enclosing its objects
between the symbols < and > .The objects of the sequence

are put in the order that are found in the sequence and
separated by commas. With the purpose of accomplishing
concise and legible specifications, we use special predicates
that permit us to reduce the complexity of the precondition
and the postcondition.

The resolution of the problem will consist then of applying
the corresponding sequential schema to an input sequential
device to obtain the results that are then put in an output
sequential device. Our object-oriented approach provides ISD,
OSD and Schemas that can be used in a creative process. It
permits the students to solve complex problems easily. This
form of constructionism realistically reflects how real-world
leaming takes place.

2.2 Modeling
3.1 Input Sequential Device, ISD

Many possibilities exist on modeling the sequences. The
determination of a model depends on the type of operations
that would likely be specified. 3.1.1 Definitions and Operations

We propose to model the sequences as a set ofnumbered

boxes, beginning with number 1 and ending with the cardinal
In this section we indicate how the leamers must define an
input sequential device. An ISD is defmed as any programming

232

R. M. Gasca, J. A. Ortega, M. Toro: An Object-Oriented Approach for Learning of A Igorithm Design with Sequential...

i E { l..#s+ 1} I\ m =(i~#s) I\ (i ~#s =:>v=s(i))

Operations
function Next() out r: T

Pre:{m =true}
Post:{r=v I\ i' = i+ 1 }

function HasMoreObjects() out b: Boolean

Pre:{true}
Post: {b = m}

EndSpecification

3.1.3 Implementation ofthe ISD

element whose behavior is similar to a sequence in a given
abstraction level, and that from an operational point ofview, it

is defined the following operations:
.Create: It permits to construct the sequential device

and places the interest point in the fIrst position.
.Next: It permits to obtain the object where is found

the interest point and to pass to the following position
as long as is not found in the last position plus one.

.HasMoreObjects: It retums true if there are more
objects in the sequence and false when the interest

point is in the last position plus one.
With these operations, the sequential treatment of any input
sequential device can be easily accomplished. The implementation of the ISD is carried out by means of

the object-oriented programming paradigm, with the double
purpose of constructing reusable and quality software. The

reusability is considered as the ability of producing software
components that can be used in different applications that

produce correct and robust software.

3.1.2 Modeling and specification ofthe ISD

The input sequential devices are implemented by means

of an abstract class, that we have designated ISD. In principie,

an ISD has two attributes, an object v ofthe sequence oftype
T in which the interest point is found and a Boolean element
m, that is set to false when the device has no more elements.

The implementation of an ISD by means of an abstract class

is:

The ISD uses the sequence with an interest point as the
element of modeling and specification. It is modeled as an
entity formed by the following attributes:

.A sequence of objects of the type T that is denoted

as s,
.An Integer value that is designated by i that is the

position of the interest point,
.A Boolean value m that is false when the end ofthe

largest sequence is reached,
.A value v oftype Tthat is an object at the position of

the interest point.
Therefore, an ISD is an object that has four fields:

s: Sequence ofT
i: Integer
m: Boolean
v: T

The invariant of the ISD asserts that it must be held by all
operations ofthe device. This represents an integrity constraint
added implicitly to all the operations defined on them. For an

ISD is:

Abstract Class ISD
Parameters

Types: T

Attributes
m:Boolean
v:T

Operations
function HasMoreObjects() out b:Boolean

begin
b:=m

end
function Next() out r: T

EndClass

i E{l..#s+l} I\m=(i~#s) I\(i~#s=>v=s(i»
Where #s represents the number of elements ofthe sequence

s. This invariant indicates that the attribute s does not vary

upon applying any one of the operations.
According to this model, the specification for the ISD remains

as: The objects that form a part of the sequence may be

represented in memory (for example sequential files, vectors,
etc.), however they also may be "calculated' and we have
one element present in memory constantly and the rest are

deduced through the corresponding calculation (prime
numbers). In some cases, there is an intermediate situation
with all the objects in the memory; the treatment order is defmed
through a calculation (traversals of trees).

