
Computación y Sistemas Vol. 4 No.2 pp.94-105
@2000, CIC-IPN. ISSN 1405-5546 ImpresoenMéxico

Distributed Solution ofSimulation-Based Optimization

Problems on Networks ofWorkstations

Thomas Barthl, Barnd Freisleben2, Manfred Grauer1 and Frank Thilo2
IDepartament of Inforrnation Systems, University of Siegen

2Departament of Electrical Engineering and Computer Science, University of Siegen
Holderlinstr. 3, D-57068 Siegen, Gerrnany

E-mail: {barth, grauer}@fb5.uni-siegen.de, {freisleb, thilo}@inforrnatlk.uni-siegen.de

Article received on Februarv 15. 2000: acceDted on Auf!ust 23. 2000

Abstract

The paper deals with the distributed solution of simula-
tion-based nonlinear constrained optimization problems in
engineering on a network of workstations. This type of non-
linear optimization and control problems in engineering can
be generally characterized as non-convex and non-smooth.
Additionally, the involved simulation introduces certain nu-
merical "noise " to the solution process. These characteris-

tics lead to very time consuming solution processes, because
of long-running computations for simulation and the difficul-
ties in finding a global optimum. The resulting requirements
for the corresponding software architecture and software in-
tegration of the simulation and optimization components are
discussed. The implementation of this software architec-
ture is presented using the OpTiX system for optimization,
the finite-element package FEFLOW for simulation, a'nd the
WINNER resource management system for load distribution
in networks of workstations. Purthermore, the concepts of
a distributed optimization algorithm are described and pre-
liminary results of its application to industrial applications
from water engineering are used to show the feasibility of the
proposed system for distributed optimization.

Keywords: Distributed optimiz.ition, computational
engineering, simulation-based optimization, direct optimiza-
tion methods, load balancing, scalability

1 Introduction

Most optimization problems in engineering cannot be for-
mulated analytically. For constrained optimization and con-
trol problems in engineering it is typical that the objec-
tive function and/or the constraints are highly nonlinear
due to the underlying mathematical model in form of FEM-
(Finite-Element-Method)-based solution approaches; some-
times these problems even have mixed-integer decision vari-
ables. Examples of typical engineering problems are design
optimization problems in the aircraft industry (Honlinger et
al. (1998), Hornlein and Stettner (1998), Schneider et al.
(1999)), facility optimization in the water industry (Dandy
et al. (1996), Jonoski et al. (1997)), crashworthiness opti-
mization (Stander (1999)), and design problems (Eschenauer
and Grauer (1999)) in the automotive industry. Due to
the FEM-simulations, the assumptions on convexity and
smoothness of objective and constraint functions are not
valid any more. Therefore, optimization algorithms with lo-
cal convergence properties are not applicable. Furthermore,
a global optimum of the problem must be found. These
characteristics lead to an excessive computation time for the
solution of a problem of this kind, making non-sequential S0-
lution approaches inevitable. Non-sequential algorithms can
be used to reduce computation time by performing time con-
suming computations in parallel, and they are also necessary
to apply hybrid approaches to determine a global optimum
(Boden and Grauer (1995)).

The computation of solutions to this class of problems
typically requires to perform numerically complex FEM-
simulations which quite often have to be repeated many
times during the course of a mathematical optimization. In
practice, optimization and FEM-simulation are usually sep-
arate software systems without the possibility to mutually
"call" each other as subroutines. Therefore, it is necessary
to couple them as two "black boxes", because source-code
level integration is in general not possible.

Typically, the optimization module requests a FEM-
simulation for every evaluation of the objective function
and/or the constraints of the optimization problem. The
computation time of a single FEM-simulation depends on
the complexity of the simulated model and may range from
a few seconds up to several hours. Many hundreds or thou-
sands of these FEM-simulations lead to very long computa-
tion times, a sequential strategy on a sequential hardware
architecture cannot cope with. The distribution of the en-
tire optimization process on parallel computing hardware is
inevitable. Instead of using "traditional " parallel hardware

(MPP, vector computer), networks of workstations (NOW)
can be used as a "virtual " parallel computer for distributed
a.pplications. This distribution can either be realized via
parallel FEM-simulation and/or parallel optimization algo-
rithms. In both cases, data-parallel as well as task-parallel
approaches for FEM-simulation and/or optimization are ap-
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paper and discusses areas for future research.

2 Classes of Optimization Problems in En-

gineering
Three classes of mathematical nonlinear constraiued opti-
mization and control engineering problems will be presented.
In this section f(x) : 1R.n -t 1R. denotes the objective func-
tion of an n-dimensional optimization problem. The m
equality constraints are given by gj (x) = O, Vj = 1, ..., m
and k inequality constraints by hp(x) $: 0, Vp = 1, ..., k.

