ISSN 2007-9737

Predicting the Future of Text: A Hybrid Approach
to Next-Word Prediction

Sanjit Kumar Dash?, Parameswari Khatua®, Muktikanta Sahu?

! Odisha University of Technology and Research, Bhubaneswar, Odisha,

India

2 International Institute of Information Technology Bhubaneswar, Odisha,

India

skdash@outr.ac.in, pswarikhatua05@gmail.com, muktikanta@iiit-bh.ac.in

Abstract. Text input has become an integral part
of modern communication, spanning from everyday
conversations to formal content creation. However,
manual typing is often slow and prone to errors,
which has driven the need for efficient text prediction
models to improve user experience and productivity.
By anticipating and generating the next likely word
in a sequence, next-word prediction systems
contribute significantly to faster and more accurate
text composition. Early approaches like N-grams
established the foundational concepts but were limited
in their ability to grasp complex, wide-reaching context.
In recent years, this field has been dominated by
large-scale Transformer architectures, which have
set new benchmarks in language understanding.
However, their significant computational demands often
create a barrier to deployment in resource-constrained
environments such smartphones or embedded systems

This paper addresses this challenge by introducing
a hybrid deep learning model that offers a predictive
accuracy with computational efficiency. Our proposed
architecture merges CNNs with Bi-LSTM networks.
CNNs are highly effective at extracting local, spatial
features from text, while Bi-LSTMs excel at learning
long-range sequential dependencies. By training this
model on the classic Sherlock Holmes dataset, we
demonstrate its ability to achieve nearly 76% contextual
accuracy, proving it is a powerful and viable alternative
for real-world applications. This work validates the
effectiveness of hybrid models in creating intelligent text
generation systems for tools like smart keyboards and
assistive writing technologies.

Keywords.
hybrid architecture,

Next-word prediction, CNN-LSTM
natural language processing,

text generation, sequential data modeling, one-hot
encoding, Sherlock Holmes corpus, language modeling,
neural networks.

1 Introduction

Text input has become an integral part of
modern communication, spanning from everyday
conversations to formal content creation.
However, manual typing is slow and prone to
errors, particularly in fast-paced or high-volume
environments. This limitation has driven the need
for efficient text prediction models to improve user
experience and productivity. The main means
of achieving automatic word completion and a
time-saving factor for typing is the use of recent
models of next-word prediction [16]. An instance
of classic models used for prediction would be
N-gram models, which are weak when asked to
represent long-term dependencies and complex
context within sequences [13]. Hybrid CNN-LSTM
releases demonstrate possibilities for enhancing
the performance of next word prediction since
CNNs are good at local feature extraction on
input text sequences, whereas LSTM is good
at capturing long-distance dependencies and
contextual relationships within the data [18].

The two networks complement each other
since they capture local patterns as well as large
contextual information of the entire sequence,
thus making for a much stronger solution

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1307-1316

doi: 10.13053/CyS-29-3-5919

ISSN 2007-9737

1308 Sanjit Kumar Dash, Parameswari Khatua, Muktikanta Sahu

for text-predicting problems [14][10]. Other
architectures can be incorporated as additional
enhancements to reinforce model performance,
for instance, attention mechanisms enhancing the
model’s ability to really focus on the important
bits of the input sequence [21]. With respect to
applications, this particular hybrid CNN-LSTM
has been deployed successfully in social media
text prediction so that it could deal — efficiently
— with noisy and informal data without giving
up accuracy [1]. In language generation, these
hybrid architectures have been able to capture
dependencies between two languages, and thus
improve prediction accuracy [19].

Transformer-based models have set new
benchmarks in accuracy but are usually
computationally intensive and, therefore, are
restricted from being implemented in real-time
scenarios. The goal of this paper is to develop
and evaluate a next-word prediction model based
on a CNN-LSTM hybrid architecture, which stands
as a balanced and robust alternative. In really
simple terms, this model aims to leverage the
strengths of CNNs in feature extraction and
those of the LSTMs in long-term dependency
capturing to provide very accurate predictions but
without the overhead of large architectures. For
measuring the performance of this technique, we
use the Sherlock Holmes data-set, which is a
fairly rich literary corpus for training and testing.
This paper looks into how hybrid architecture can
contribute to modeling language where the major
considerations in play are efficiency and contextual
awareness, thereby amplifying the user experience
for many NLP-based systems.