The inheritance mechanism allows us to extend the
functionality ofthe ISD. In order to accomplish a particillar
implementation of an abstract sequence as ISD, we must defme

Specification ISD

Parameters

Types: T

Attributes

s: Sequence ofT

i: Integer

m: Boolean

y: T

lnyariant

233

R. M. Gasca, J. A. Ortega, M. Toro: An Object-Oriented Approach for Learning of A Igorithm Design with Sequential...
-

the Create procedure for each one of the possible entities.
The class invariant must hold upon instance creation. AIso
the operations not implemented in the abstract class should
be implemented. In the case of data structures, their
corresponding interfaces can be used to implement these
operations. This can also be accomplished with prime numbers,
files and standard input, by using the basic operations that
provide each programming language or by defming them
adequately. The hierarchy of classes is shown in Figure 1.

v := v+ 1

while NOT IsPrime(v) and v<mp

v := v+ 1

endwhile

ifv ?:mp:

m := false

endif

end

EndClass

The IsPrime function checks if the parameter v is a prime
number or no.

Multiple ISD objects can be used at the same time. It is

possible to traverse a same data structure in different ways
what will provide different ISD objects. The modifications in

a data structure can cause problems, while a schema .is

traversing it. In order to avoid these problems, we consider
that these modifica,tions are not possible.Figure 1: Hierarchy of ISD classes

In the classes that derive from the abstract class ISD, we

defme the corresponding operations of the ISD that will permit
the sequential treatment by means of schemas. The fo"owing

example implements these operations for a determined input
sequential device.

3.2 Output Sequential Devices, OSD

3.2.1 Definitions and Operations

These devices permit to put the results ofthe application of
a sequential treatment on a device previously created. From
an operational point of view, this has been defined in the

following operation:

3.1.4 Example

ISD ofpositive prime numbers less than a value maxnp

. Write: It permits an object to be placed in fue position

after the last one of the sequence.

According to this model, the specification for the output
sequential device would be as follows:

Class ISDNPRIME extends ISD
Attributes

mp: Integer
Operations

Create ISDNPRIME(in maxnp:lnteger)

begin
ir maxnp ~l :

mp:=maxnp
v:=l

irmp~:
m:=true

Specification of OSD

Parameters

Types: T

Attributes

s: Sequence ofT

Operations

procedure Write(v:1)

Pre:{true}
Post: {s'=s+v}

EndSpecification

In the above specification it is assumed that the operation
Write can be accomplished as many times as is needed,
unrestricted of space in memory .

else

m:=false
endif

else
Default ISDNPRIME

endif
end
function Next() out r: Integer

begin
r:=y 3.2.2 Implementation of the OSD

234

R. M. Gasca, J. A. Ortega, M. Toro: An Object-Oriented Approach for Learning of A Igorithm Design with Sequential

schema to an ISD object allows us to obtain a desired OSD
object. In this figure, every arrow indicates an objects stream.

The implementation ofthe Output Sequential Device will

be made same way as the input sequential device was made

previously:

Abstract Class OSD

Parameters

Types: T

Operations
procedure Write(in v: 1)

EndClass

3.2.3 Example Fig 2: Diagram ofthe schemas application

The schemas can be basic or combinations ofthem. They
always need at least one ISD and one OSD to work
appropriately. The basic schemas that we propose for the

learning of algorithm design are:

We suppose that sequential files have an operation
Fwrite(v:T) when they are opened in a write way. This
operation writes the object T in the file. We use it for the

following implementation ofthe device.

.Identity

.Accumulative
Counter
Maximum
Minimum
Sum
Product
Other (Median, Arithmetic Mean,etc.)

.Searching and property checking

.Filter

.Mixer

Single
Conditional

In fol\owing sections we wil\ explain the previous sequential

schemas.

Class OSDFILE extends OSD
Attributes

f: File of T

Operations
Create OSDFILE (in i:IDFILE)

begin
f:= File(i)

iff.ExistsO

f.Open(add)
else

f.Open(write).
endif

end

procedure Write(in v:T)

begin
f.Fwrite(v)

end
EndClass

4.2 Modeling of Sequential Schemas

The modeling intends to capture the static structure of
the schema, showing the elements that compose it in order to

obtain an intuitive representation. These models are valuable

to document the structure of a system.