.The Problem of Optimal Design (POD)
The class of optimal design or facility optimization
problems can be stated as {minf(x) I X E UPOD} with
the feasible domain:

UPOD = {X E lRn I g(x) = O,h(x) $ O} (1)

This is the class of nonlinear constrained static opti-
mization problems.

.The Problem of Optimal Control (~OC)
Next, the class of optimal control problems is defined.
The vector oftime-dependent input variables ofthe con-
trol system consists of z(t) of input variables and u(t)
of q decision variables. The output vector is denoted by
y(t) and the state vector is given by s(t). The dynamic
behaviour is described by a system of differential equa-
tions x = <p(z(t), s(t), y(t), u(t), t) with start conditions
and the given time horizon M = [to, te]. This control
problem can -under certain conditions -be solved us-
ing the same algorithms as for solving (POD), if it is
transformed to a discrete time problem (Veliov (1997)).
This discrete problem forms the set UPOc of 1 feasible
discrete controls:

UPOC = {u E lRq*1 I

g(z(t), s(t), y(t), u(t)) = O,

h(z(t), s(t), y(t), u(t) ~ 0,

x = 'P(z(t),s(t),y(t),u(t),t),and

x(to) = Xo, t E M}.

The optimal control problem is then

te

J

u(t) E UPOC 14>(z(t),s(t),y(t), u(t),t)dtmin

to

The time-discretization of the decision variables trans-
forms a problem from class (POC) to a higher (q * I)
dimensional problem of the class (POD).

.The Problem of Feedback Optimization (PFO)
In contrast to the optimal control problem POC, the
decision variables of a problem belonging to the class
of feedback optimization problems do not depend di-
rectly on time. The time dependence is introduced via
a feedback ofthe time-dependent output variables y(t).
Thus, the decision variables can be defined as u(y(t))
and the set of feasible solutions is:

propriate. Our focus is put on task-parallelism in FEM-
simulation due to the fact that domain decomposition meth-
ods executabl~ on networks of workstations are not common
in todays FEM-simulation systems. Especially in the case
of optimization algorithms, an approach integrating data-
parallelism and task-parallelism is preferred. A step to-
wards this integration is presented in this paper by using
several FEM-simulators (task-parallel) for the computations
requested by an optimization algorithm (data-parallel). This
optimization algorithm is a direct method using only the
value of the objective function. The integration of task-
and data-parallelism is realized by using a set of solutions
(data-parallel) which are evaluated in parallel by multiple
instances of a FEM-simulator (task-parallel). To utilize the
computational resources of a network of workstations, the
optimization algorithm must be designed in a way that al-
most all of the evaluations can be computed independently
on the available workstations. A minimum sequential com-
ponent of the algorithm is desired to improve scalability and
efficiency. These properties enforce the usability of a dis-
tributed algorithm on a network of workstations.

The efficient use of networks of workstations as an eco-
nomical hardware platform for such distributed scientific
computing tasks (Livny and Raman (1998); Warren et al.
(1997)) requires a resource management system (Pruyne and
Livny (1995)j Becker et al. (1995)) which should facili-
ta.te the computation of time-consuming processes on lightly
loaded workstations. With an adequate load distribution
strategy for a network of workstations, a reduction of the
total computation time can be achieved. This is accom-
plished by selecting the most appropriate workstation for
execution of a process instead of making a random selection.
However, at the same time an interactive user on a selected
host should be protected from an excessive loss of computa-
tional power due to the disturbance resulting from "foreign"
load. Strategies for adaptive load distribution on a network
of workstations have to take both of these requirements into
account.

In this paper, a software architecture for supporting the
distributed computation of simulation-based optimization
problems in engineering is presented. This architecture pro-
vides basic functionality for interface management and syn-
chronization between the functional components as well as
resource management. The implementation consists of the
OpTiX1 system for optimization, and FEFLOW2 as an ex-
ample for a FEM-simulation package in engineering. Re-
source management in a network of workstations is handled
by the WINNER system. To utilize the potential computa-
tional resources of a network of workstations with a non-
sequential optimization algorithm, the concepts of a dis-
tributed direct optimization algorithm are proposed. Exper-
imental results for optimizing a mathematical test problem
to demonstrate both the properties of the algorithm and the
efficiency of load distribution are discussed, and the com-
putation of an industrial problem from water engineering is
presented to show the feasibility of our approach for practi-
cal engineering problems.

The paper is organized as follows. In section 2 three opti-
mization problem classes relevant in engineering are formally
introduced and some of their typical applications are listed.
In section 3 a software architecture for simulation-based,optimization is presented. In section 4, the components of
an implementation of the architecture are described. The
concepts of a distributed direct optimization algorithm are
described in section 5. In Section 6, experimental results for
selected applications are discussed. Section 7 concludes the

lOpTiX is a trademark of Co.Com Ltd., Berlin, Germany
2FEFLOW is a trademark of WASY Ltd., Berlin, Germany

UPFO={U(y(t))E1Rq I

g(z(t),s(t),y(t),u(y(t))) =O,

h(z(t),s(t),y(t),u(y(t))) $ 0,

x = 'P(z(t), s(t), y(t); u(t), t), and

x(to) = Xo, t E M}.
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and Barth (1997)), at least from an economic point
ofview. The coupled optimization/simulation system
should be shielded from platform-specific hard- and
software matters, such as inter-process/object commu-
nication, by an intermediate software layer (middle-
ware) .