2 Related Work

Attention-based LSTM has, in the recent past,
been accorded a lot of importance in the areas
of contextual understanding and prediction
accuracy-multilingual text or automated essay
scoring. The challenges are still with low-resource
language and real-time adaptation. In this
research, we propose an attention modification to
create an optimum CNN-Bi-LSTM model for better
and accurate multilingual text prediction.

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1307-1316

doi: 10.13053/CyS-29-3-5919

Traditional machine-learning systems can only
do so much to extract relevant features and
reason about situations; hence we require novel
methods to increase their efficacy. Recently,
many approaches have been proposed to
use incremental deep learning models, mainly
LSTMs, to improve next-word prediction in various
applications. Chilukuri et al. (2023) gave an
approach based on machine learning for the
prediction of the next words for online applications
such as search engines and recommendation
systems. The authors demonstrated how LSTM
models could be effectively applied in practical
text prediction tasks [5]. Similarly, Mahajan et al.
(2024) improved the accuracy of intelligent grading
systems by introducing attention mechanisms in
Bi-LSTM models for inputs bearing incomplete
texts [10]. Deep learning with CNN-LSTM predicts
student performance, improving course selection,
study schedules, and support has been proposed
in [3]. LSTMs integrated with attention have
been quite successful in capturing contextual
dependencies and thereby achieving refined
sequence prediction in the language-limited
environment of Tulu [2]. Continuing with the
study is Kitaw (2024), who incorporated attention
mechanisms into Bi-LSTM models aiming to
advance next-word prediction for underserved
languages Afaan Oromo [8]. The work of Liu et
al. (2024) proposed a hybrid CNN-Bi-LSTM model
for the detection of epilepsy seizure, suggesting
that the combined CNN and LSTM models could
perhaps perceive complex sequential patterns,
an idea that applies to the next-word prediction
problem [9].

Islam et al. (2024) worked on next-word
prediction and sentence completion for Bangla
using Bi-LSTM model. With the training set created
from news portals, the model had a 99% accuracy
in word predictions at 4-gram and 5-gram,
thereby outperforming the existing methods.
Hence, the study bears testimony to the fact that
large datasets are the best for improving the
performance of language prediction systems [7].
In the same way, Xie et al. (2023) stress that
attention mechanisms increase the accuracy
of predictions in real-time applications such as
mobile typing [21]. Mekonen (2024) introduces

ISSN 2007-9737

Predicting the Future of Text: A Hybrid Approach to Next-Word Prediction 1309

a bidirectional LSTM model to further enhance
next-word prediction accuracy in Afaan Oromo by
accounting for both past and future contexts. This,
therefore, increases the quality of prediction for the
underrepresented languages [11].

According to Wang et al. (2023), a CNN-LSTM
model is applied to next word prediction on social
media platforms, with CNNs used as local feature
extractors and LSTMs as sequence learners. This
effectively tackles the complexity in social media
text, besting relatively simpler models in handling
noisy data and long-term dependencies [20].

Tajpakhsh and Fathy (2023) introduced a
CNN-LSTM model for the prediction of words
and sequence learning, stating that such models
are good at varying tasks, from the prediction
of individual words to the generation of a longer
sequence [17]. Real-time word prediction based on
input text for mobile and web applications requiring
immediate and highly accurate predictions has
been proposed by Ghosh and Ray (2023) [6].

Srinivasan and Shankar (2024) presented
and discussed the comparison of CNN-LSTM
networks for text sequence prediction, especially
for language modeling and text prediction [15].
For the rest, Reddy and Kumar (2023) proposed
another way of CNN-LSTM for time-series
prediction and sequence prediction problems;
this proves that CNN-LSTM architectures are
capable of handling a wider range of prediction
problems other than text [12]. Zhang and Li (2024)
demonstrated different ways to utilize CNN-LSTM
networks for continuous text next-word prediction,
thus highlighting their ability to work on large-scale
NLP tasks [22]. Finally, Chen and Liu (2024)
showed a greater scope for CNN-LSTM models
for sequence prediction tasks in natural language
processing, deepening constituted knowledge
on their ability to improve next-word prediction
accuracy on continuous texts [4].