The students can construct a library of the most important
devices to the sequential treatment. They may be data
structures (tree, list, etc.) and other more specific devices

(standard output, buffer, etc.)
The classes that represent the ISD and OSD are pararneterized

by the types of the basic objects that compose the device.
Different quantifiers, predicates and expressions that depend
on the different treatments that the leamers wish to accomplish
parameterize Schema class. That is:4.1 Definition and Classification

A Sequential Schema remains configured as a finite set of
instructions that permit a connection to be established between
an ISD and an OSD of such way that through their use, the
students apply correct software to solving problems
adequately. Figure 2 shows as the application of an adequate

.Quantifiers: They detennine the types of operation that

are executed in the sequential treatment.
.Predicates: They take part in the conditional structures

of the schema and that should be defined in the

domains ofthe elements ofthe sequential device.

235

R. M. Gasca, J. A. Ortega, M. Toro: An Object-Oriented Approach for Learning of A Igorithm Design with Sequential...

.Expressions: They take part in the treatment that is

wanted to accomplish on the elements of the ISD

and that also should be defined in the domains ofthe

elements ofthe device.

.ISD: It is a device that contains the input infonnation

.OSD: It is a device that contains the output infonnation

4.3 Specification and Implementation of

Sequential Schemas

would like to consider in the predicate or expression,

respectively.
The postcondition indicates that the OSD, denoted as s "

wil1 be a new sequence that results from applying the

corresponding quantifier to the input sequence such that if
the predicate P;(s(i)) is satisfied, then the corresponding

operation O qJ is accomplished taking into account the

expression Ei(s(i)). The bul1et (.) can read as "it is the case
that" and the bar(!) as "such that".

The implementation ofthis schema is as fol1ows:

For all schemas, the leamers.always indicate the different

parameters. The input sequential device(isd) and output

sequential device(osd), are both on the initial treatment
positions when execution begins. Sequential schemas are
based on the use of the iterative design. The specification
and implementation ofthe basic schemas always suppose that

there are a isd and osd as parameters.

Implementation ofthe Accumulative Schema

The schema is implemented by means of a class that has a

method executeO. It is as follows,

procedure execute()
var

r:T
r

zT
4.3.1 Identity Sequential Schema begin

This schema "is related to the change of device of a
sequence. The sequential treatment moves the objects from
an isdto an osdwithout any transformation.

r:=n
q

while isd.HasMoreObjects(

z:=isd.Next()

ifP(z,p)
r:=rO E(z,q)q

endif

endwhile

osd. Write(r)

end

Specification ofthe Identity Schema

Pre:{true}
Post: {s'=s}
The output sequence is identical to the input sequence.

4.3.2 Accumulative Sequential Schema Where n is the neutral element of the quantifier O is the
q q

operation bound to the corresponding quantifier and Tr is the
corresponding type to the neutral element ofthe quantifier.This schema is related to the application to an ISD of

different quantifiers. It would be the sequential treatment. A

quantifier Q, can be the counter, the maximum, the minimum,
the product, or other. We use quantifiers whose neutral

elements n and operations O associated with every quantifierq q
have been previously defmed.

Examples of application ofthe accumulative schema

Count the number of persons that has a given sumame in

a sequential file of persons.

Obtain the maximum number introduced in the standard

input until a negative number is introduced.Parameters ofthe Accumulative Schema

The parameters of an accumulative schema are a quantifier

Q, an expression E and a predicate P. 4.3.3 Multiple Accumulative Schema

These schemas are introduced since in some problems it may
be necessary to obtain the result by applying different types
of quantifiers.

Specification ofthe Accumulative Schema
Pre:{Vi:l..#s. (s(i),p)Edom p A (s(i),q) EdomE}

Post:{s'=Qi:l..#sIP(s(i),p). E(s(i),q)}

The precondition indicates that the predicateP and the

expression E should be defmed for all elements ofthe sequence

s(i) and the values of the parameters p and q. The auxiliary

parameters p and q stand for any information that the student

Parameters ofthe Multiple Accumulative Schema

The parameters of a multiple accumulative schema are the

following:
{Q I'...'Q n} : set ofquantifiers

236

R. M. Gasca, J. A. Ortega, M. Toro: An Object-Oriented Approach for Learning of A Igorithm Design with Sequential...

{E 1'...'En¡: setofexpressions
{P I'...P nl: set ofpredicates These schemas are particular cases of the accumulative

schema. As in previous schemas, searching js based on
traversing a sequence with the intention of finding an object

that perhaps appears in it, and that is distinguished from the
others by holding a predicate P. The specification and
implementation ofthese schemas use the existential quantifier .
Its neutral element is false and the operation associated with
this quantifier is the Boolean operation Or. The efficiency of
this algorithm can be improved introducing a Boolean variable

that is set to be true when the searched object is found.