A system architecture for coupling optimization and
FEM-simulation software systems according to the above re-
quirements is shown in Fig. 1. The two lower layers provide
(platform-independent) functionality to start the individual
components of the system and to provide the communica-
tion between them. These two layers implementing the mid-
dleware can be realized using an object-oriented approach
like the Common Request Broker Architecture (CORBA,
OMG (1998)) but alternatively, using an implementation of
the non-object-oriented Message Passing Interface standard
(MPI) (Gropp et al. (1994)), or the Parallel Virtual Ma-
chine (PVM) (Geist (1994)), is also possible. Besides this
functionality, the two lower layers also offer functionality for
load distribution.

The layer above implements the interface management
functions to provide the basis for application-level communi-
cation, i.e. exchange of values for decision variables and con-
straints between the components. This layer encapsulates
the application-specific interface, whether it is file-based or
a programming interface, and makes a common interface for
data exchange available, e.g. by creation and/or transfor-
mation of files. Furthermore, synchronization between the
components will be handled in this layer .

Components like the pre- and postprocessor have their
own (graphical) user interfaces. The topmost layer has to
provide a user interface for the convenient formulation of
the optimization problem (e.g. by allowing nodes of a finite
element model representing constraints or decision variables
to be selected graphically, or by enabling the user-friendly
specification of the objective function) and probably addi-
tional visualization techniques for the results of the opti-
mization. As a whole, this layer should present the compo-
nents of a coupled optimization and FEM-simulation system
consistently, and initiate and control the data fl.ow between
distributed components: from model generation in the pre-
processing stage and FEM-simulation/optimization to the
visualization of the optimization results in the postprocess-
ing stage.

4 Components for Distributed
Simulation-Based Optimization

In this section, the particular components required to solve
the applications described in section 6. are presented. For
the optimization, OpTiX (Brüggemann and Grauer (1991);
Boden (1996); Brüggemann (1997)) is used to specify an
optimization problem and a (distributed) strategy for the
solution. As an example for a commercial FEM-simulation
code in engineering, FEFLOW(Diersch (1998)) is integrated
as the FEM-simulation component in the software architec-
ture. FEFLOW provides simulation functionality for sub-
surface How- and transport processes in groundwater. WIN-
NER (Arndt et al. (ALV, 1998); Arndt et al. (PDCS, 1998);
Arndt et al. (1999)) offers resource management facilities
for a network of workstations.

.The Distributed Optimization Environment OpTiX
OpTiX is an optimization environment supporting the
entire process from problem formulation to distributed
solution of a problem on networked workstations. The
problem of optimizing a mathematical function can be
formulated in a formal mathematical language. The

The optimization problem in this case is:

t.

{ min f t/>(z(t), s(t), y(t), u(y(t)), t)dt I u E UPFO } .

to

With the decision variables u(y(t)) being not directly
depending on time, this problem class can also be
solved with the same algorithms as problems (POD)
and (POC).

Industrial applications of these different types of optimiza-
tion problems in various engineering domains are demon-
strated e.g. for water engineering (Grauer et al. (1999)), for
the automotive industry (Boden (1996); Weinert (1994)), in
aircraft design and for metal forming processes ( Grauer and
Barth (1999)), and in chemical engineering (Grauer et al.
(1978)).

3 Software Architecture for Distributed
Simulation-Based Optimization

The previously presented problem classes and their solu-
tion processes yield various requirements for an integrated
software environment supporting the solution of simulation-
based optimization problems in engineering. Therefore, the
computationally expensive numerical solution process and
the necessity to integrate FEM-simulation packages with op-
timization essentially affect the software design. The follow-
ing tasks for software. engineering can be identified:

.Wrapping of Legacy Systems
Mostly, numerical FEM-simulation software packages
are written in programming languages like FORTRAN
or C. To follow the object-oriented paradigm in soft-
ware engineering, it is useful to integrate these software
systems by wrapping them. This means to design and
implement classes which transform a call to an interface
method of that class to a call to the legacy software.
If there is no application-level interface available, this
" call " may be identical to the start of the program with
appropriate parameters, e.g. in the form of an input file
for a program.