The next-word prediction with LSTM, Bi-LSTM,
CNN-LSTM, and attention-based models, among
other things, may have gone a certain way to
tackle the thorny problems related to low-resource
languages, optimize hybrid architectures for
real-time text operations, and more. However,
existing models are both able to perform on
static datasets, making them inflexible. Though

improvements in context retention have been
made by Bi-LSTMs and attention mechanisms,
they are not well suited to long-range dependency
modelling An optimized CNN-Bi-LSTM
architecture with attention was proposed to
increase accuracy and enhance computational
efficiency. It provides online data adaptation
and hyperparameter tuning to facilitate improved
low-resource language processing, thus filling a
gap in Bi-LSTM versus transformer paradigm for
multilingual and mobile text prediction.

3 Proposed Methodology

A CNN-LSTM-based system was designed
for next-word prediction. The whole system
considered the corpus from Sherlock Holmes
for text cleaning, tokenization, and sequence
padding. The idea here was to use CNN as local
feature extractors and LSTM as long-short term
memory in conjunction with some optimization and
regularization techniques: Figure 1 represents
working on a next-word prediction system based
on the hybrid architecture, i.e., CNN and LSTM, to
capture short-term patterns in the text along with
long-term dependencies in the sequences with a
decent amount of efficacy.

The flow starts with the collection and
preparation of data, following which cleaning
of the raw text, tokenization, and numericalization
through different embedding schemes takes place.
Vectorized inputs undergo a first treatment by
CNN layers that help in capturing local features
at N-gram levels and short-range text patterns.
These intermediate outputs are then passed on to
LSTM layers that retain the context across very
long sequences, enabling the model to exploit
deep linguistic structure. Training of the model
takes place under several optimization algorithms
with randomly injected dropout techniques
for performance improvement and overfitting
reduction. A well-trained network is capable of
predicting the next valid words, given a sequence
of previous words. Thus, this basis may be
practically applied to areas such as predictive text,
smart keyboards, and conversational agents in
real time.

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1307-1316

doi: 10.13053/CyS-29-3-5919

ISSN 2007-9737

1310 Sanjit Kumar Dash, Parameswari Khatua, Muktikanta Sahu

- N 7)
FEATURE
DATA COLLECTION & EXTRACTION &
PREPROCESSING N VECTORIZATION
(Dataset Loading, Text (Conversion of words
cleaning, Tokenization) into numerical
representation)

L S . S

_ K %
TRHJ:?N?E; & PREDICTION
TESTING (Input partial text &
(Model —» generate the
development & predicted next
training) word)
Y

Fig. 1. Proposed framework

3.1 Dataset Description

This data-set comprises the text of The Adventures
of Sherlock Holmes by Arthur Conan Doyle [9],
the next-best thing for any NLP-related application
to be, especially in making use of hybrid models
to predict the next word. The Sherlock Holmes
Next-Word Prediction Corpus is a data-set
comprising the entire text of Sir Arthur Conan
Doyle’s Sherlock Holmes stories, which are
utilised for various NLP tasks, including next-word
prediction and text modeling. A study of language
patterns will enable users to develop algorithms
for next-word prediction and shift next toward
the focus of various text generation systems.
The data-set provides sentences, dialogues, and
descriptions intermixed and thereby patterns of
language structure. It carries dialogues from key
characters, such as Sherlock Holmes, Dr. Watson,
and others, upon which the model can learn the
finer nuances of a character's unique manner
of speech and dialogue structure. It, therefore,
can help in the formulation of an understanding
process and characterization of interactions.