Specification ofthe Multiple Accumulative Schema

Pre: {V i: l..#s .(S(i),pJE dom p 11\...1\ (S(i),pn)E dom p n 1\

(s(i),qJ Edom E11\. ..1\ (s(i),~) E dom En }

Post:{s'=Q 1 i:l..#s I PI(s(i),pJ .EI(s(i),qJ U... U

Qn i: 1..#s p n(s(i),pn).En(s(i),qn)}

The precondition indicates that the predicates Piand the
expressions E; should be defined for all values of s(i). The
postcondition indicates that the OSD will be a register that
results from applying the corresponding quantifier to the input

sequence such that if the predicate P;(s(i)) is satisfied, then
the corresponding operation O qJ is accomplished taking into

account the expression E;(s(i)).

4.3.5 Property checking Schema

This schema checks ifthe property p is holding for all objects
of a sequence. The universal quantifier is used in this case.

Implementation ofthe Multiple Accumulative Schema Parameters ofthe Property clíecking Schema

The parameter ofthe schema is a predicate p to check.

Specification ofthe Property checking Schema

Pre:{Vi:l..#s. (s(i),p)E domP}
Post: { s'=Vi: l..#s .P(s(i),p) }

Where the precondition indicates that the predicate p should
be defined for all values of s(i). The postcondition indicates
that the output sequential device will be the value that result
.from applying the universal quantifier to the input sequence.

Types:

T:T Tr rL m

procedure execute()

var

r.:T J r :TI r m m

r:T
r

z:T

begin

<r l '...'r >:=<n l '...'n >
n q qn

while isd.HasMoreObjects()

z:=isd.Next()
if PI(Z,pJ:

r.rl:=rl Oql EI(Z,qJ
endif

Implementation ofthe Property checking Schema

The method execute is as follows:

ifP (z, p):n n
r.r:=r O E(z, q)

n n qn n n

endif

endwhile

osd. Write(r)

end

procedure execute()

var

r:Boolean

z:T

begin
r := true
while isd.HasMoreObjects() And r = true

z := isd.Next()

r := r And P(z,p)

endwhile

osd. Write(r)

end

Where n is the neutral element ofthe quantifier i and Oql \
is the operation associated to the quantifier i.

Examples of application ofMultiple Accumulative Schema

4.3.6 Filter Schema
Obtain in a Sequential File of Persons, maximum and

mínimum age ofthe Persons in this file.

Obtain the position that an object has in a sequence.
These schemas read data of an ISD and write them in an OSD,
generally altering the data in some way. The learners can
combine different filters in order to obtain the expected
transformation of the data.4.3.4 Searching Schema

237

R. M. Gasca, J. A. Ortega, M. Toro" An Object-Oriented Approach for Learning of A Igorithm Design with Sequential

Parameters ofthe Filter Schema

The parameters of this schema are a predicate p and an

expression E

Simple Mixer Schema:
In this case this schema is accomplished for a finite number

N ofinput sequential devices, but it can be easily extended for
any finite number of input devices. It consists of linking
together the sequences that represent each one ofthe devices
according to the order that has been established.

Specification ofthe Filter Schema

Pre: {V i: I..#s .(s(i),p)E doro P /\ (s(i),q) E doro E }

Post: {s'=E9 i: I..#s I P(s(i),p) .E(s(i),q)}

The precondition indicates that the predicate P and the

expression E must be defined for all values of s(i). The

postcondition indicates- that if the predicate P(s(i),p) is
satisfied then the expression E(s(i),q) is written in s' .The

Operator E9 stands for the concatenation operator, where the
neutral élement is the empty sequence.

Specification ofthe Simple Mixer Schema

Pre:{true}

Post:{s'=s I+S2+S3}
Implementation ofthe Simple Mixer Schema

In this case the implementation has as input parameter a

vector of N input sequential devices:

isd: Vector[NJ ofISD

Then the implementation ofthe methodexecute would be:Implementation ora Filter Schema

procedure executeO
var procedure execute()

varz:T

begin
while isd.HasMoreObjects()

z:=isd.Next()

ifP(z,p):
osd. Write(E(z,q))

endif

endwhile

end

z: T

i: Integer

begin
i:=l

while i $N

while isd[i].HasMoreObjects()

z:=isd[i].Next()
osd. Write(z)

endwhile

i:=i+l

endwhile

end

In this type of schema much can be added/or removed, by
substituting any type of information.