.Interface Management
Both the optimization and simula:tion software must
provide interfaces to set and retrieve data. For instance,
the optimization software must be able to set parame-
ters of the FEM-simulation model according to certain
values of decision variables of the optimization prob-
lem. Similarly, after a FEM-simulation run (i.e. the
evaluation of constraints for a vector of decision vari-
ables) is completed, the optimization must obtain values
for constraints from the simulation model. At present,
most FEM-simulation systems, e.g. for structural me-
chanics, aerodynamics or aeroelastics (Cifuentes (1989);
Schweiger et al. (1996)), provide only a file-based in-
terface. Access to data of the simulation model via a
programming interface is usually not possible.

.Synchronization
If the optimization algorithm has requested the eval-
uation of a solution vector from the FEM-simulation
system, the algorithm has to wait for the completion of
the FEM-simulation. Vice versa, the FEM-simulation
software has to wait for the next request after finishing
the current one. Thus, between these two components
at least two processes have to be synchronized, and the
data exchange has to be coordinated.

.Distributed Computation
For the distributed computation of the optimization and
simulation tasks, networked high-performance worksta-
tions are a preferable platform (Boden (1996); Grauer
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Figure 1. The software architecture for a distributed problem solving environment with coupled FEM-simulation and
optimization .

combination of a problem and an appropriate optimiza-
tion aIgorithm can be computed on any of the worksta-
tions in the network. The parallel solution of optimiza-
tion problems is supported by aIlowing to (graphically)
design so called "visual optimization schemes" , i.e. man-
ager/worker schemes for the parallel solution of a de-
composed problem formulation or a hybrid approach
where different aIgorithms solve the same problem in
parallel and exchange their best solution. The object-
oriented design of OpTiX offers the following benefits:

-flexibility concerning the problem formulation,
-integration ( "wrapping" ) of non-object-oriented im-

plementations of optimization aIgorithms,
-transparent management of the distributed compu-

tations across a network of workstations, and
-a graphical user interface for the formulation and

the control of the solution of an optimization prob-
lem.

The first two aspects imply the existence of an abstract
layer between the optimization aIgorithms and the prob-
lem formulation. This interface reduces aIgorithms to
their essential attributes (stopping criteria, maximal it-
eration number etc.) and optimization problems to the
objective function, constraints etc. These abstractions
enable the combination of any problem with any aIgo-
rithm (if appropriate) for its solution. Instances of aIgo-
rithms can be implemented in C, C++ or FORTRAN,
problem formulations can be analytical or simulation-
based. The distributed computation of an optimization
problem must be transparent to the user. Therefore, the
user must have the opportunity to graphically design
an optimization strategy (parallel, sequential) which is
then employed on the network of workstations without
further interaction with the user .

.The Groundwater Simulation System FEFLOW
FEFLOW (Finite Element Subsurface Flow and Trans-
port Simulation System) is a 2D/3D simulator based
on the finite-element method. Systems of equations
for three-dimensional problems can be solved using di-
rect or iterative methods. FEFLOW provides different
solvers for this purpose.
For optimization purposes, the interface to the finite-
element model is very important. Nodes of this FE-
model represent locations of decision variables and con-
straints, and the optimization must have access to these
nodes to set and get values. Besides the traditional
interface based on files, the Interface Manager (IFM)
of FEFLOW enables the loading of libraries (shared

objects, dynamic link libraries) at runtime (Gründler
(1997)). Furthermore, IFM provides a bi-directional in-
terface; callbacks transfer control to external code at
certain points in the FEFLOW-internal cycle (e.g. be-
fore or after every time step in the simulation). This
allows control over the simulation, for instance to wait
for a request using synchronous communication. Like-
wise, the interface provides access to the FE-model with
functions e.g. to retrieve the hydraulic head in a certain
node of the FE-model.

.The Resource Management System WINNER
The resource management system WINNER has been de-
signed for typical Unix NOW environments, consisting
of a central server and several workstations. It provides
a basic load distribution service and some supplemen-
tary tools to enable users to efficiently execute different
kinds of sequential and parallel applications.
The various tasks of the WINNER system are performed
by three kinds of manager processes: system managers,
node managers, and job managers (see Fig. 2) The sys-
tem manager is the central server process of a WINNER
network. Its duties include (a) collecting the load in-
formation of all respective workstations, (b) managing
the currently active jobs, and (c) assigning hosts to job
requests. On every host participating in a WINNER net-
work, a node manager performs the tasks related to its
machine. It periodically measures the host's utilization
and reports it to the system manager. Furthermore,
node managers are responsible for starting and control-
ling WINNER processes on their nodes, like e.g. reducing
process priorities to protect console users (Arndt et al.
(ALV,1998)).
System and node managers run as daemon processes. In
contrast, job managers are invoked by users to execute
sequential and parallel jobs. Thus, job managers are
part ofWINNER'S user interface. WINNER provides a va-
riety of different job managers. Among them are: wrun
for transparent remote execution of interactive applica-
tions, a parallel and distributed make-utility (wmake),
and wpvm which supports parallel applications based on
PVM. Their common duties are (a) acquiring resources
from the system manager, (b) starting processes on the
acquired nodes via the respective node managers, and
( c ) controlling the started processes.
Whenever a job manager requests resources for execut-
ing processes, the system manager selects those hosts
which can currently provide the highest performance.
This performance is estimated by taking both the base
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Figure 2. WINNER system structure (left) and scheme of integrating WINNER/WpVm-components with PVM and OpTiX
(right).