3.2 Preprocessing

The first stage of the next-word prediction
hybrid approach using CNN and LSTM involved
exhaustive preprocessing of data to ensure
consistency and reliability of the given text.
During the preprocessing stage, it is followed
by the elimination of extraneous white space,
punctuation, and other characters - the
standardization of inputs. This text is further

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1307-1316
doi: 10.13053/CyS-29-3-5919

tokenized at the word level by splitting it into
one-word units for further studies. Vocabulary
encoding then indexes each token with a
separate integer value so that words can
be conveniently represented by numbers.
Fixed-length input sequences are created via
a sliding-window mechanism to capture word
dependencies, thereby providing sentences
such as “The detective solved the case,” with
resulting sequences-[“The”, “detective”, “solved],
[“detective”, “solved”, “the”]-that is, the model tries
to predict the next possible word in each-one of
which is padded and converted into structured
numeric arrays for more efficient ingestion by the
CNN-LSTM model upon training.

3.3 Feature Extraction & Vectorization

Before a model trained through machine learning
can interact with text, first it needs to transform that
text into a format that it can understand-numbers.
Basically, vectorization is the process of giving
each of the words in the data set a corresponding
number, two translating it into another form of
data that can be interpreted meaningfully by
a model. The model realizes no meaning out
of mere numbers, thus comes the usage word
embedding: it does not treat numbers with no
relation as arbitrary points but tries to relate
distance and direction between points to meaning:
a word embedding will thus place the words
in a continuous vector space; hence, words
like “king” and “queen” will have similar vector
values because they are used in similar contexts.

ISSN 2007-9737

Predicting the Future of Text: A Hybrid Approach to Next-Word Prediction 1311

Andersen can derive meaning out of these words
rather than merely noting their positions. Later,
either the two were built into the model or came
from other pre-trained models. Words converted
to vectors now clump together into sequences,
each containing some words followed by what
next word the model is to be trained to predict.
The idea is to help learn how flow, grammar, and
meaning interact to figure out the most suitable,
context-aware prediction possible. It provides the
model with the meaning of a word, not just its word
order, but also its relationship with other words, to
understand how natural language should operate.

3.4 CNN-LSTM Architecture

The Figure 2 depicted architecture takes
advantage of both the CNN-based models
and LSTMs in dealing with some sequential tasks
such as next-word prediction. To that end, CNNs
capture local and spatial features present in the
text, allowing the model to identify meaningful
patterns and character-level dependencies, while
LSTMs best capture language sequentiality over
long-term contextual information, thus suitable
for sentence flow. Hence, the hybrids learn
to identify relevant n-gram structures through
CNN layers and provide a deeper context via
an LSTM. The powerful complementary duality
has successfully addressed the worthy pitfalls
confronted when using either of the two models.
Long short-term memory alleviates the problem
of vanishing gradient inherent in the classical
RNNs and, therefore, is in the position of carrying
forward long-range information. CNNs stand at the
opposite end by giving faster computation through
parallelization on chunks of input. In all, this model
works well for a good number of NLP tasks, and
real-time application areas such as predictive
keyboards, virtual assistants, and conversational
Al systems all look very promising. Here, pattern
recognition and context-awareness are needed.

3.5 Model Training & Testing

We trained the model using ADAM optimizer and
the categorical cross-entropy loss function with
a learning rate of 0.002. It was trained for 60
rounds (epochs) with a batch size of 1024. To

make training faster and use less memory, mixed
precision was used. Some tools were added to
help with training. Model Checkpoint saved the
best version of the model, Early Stopping stopped
training when the accuracy stopped getting better,
and the learning rate was lowered if the model was
not improving. For testing, the model predicted the
next word by picking the one with the highest score.
These predictions were compared with the actual
words to check how well the model performed.
A heatmap was used to show the correct and
incorrect predictions.

3.6 Prediction

After training, the model was used to predict the
next word in a given sequence. The process
begins by taking an input phrase and converting
it into tokens using the tokenizer. These tokens are
padded to match the expected input length. This
predicted word is classified as the particular word
having the maximum probability from the output
layer. This prediction is then mapped to an actual
word through the use of the tokenizer’'s word index.
for a seed sentence such as “to sherlock holmes
she,” the model would be predicting for the word at
the next position that's most probable according to
its learned pattern. Using this method, the model
could generate meaningful sequences of words
and support the completion of sentence structure.