Example of application ofthe Filter Schema
Conditional Mixer Schema:

One ofthe mixer schemas ofthis type used most often is the

sorting schema of several input sequential devices previously
sorted, in this case assuming that there are N devices, then

the specification would be:

Obtain the new salaries ofa sequence ofworkers such that

the previous salaries are increased a quantity q. In this problem,

the predicate p is true and the expression E is E(z,q) =

z'=z+q

4.3.7 Mixer Schema
Specification of the Conditional Mixer Schema

Pre: {Sorted(s"sort)/\.../\Sorted(sn'sort) }
Post: {Sorted(s',sort) /\ Vi: l..#s ' .mult(s'(i),s')=

mult(s'(i),s,)+ ...+mult(s'(i),sJ }
The mult predicate indicates the number of times that the

first element is repeated in the sequence.

Implementation ofthe Conditional Mixer Schema

procedure execute(
var

z: Vector[NJ ofT

i: lnteger
Fig 3: Diagram ofthe mixer schema

21R

R. M. Gasca, J. A. Ortega, M. Toro: An Object-Oriented Approach for Learning of AIgorithm Design with Sequential...

Write an algorithm that generates a file with the sum of the
squares of the positive prime numbers that end in 7 and are
less than 100.

In the first step, the leamers identify two scheli1as: a Filter
Schema and a Sum Schema, an ISD that is one of the
ISDNPRIME class and an OSD that is one ofthe OSDFILE
class. Figure 4 shows the objects that can participate in the

problem solving.

)
SUM

SCHEMA
E=r

begin
i:=l
while i~

if isd[i].HasMoreObjects():

z[i]:= isd[l].Next()
else

z[i]:= Neutral element ofthe operation

endif
i:=i+l

endwhile
while isd[l].HasMoreObjects() Or... Or

isd[N] .HasMoreObj ects()

i:=SearchSorted(z)
osd. Write(z[i])

if isd[i].HasMoreObjects():

z[i]:=isd[i].Next()
else

z[i]:= Neutral element ofthe operation

endif
endwhile

'--= /

~~I
end

The SearchSorted function retums the index of the first

object that satisfies the specified sort between the objects of

the vector z. Figure 4: Identification of devices and schemas.

In the second step, the students propose a set of possibie
alternatives of algorithmic design in this constructive

environment:

Example of application

Calculate the mixture of several sequences of strings, where

every sequence is alphabetically strings. The output sequence.

contains all the strings ofthe different sequences in the same
order. In this case the neutral element is the string "zzzzzz "

5 Composition of sequential

schemas

The previous schemas allows a broad range of composition of
sequential schemas. This construction medium implies that
the locus ofcontrol should be the learner. This creative process
in the algorithm design is divided into two distinct phases:

.Learners identify the finite sequence of possible
schemas and corresponding ISD and OSD that will

solve the problem
.Leamers analyze the possible compositions of the

previous objects and the determination of the

corresponding parameters.

Figure 5: AIgorithm Design using Combination of ISD

and schema to create a new ISD.

A new ISD is created by means of the combination of an
ISD and a schema. It becomes a new ISD that abstracts
the initial ISD of the problem. In this case, we can say
that: ISD + Schema = ISD. This new class has as

This approach allows the leamers to build structures of
knowledge within the mind, whoseaim is its application in

every algorithm design problem. In the initial problem ofthis

article:

239

R. M. Gasca, J. A. Or1ega, M. Toro: An Object-Oriented Approach for Learning of A Igorithm Design with Sequential...

The well-constructed library , appropriate to this domain and
the learner purposes, Novides a powerful tool for conveniently
solving complex probl~s. The essence ofmodel building in
this learning is to decide ~ow the aspects of the problem should
be explicitly described by means of sequential devices and
schemas.

parameters: the types of the basic objects that compose

the device, a predicate and an expression. The
combination of an ISDNPRIME object and a FIL TER
SCHEMA object constitutes a new ISDFIL TERPRIME
object. It is shown in Figure 5.
Finally the students apply the Sum Schema to an
ISDFIL TERPRIME object and they write the results in an
OSD object that have created previously. 6 Conclusions and Future Works

2 .An intermediate OSDFILE object is created. Application
ofthe Filter Schema to an ISDPRIME object writes in the
previous OSDFILE. After, leamers c!eate a new ISDFILE
with the file generated in the previous step and they apply
the specified Sum Schema to this object. It is shown in
Figure 6.