speed of each workstation and its current load situation
into account. Any additional resource constraints spec-
ified by the job manager (like a minimum amount of
main memory) might reduce the set of suitable hosts.
Workstations which are actively peing used by console
users are generally not used at all.
WINNER provides a job manager (wpvm) for being able
to schedule PVM tasks. This job manager automati-
cally selects a number of appropriate hosts for the PVM
virtual machine ( usually a tedious task when performed 5
manually), starts the user's parallel application, and im-
proves PVM's scheduling by utilizing WINNER'S load
distribution mechanism.
In order to avoid changes to the PVM system and to
application programs, WINNER follows the approach in-
troduced along with the CARMI system (Pruyne and
Livny (1995)) for integrating a resource management
system into PVM. This is achieved by registering sev-
eral processes into the PVM infrastructure (for details
see Arndt et al. (ALV, 1998)): The so-called PVM re-
source manager is the most important ofthese processes.
Its main task is to replace PVM's default round-robin
scheduling by WINNER'S workload scheduling schemes.
The hoster and tasker processes are responsible for start-
ing the PVM daemons and PVM user processes, re-
spectively, thus enabling wpvm to start and control all
processes of the PVM application via the WINNER in-
terfaces (Fig. 2, right).
Once invoked, a parallel application 's master task will
presumably spawn some PVM child processes (via
pvm.5pawnO), e.g. the OpTiX workbench spawns man-
ager and worker processes (see section 6.). The default
PVM scheduler uses a simple round robin scheme which
yields good results in the case of unloaded, uniformly
performing, single-processor workstations only. When
using wpvm, the task placement decisions for these pro-
cesses are automatically redirected to the resource man-
ager which uses WINNER for choosing a suitable host
for each task. This results in an enhanced scheduling
scheme which respects the number of processors, differ-
ent base speeds and the current load situation of each
participating workstation.

The static structure of the coupling between FEM-
simulation and optimization software in the case of OpTiX
and FEFLOW is depicted in Fig. 3. Thé boxes represent
distinct -maybe nested -components of the system, ar-
rows between tliem specify a dependency, i.e. that the opti-
mization components on the right side of the Fig. 3 use the
components OpTiX and PVM. The FEM-simulator package
contains the FEM-simulation system itself and the built-in
interface management to external modules. This external
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Figure 3. Components of the coupled simulation and

rical operations (reHection, contraction) performed on the
vertices of an (at least) (n + l)-dimensional polyhedron in
the n-dimensional solution space of the optimization prob-
lem. The basic parameters are the size s > n + 1 of the
polytope, the number of solutions e which Me modified us-
ing reHection and contraction, and the " look ahead " factor
which controls the number of new solutions 1 generated from
one solution. Hence, the number of new solutions per itera-
tion is 1 * e if no contraction operations are performed and
2 * 1 * e otherwise. Additionally, the point on which the so-
lutions are reHected can also be varied. ReHection on the
best solution restricts the search, whereas the reHection on
the center of gravity of the polytope allows a search in all s
directions given by the polytope and the center of gravity.
In Fig. 4, various alternatives are illustrated. Different set-
tings of the aforementioned parameters yield different search
strategies.

VCOG
Infeasibl~ region o. O

. ~ ..v .V1.Repair2
G~ 1,Repalr 1

V1Ilfeasible

Figure 5. Repair of the infeasible solution Vl using a parallel
binary search along the direction towards the center of grav-
ity VCOG. The first repair step yields the infeasible solution
Vl.Repair 1, the second ( and final ) step the feasible solution
V2.Repair2.

In case of constrained optimization problems there is an
additional computational effort for an unpredictable number
of repair operations to move infeasible solutions into the fea-
sible region. This repair is basically a parallel binary search
along the line between the center of gravity of feasible solu-
tions and the solution to be repaired (see Fig. 5):

The relation of problem dimension n to available resources
p can be used to distinguish between different strategies:

.n «p
Offers highest possible degree of parallelism. e and 1 can
be adjusted either to emphasize multidirectional search
(e > I) or search preferably along the direction of the
center of gravity. A common value for the polytope size
is s = 2 * n.

.n~p
The degree of parallelism is limited and the size of the
polytope should be reduced to n + 1. The values for e
and 1 can be set according to p ~ 2 * 1 * e. The search

n-l

min f(x) = L

i=l

( 100 * (X;+l -X~)2 + (X; -1)2

99

optimization software (as UML component diagram)

direction should be restricted by using the best solution
as the center of reflection.