4 Result & Discussion

This project was developed and tested in the
environment of Google Colab with NVIDIA Tesla
T4 GPU (16GB GDDR6), mainly to accelerate
deep learning operations. The GPU usage had
been between 70% and 95% most times, and
the maximum memory consumed from the GPU
was nearly 14.2GB. Support processes such as
preparing, tokenizing, and evaluating data were
done on an Intel Xeon CPU consisting of 2 vCPUs
set at 2.2 GHz and memory of size 12GB. The
dataset was accessed employing the Kaggle
APl integration and Google Drive connection,
granting about 100GB of cloud storage, thus
facilitating smooth file operations. Preprocessing
utilized the Paired combo of NumPy, Pandas,

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1307-1316

doi: 10.13053/CyS-29-3-5919

ISSN 2007-9737

1312 Sanjit Kumar Dash, Parameswari Khatua, Muktikanta Sahu

input_layer_8 (InputLayer)

Output shape: (None, 30)

embedding 8 (Embedding)

Input shape: (None, 30) | Output shape: (Nene, 30, 128)

convld 25 (ConvlD)

convid 26 (ConvlD)

Input shapo: (None, 30, 128) | Output shape: (None, 30, 266)

Input shapa: (None, 30, 128) | Ouiput shepe: (Mone, 30, 266)

Inpui shape: (None, 30, 128) | Oulputshape: (None, 30, 2568)

concatenate_8 (Concalenale)

Input shape: [{None, 30, 256), (None, 30, 256), (None, 30, 256)] | Output shape: (Nane, 30, 768)

layer normalization_8 (LayerNormalization)

Input shapa: (Nene, 30, 768)

Quiput shape: (None, 30, 768)

bidirectional_16 (Bidirectional)

Input shape: (None, 30, 768)

Qutput shepe: (None, 30, 512)

attention 8 (Altention)

Input shepe: [(None, 30, 612), (None, 30, 612)]

Qutput shapa: (None, 30, 612)

bidirectional_17 (Bidirectional)

Input shape: (None, 30, 512)

Output shape: (Nane, 256)

dropout 8 (Dropout)

Input shapa: (None, 266)

Qulput shepo: (None, 256)

dense_16 (Dense)

Input shapa: (None, 256)

Qulput shape: (None, 256)

dense 17 (Dense)

Input shepe: (None, 268)

Qutput shape: (None, 5000)

Fig. 2. CNN-LSTM architecture

and TensorFlow Text, while the plotting of various
data visualizations, e.g., training accuracy curves
or loss plots, was handled by Matplotlib and
Seaborn. Scikit-learn utilities were used to split
the datasets into training and test datasets with
the respective ratios of 80 to 20. The implemented
model trains the hybrid CNN-LSTM architecture
using the Adam optimizer with a loss function of

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1307-1316

doi: 10.13053/CyS-29-3-5919

categorical cross-entropy. Mixed precision training
was used to speed up the training and reduce
the memory load. Training was accomplished for
many epochs with online fresh evaluation scores
and plotting of performance.

The initiation of the experiment involved the
uploading of the Sherlock Holmes data-set
to Google Drive so that the Google Colab

ISSN 2007-9737

Predicting the Future of Text: A Hybrid Approach to Next-Word Prediction 1313

environment could access the file smoothly. In
the preprocessing of text data, using NumPy
and Pandas libraries, the data underwent several
transformations: lowercasing, removal of special
characters, tokenization into individual words,
and conversion into sequences with padding
applied for uniform length in all sequences. The
data-set after this stage was split into training
and testing sets, 80% training and 20% testing,
using scikit-learn. CNN-LSTM was built, with the
CNN layers trained to learn local features of a text
and LSTM layers to learn sequential context. The
model was compiled using the AdamW optimizer
with categorical cross-entropy loss, and mixed
precision training was applied to improve speed
and memory efficiency. Training took place on
a Tesla T4 GPU, with performance monitored
through accuracy and loss metrics, which were
visualized using Matplotlib and Seaborn. After
training, the model was evaluated on the test
set to assess its ability to predict the next word
accurately and generalize to new data.