ISDNPRI~

The fundarnental mechanisms for encoding knowledge have
been the inputloutput devices and schemas. The main goal of
the proposed meta:phoric model has been the learning of the
algorithm design. It allows the students a constructive
environment for leaming. Also, it provides a constructional
medium that encourages design with a wide variety of these

computational objects.
The main advantage provided by this framework is the

ability of developing new algorithms using well-founded
algorithm design strategies already known and verified. The
different schemas cover a wide range offamilies of algorithms

(such as traversals, searching, mix, etc.) acting over different
data structures (arrays, tree, files) and other constructing

elements (prime numbers).
In future works we will use this metaphoric model to other

algorithmic schemas such as greedy algorithms, backtracking,
branch and bound, etc.

References
)~

SCHEMA
E=r Aharoni D. Cogito, Ergo Sum! Cognitive Processes of

Students Dealing with Data Structures. In Proceedings of

the 31 th SIGCSE Technica1 Symposium on Computer Education

2000 pp. 26-30,2000

,'--
Ben-Ari, M. Cons/ruc/ivism in Compu/er Science Educa/ion.

In SIGCSEBulletin30, 1 pp.257-261, 1998'igure 6: Algorithm Design using an intermediate file.

Burgos. J.M., Galve J., García J., Sutil, M. Enseñanza de la
programación basada en esquemas In V Jornadas sobre la
Ensefianza Universitaria en Infonnática, JENUI2000 pp. 395-

402.2000

The last compositional process is an enriched Sum

Schema with a Predicate and an Expression. It is

shown in Figure 7.

3

Fleury A.E. Programming in Java: Student-Constructed

Rules. In Proceedings of the 31th SIGCSE Technica1

Symposiurn on Computer Education 2000 pp. 197-701,2000

Gamma E., Helm R., Johnson R. and Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software.

Reading, Mass: Addison W esley , 1994

Gibbs n. C. The effect of a Constructivist Learning
Environment for Field-Depedent/Independent Students on

Achievement in Introductory Computer Programming. In

Figure 7 AIgorithm Design using an enriched Sum

Schema.

240

R. M. Gasca, J. A. Ortega, M. Toro: An Object-Oriented Approach for Learning of AIgorithm Deslgn wlth Sequentlal...

Proceedings of the 31 th SIGCSE Technical Symposium on
Computer Education 2000 pp. 207-211 , 2000

v .K. Proulx Programming Patterns and Design Patterns in
the Introductory Computer Science Course. In Proceedings
of the 31 th SIGCSE Technical Symposium on Computer
Education 2000 pp. 80-84, 2000Meyer B. Construcción de Software Orientado a Objetos Ed

Prentice-Hall1999

Ramos I. and Dominguez J.J. Docencia en gestión y estima-
ción de proyectos software; un enfoque constructivista. In VI
Jornadas sobre la Ensef\anza Universitaria de la Infonnática.
JENUI2000 pp. 327-333,2000

Papert, s. Situating Constructionism. Constructionism.

Harel and s. Papert, Norwood, N.J, Ablex 1991

Rafael M. Gasca obtained the Ph.D. degree in Computer Science in J998 at the Seville University in Spain. He is
professor since J 99 J in the Department of Languages and Computer Systems at the Seville University. His main
research topics are constraint programming and semiqualitative reasoning.

Juan Antonio Ortega obtained the Ph.D. degree in Computer Science in 2000 at the Sevi//e University in Spain. He
is professor since 1992 in the Department of Languages and Computer Systems at the Sevi//e University. His
research interests are in the semiqua/itative simu/ation of dynt;mic systems and in the obtaining of their tempora/
behaviour patterns.

M;guel Toro obtained the Ph.D. degree in Engineering in 1987 at the Seville University in Spain. He is professor
since 1985 and directorsince 1993 ofthe Department ofLanguages andComputerSystems at the Sevil/e University.

His research interests inc/ude software engineering. dynamic system simu/ation and forma/ methods.

241