.n »p
Similar to the previous strategy, the degree of paral-
lelism is further reduced. In the extreme case only the
worst solution (e = 1) can be reflected on the best so-
lutiQn ~th a look ahead 1 ~ p/2.

The algorlthm used for the solution of the subsequently
presented optimization problems comprises the following
steps: 1. Imtlallzatlon

The starting polytope with 8 randomly generated solu-
tion vectors is built and the constraints are evaluated.
Infeasible solutions are repaired using a parallel binary
search directed towards the center of gravity of feasible
solutions.

2. Exploration
The e worst solutions are reflected on the center of grav-
ity. A reflection factor Q < 1 indicates a move (con-
traction) of the solution towards the center of gravity,
Q > 1 indicates an expansion beyond the center of grav-
ity. Each of these reflections is performed 1 times in
parallel (s. Fig. 4). Infeasible solutions are repaired
using the parallel binary search from the initialization
phase. This generates e*l new solutions from which the
8 best are selected for the next iteration.

3. Local search
When the exploration is terminated ( e.g. after the
maximum number of iterations), a parallellocal search
starts from the best solution. It computes p (p num-
ber of hosts) random solutions in a sphere with radius
r around the best solution. The radius is reduced if
the local search fails to find a better solution. Infeasi-
ble solutions are rejected instead of repaired as in the
previous phases. The local search stops after a given
number of iterations or when the improvement is less
than a given f.

6 Applications and Results

In this section, basic characteristics of the proposed dis-
tributed optimization algorithm will be demonstrated by
applying the algorithm to mathematical test problems and
optimization problems from groundwater engineering. The
benefits of adaptive load distribution using WINNER and Op-
TiX will also be shown with the distributed optimization of
the mathematical test problem.

6.1. Mathematical Test Problem
In order to demonstrate the scalability of the algorithm, the
well-known mathematical benchmark function based on the
Rosenbrock function (Schittkowski (1980)) was used as a
benchmark. The n-dimensional Rosenbrock problem is de-
fined as
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Figure 4. Parallel reflection and contraction of a 2-dimensional polytope with s = 3 solutions. At the top, the e = 2 worst
solutions V2 and V3 are reflected 1 = 1 times on the best solution VI with factor 2 (solutions V2.R and V3.R) and a contraction is
performed with factor 0.75 (solutions V2.C and V3.C ). Beneath, all solutions are reflected I = 2 times with factor 2 (solutions
V2.Rl, V2.R2, V3.Rl, and V3.R2) on the center ofgravity VCOG

with -3 $ Xi $ 3, Ví = 1, ..., n.
The mi~imum is known to be f(x) = 0 for Xi = 1, Vi = 1400
1, ..., n.

In our context this problem was only used as a nonlinear 1200
optimization problem whose problem dimension can be eas-
ily varied. In contrast to optimization problems in engineer- 1000
ing., the evaluation of the objective and constraint function ~
is tiegligible in terms of computation time. To "emulate" ~ 800
the conditions of engineering problems, the evaluation of ~
the objective function was artificially delayed to three sec- i= 600
onds each. This approximates the relation of two to three
orders ef magnitude between computation and communica- 400
tion time in the case of engineering problems. Assuming this
relation, the communication cost for distributed computa- 200
tion is almost irrelevant. The test problems were considered
as being solved when the best solution in the polytope was
less than 10-6. The starting points ofthe optimization runs 0 5
were automatically generated symmetrically around the op-
timum to assure convergence and a comparable quality of
the solutions for different problem dimensions. These tests -

1are not intended to demonstrate any kind of global conver-
gence property of the algorithm, but they serve to illustrate
the scalability of the algorithm. AII tests were performed
on a heterogeneous network of Sun workstations ranging
from 75MHz SparcStation 10 to 296MHz Ultra 30 connected
by 10Mbit Ethernet or 155Mbit ATM. The algorithm's pa-
rameters I and e were held constant for all tests yielding a
constant amount of work (i.e. evaluations of the objective
functions) for the solution of each of the Rosenbrock prob-
lems. For the solution of the previously described mathe-
matical optimization problem, the local search phase of the
algorithm was not performed because it adds almost con-
stant time to the computation time which is irrelevant when
stuQying scalability properties.

In Fig. 6, the computation times for the solution ofthe 10-
dimensional Rosenbrock problem are shown for an increas-
ing degree of parallelism, i.e. increasing number of hosts in
the workstation network. As expected, this curve is very
close to the theoretically achievable linear speedup. The na-
ture of the algorihm implies this behaviour because almost
all computations within one iteration can be performed in
parallel, which guarantees good utilization of any additional
resources.

The computation times for increasing problem size and
degree of parallelism are depicted in Fig. 7. For compari-
son, the computation times of the sequential Complex Box
algorithm are also shown.

In Fig. 8, the relative speedup of the proposed method is
shown. The speedup decreases for increasing dimension of
the optimization problem.