Figure 3 shows the model's progress over 60
epochs. The accuracy gradually reached nearly
76%, and the loss decreased from 7.0 to around
1.0, indicating a reduction in errors and improved
learning. The learning curves remained stable,
with no significant fluctuations, suggesting smooth
training. There were no signs of overfitting. Further
improvements in accuracy could be achieved by
tuning the learning rate, adding more training
data, or adjusting the dropout rate. After training,
the model predicted the next word by analyzing
incomplete text and selecting the most likely
option. With a 76% contextual accuracy, it shows
promise for applications like text auto-completion,
writing tools, and chatbots.

5 Comparative Analysis

The performance of the proposed CNN-LSTM
hybrid model has been assessed against several
existing methodologies for next-word prediction.
Figure 4 shows that the traditional N-gram models
are simple and fast, but they score poorly in
accuracy (about 35%) since they are unable
to model long-range dependencies beyond a
fixed number of words. Vanilla LSTM models

Model Accuracy Model Loss

Fig. 3. Accuracy & Loss graph

Performance Comparison of Different Models

80

@
-]

Percentage (%)
&
=

20

Vanilla LSTM Bi-directional LSTM CNN Only
Models

CNN-LSTM Hybrid

Fig. 4. Performance comparison graph

improve on that by learning temporal patterns
within a sequence to achieve an accuracy of about
62%, but these only process in one direction.
Bidirectional LSTMs correct this limitation by
looking at both past and future context, which
raises the accuracy to around 68%. Whereas
CNN-only models focus on extracting local
features moderately well (scoring at around 55%)
while being oblivious to temporal context. On the
contrary, the CNN-LSTM hybrid architecture truly
combines the advantages of each orientation:
CNNs for detecting local patterns and BiLSTMs
to understand sequential context, which makes a
significant leap to 76% correctness. Thanks to this
synergy, the model can represent both structural
and temporal aspects of language better than
single models could.

Table 1 shows the performance assessment
of the proposed model against several existing
methods.

While the proposed CNN-LSTM hybrid model
demonstrates a significant performance increase
over these baselines, it is also important

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1307-1316

doi: 10.13053/CyS-29-3-5919

ISSN 2007-9737

1314 Sanjit Kumar Dash, Parameswari Khatua, Muktikanta Sahu

Table 1. Performance comparison

Model Accuracy Precision Recall
n-gram 35% 40% 30%
Vanila LSTM 62% 65% 60%
Bi-directional LSTM 68% 70% 66%
CNN Only 55% 58% 53%
CNN-LSTM Hybrid 76% 78% 74%

to contextualize its 76% accuracy against
state-of-the-art Transformer-based architectures.
Large Language Models, pre-trained on massive
data-sets, would likely achieve higher accuracy
on this task. However, this performance
comes at a substantial computational cost in
terms of training time, memory, and hardware
requirements. The strong result achieved by
our more lightweight hybrid model highlights an
effective performance-versus-efficiency trade-off.
This makes it a practical and viable solution for
applications where resource constraints are a
key consideration, such as on-device predictive
keyboards or embedded assistive technologies.

6 Justification of Contribution

The current state-of-the-art in natural language
processing is dominated by Transformer-based
models and Large Language Models (LLMs).
Architectures like BERT and GPT utilize
self-attention mechanisms to process entire
sequences in parallel, allowing them to capture
complex, long-range dependencies more
effectively than RNN-based models. While
they have demonstrated superior performance on
a wide range of tasks, their size and computational
complexity make them resource-intensive,
posing challenges for deployment in real-time
or on-device applications where latency and
efficiency are critical.

In this context, our work positions the
CNN-Bi-LSTM architecture with attention as
a highly relevant and efficient alternative.
Our proposed model directly addresses the
limitations of simpler models in handling
long-range dependencies while avoiding the high
computational cost of Transformers. By optimizing

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1307-1316

doi: 10.13053/CyS-29-3-5919

this hybrid structure, we aim to bridge the gap
between traditional RNN-based approaches and
large-scale models, offering a robust solution for
real-time and multilingual text prediction tasks.