The efficiency E = Speedup/Number of hosts (Kumar et

10

~mb.r of hosts

15 20

-+- Qstributed ~lytope rTBthod Linear

Figure 6. Computation times oí the distributed Poly-
tope method solving the lO-dimensional R.osenbrock prob-
lem with different degrees oí parallelism compared to theo-
retical computation times assuming linear speedup.

al. (1994)) is a measure for utilization of resources. Fig.
9 depicts the efficiency of the algorithm for different prob-
lem dimensions and varying degree of parallelism. It can be
observed that the efficiency decreases with increasing num-
ber of hosts. Generally, higher dimensional problems yield
a lower efficiency for all evaluated numbers of hosts.

To investigate the benefits of load distribution, results
from solving a decomposed formulation of the Rosenbrock
problem are presented in the following. In earlier publica-
tions, the advantages of distributed approaches to the so-
Iution of mathematical optimization problems were demon-
strated (Boden and Grauer (1995)). These promising results
suggest a reduction of computation time of up to one order
of magnitude. The decomposed Rosenbrock problem was
solved by a combination of OpTiX for the computational
part and PVM respectively WINNER/WpVm for the distribu-
tion of optimization processes. While OpTiX originally uses
PVM for the start of its optimization processes and com-
munication between them, it has been now combined with
WINNER/Wpvm. Therefore, the PVM strategy for starting
processes on remote machines was replaced by the strategy
of the wpvm-jobmanager. No changes have to be made ei-
ther on the OpTiX- or on the WINNER/wpvm-side. The fol-

100



T. Bar1h, B. Freisleben, M. Grauer, F. Thilo' Distributed Solution of Simulation-Based Optimization Problems on Networks,

1 "' '~~"""'"'-=

::: ---'---"-'-~~, 0,8 ' 0,5

0,4

...

-.::=;;;;;t

~~

-

10 15 20

Number of hoD

--+-n=10 -w-n=20 n=30 n=40 --n=50 I

1 ttlst

-+- 15 ttlsts

5 Hosts

20 Hosts

10 f*'sls

---Co"1'18X Bo~ seq.

Figure 7. Comparison of computation times of the dis-
tributed Polytope method solving 10- to 50-dimensional
Rosenbrock problems with different degrees of parallelism
compared to computation times of the sequential Complex
Box algorithm.
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Figure 8. Relative Speedup of the distributed Polytope
method for the solution of 10- to 50-dimensional Rosenbrock
problems on 5 to 20 hosts compared to linear speedup.

lowing application shows that load distribution using WIN-
NER/WpVm reduces the total solution time of a decomposed
optimization problem in comparison to the built-in PVM
host selection strategies.

The decomposed formulation of the Rosenbrock problem
makes use of the approach that computation time is reduced
if several (sub- )problems with a smaller dimension than the
original n-dimensional problem are solved, even if the so-
Iutions of the subproblems must be combined for the so-
Iution of the original problem. In the case of the Rosen-
brock function, the expression 100 * (Xi+l -X~)2 prevents
the independent solution of a subset of the sum, because
indices i and i + 1 occur in every addend. Therefore, a man-
ager/worker scheme can be applied, in which the worker
processes compute a solution for decision variables which
are non-decision variables in the manager process and vice
versa. These worker processes can be computed in paral-
lel aiternately to the computation of the manager process.
Using this approach, the 100-dimensional Rosenbrock func-
tion can be decomposed into two worker processes with 33
decision variables and one worker process with 32 variables.
The manager process uses these 98 decision variables as non-

Figure 9. Efficiency of the distributed Polytope method for
the solution of 10- to 50-dimensional Rosenbrock problems
on 5 to 20 hosts.

decision variables and computes a solution for the remaining
two decision variables, which yields the solution of the orig-
inal 100-dimensional problem.

The parallel computation of the manager /worker scheme
leads to four optimization processes, whereas the three
worker processes run in parallel, and the manager process
starts its computation when all workers have finished. Both
the worker and manager problems were solved using an im-
plementation of the Quasi Newton algorithm (Brüggemann
and Grauer (1991)) with identical parameters.

In Tab. 1, the results of 10 runs under different load sit-
uations of the optimization are compared. On hosts thales,
pythagoras and euklid, a FEM-simulation generated CPU
load, the hosts aristoteles, kepler, cusanus and avenarius
were idle. This scenario of hosts with and without load was
used to simulate "reallife" conditions in a network of work-
stations. The difference between the results of the different
runs under the control of PVM can be explained as follows:
since the subproblem solved by worker 3 is the computation-
ally most expensive problem, the host selected to run this
process determines the total computation time, because the
manager process has to wait for all of the worker processes.
The PVM strategy leads to considerably longer computa-
tion times if it selects a host already loaded. This selection
is prevented by WINNER/WpVm as described in section 4.

6.2. A Groundwater Engineering Problem
The following optimization problem from groundwater engi-
neering is an example for the class (POD). It is a minimiza-
tion problem with limits on the acceptable rise of groundwa-
ter level. The problem can be stated as follows. The process
of building a sluice in a local port in a city causes an in-
creasing infiltration of surface water and therefore a rise of
the groundwater level. To protect the tree population in a
nearby park, this rise of the groundwater level has been re-
stricted to 0.1 meters in each of five observation points. The
objective function of the minimization problem is the sum
of the quantity of water -as a measure for the operational
costs -four pumps extract from the area in order to lower
the groundwater level:

Formally, the optimization problem has four decision vari-
ables (the individual quantities of extracted water per day
of four pumps), five (implicit) constraints (upper bounds of
groundwater level in five observation points) and four (ex-
plicit) constraints (technical restrictions of the pumps).

The problem was solved using the proposed software ar-
chitecture with tbe FEM-simulation system FEFLOW and
the Polytope algorithm described in 5. as the optimization
algorithm. The algorithm was performed on a varying num-
ber of hosts. In Table 2, the hereby computed solutions are

101



~

Table 1. Total computation times íor the solution oí the decomposed Rosenbrock problem using PVM and wpvm strategies

íor load balanci~g.

TOtal time usi~&: II

PVM strategy lsj II

476.92

266.92

425.09

268.73

277.55

469.18

267.78

466.58

268.80

478.66

366.62

100

--
ar-eu-ke-tn
eu-ke-th-cu
ke-th-cu-py
th-cu-py-av
cu-py-av-ar
py-av-ar-eu
av-ar-eu-ke
ar-eu-ke-th
eu-ke-th-cu
ke-th-cu-py

Average tIme \a~
Average time (rel.) %

compared with the reference soIution and the best soIution
computed by the sequeÍ1tial Complex Box method.

The results show that alI computed soIutions yield an im-
provement of approximately 25%, but algorithms terminate
with different soIutions for different numbers of hosts. This
is a result of the different degree of parallelism which affects
the generation of the starting polytope and hence the whole
soIution process. This explains also the superlinear (relative)
speedup when increasing the number of hosts from one to
four. Generally, almost identical quality of the soIution can
be obtained in sub.stantially Iess time using the distributed
algorithm. It must be critically remarked that efficiency
decreases for increasing degree of parallelism. This lack of
performance should be rectified by an improved adaptation
of the search strategy (i.e. adaptation of the factors.l and e
of the distributed Polytope method) to the number of hosts.

-av-ar-cu-ke
av-cu-ar-ke
ar-cu-av-ke
av-ar-cu-kt'
ar-cu-ke-a..
ar-av-cu-kE
cu-ar-av-ke
cu-av-ar-cu
av-cu-ar-ke
ar-cu-ke-av

Average time (abs.)
Average time (rel.) % i

of FEM-simulation code, e.g. used in aircraft design. As
indicated by the performance results. the efficiency of the
distributed algorithm has to be improved. The adaptation
of its search strategy to problem size and available resources
must be integrated to utilize additional resources more ef-
fectively, possibly isó-efficient (Kumar et al. (1994)). This
adaptation can be realized in terms of varying polytope size
and the parameters for refl.ection and contraction. Finally,
as an alternative for distributed computing based on PVM
message passing, the use of CORBA ( equipped with adap-
tive load distribution) as a middleware could be envisaged
(Barth et al. (1999)).
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7 Conclusions

In this paper, an approach for the distributed computation
of numerically complex, long running optimization prob-
lems in engineering applications on a network of worksta-
tions was presented. The basic functionality of the pr(}-
posed architecture includes interface management, synchr(}-
nization and resource management. As an instance of this
architecture, a prototypical implementation was realized
using the OpTiX system for optimization and the finite-
element package FEFLOW for simulation; adaptive load
distribution on a network of workstations was performed
by the WINNER resource management system. With this
prototype, the optimization of a mathematical test prob-
lem as well as industrial problems from water engineer-
ing were obtained. The results demonstrate the scalabil-
ity properties of the Distributed Polytope method necessary
for efficient exploitation of available resources in a network
of workstations. The newly developed Distributed Poly-
tope method is based on the ideas of (parallel) simplex-
based algorithms (e.g. (Kearsley et al. (1993»). In con-
trast to the "traditional " strategy to parallelize an existing

optimization algorithm by introducing parallel oeprations
(e.g. parallel linear algebra operations Chio et al. (1995);
Blackford et al. (1997», this algorithm is designed inher-
ently parallel to minimize the sequential component which
reduces possible scalability. Therefore, the method inte-
grates a parallel constraint-handling technique to repair in-
feasible solutions. Also, first steps towards a detailed scala-
bility analysis are made (s. Barth et al. (2000».

There are several issues for future work. For example, the
protc.type should be improved with respect to the compu-
tation of different classes of optimization problems in engi-
neering -e.g. control problems -involving different kinds
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