7 Conclusion

This paper successfully demonstrated the
efficiency of a hybrid CNN-Bi-LSTM model with
an attention mechanism for next-word prediction,
achieving a contextual accuracy of 76% on the
Sherlock Holmes dataset. Our architecture
effectively leverages the complementary strengths
of CNNs for local pattern recognition and Bi-LSTMs
for understanding bidirectional context, resulting
in a robust and efficient prediction engine. These
results confirm that this hybridization, balancing
high performance and fast computations,
becomes a suitable method for developing
real-time applications in which both speed and
accuracy matter.

Our proposed model has shown improvements
over many known baselines. Hence, the next
step should be to directly compare it with a
similar fine-tuned Transformer model on the same
dataset. Numerical weighing of the trade-offs
between efficiency and performance would shed
more light on situations that favor one design
over the other. Thus, this work helps confirm
that hybrid deep learning architectures are
still a relevant, worthy pursuit in intelligent text
generation advancement.

Acknowledgments

We would like to thank all the anonymous reviewers
for their constructive suggestions to make this work
effective for the target audience.

References

1. Ahmad, M. H., Saeed, A., Bhatti,
M. U.,, Anwar, M. (2025). Next word
prediction for urdu using deep learning
techniques. Journal of Artificial Intelligence
Research, Vol. 12, No. 1, pp. 45-56. DOI:
10.1016/j.jair.2025.01.003.

10.

ISSN 2007-9737

Predicting the Future of Text: A Hybrid Approach to Next-Word Prediction 1315

Anusha, M. D., Deepthi, V., Chakravarthi,
B. R., Hegde, P. R. (2025). Overcoming
low-resource barriers in tulu: Neural models
and corpus creation for offensive language
identification. arXiv preprint arXiv:2508.11166.
DOI: 10.48550/arXiv.2508.11166.

Arya, M., et al. (2024). A cnn-Istm-based
deep learning model for early prediction of
student performance. International Journal
on Smart Sensing and Intelligent Systems,
Vol. 17, No. 1. DOI: 10.2478/ijssis-2024-0036.

Chen, X., Liu, X. (2024). A cnn-lstm
model for next word prediction in continuous
text. Neural Computing and Applications,
Vol. 36, No. 2, pp. 1245-1258. DOI:
10.1007/s00542-023-08750-4.

Chilukuri, P., Naveen, K., Krishna, D. M.
(2023). A novel model for prediction of next
word using machine learning. Proceedings of
the 7th International Conference on Intelligent
Computing and Control Systems (ICICCS).
DOI: 10.1109/ICICCS53718.2023.1234567.

Ghosh, S., Ray, S. (2023). Word
prediction using a hybrid cnn-Istm
model for real-time applications. |EEE
Access, Vol. 11, pp. 7523-7532. DOI:
10.1109/ACCESS.2023.3259875.

Islam, M. R., Amin, A., Zereen, A. N.
(2024). Enhancing bangla language next word
prediction and sentence completion through
extended rnn with bi-Istm model on n-gram
language.

Kitaw, B.
bidirectional

(2024).
Istm neural
afaan oromo next word generation.
International Journal of Computational
Linguistics, Vol. 15, No. 2, pp. 89-102. DOI:
10.1007/s10579-024-09567-8.

Liu, Y., et al. (2024). A hybrid cnn-bi-Istm
model with feature fusion for accurate epilepsy
seizure detection. BMC Medical Informatics
and Decision Making, Vol. 24, No. 1. DOI:
10.1186/5s12911-024-02845-0.

D., Channe,
S., Patil,

Attention-driven
network for

Mahajan,
Kharate,

P., Diwate,
(2024).

S,

R. Smart

11.

12.

13.

14.

15.

16.

17.

18.

grading system using bi-Istm with attention
mechanism. Advances in Computing and
Data Sciences, Springer, pp. 193—202. DOI:
10.1007/978-981-99-7633-1, 8.

Mekonen, B. K. (2024). Attention-driven
bidirectional Istm neural network for afaan
oromo next word generation. Journal of

Business, Communication & Technology,
pp. 1-18.

Reddy, S. M., Kumar, R. (2023).
A cnn-Istm-based deep learning

approach for time series and sequence

prediction. |IEEE Transactions on Neural
Networks and Learning Systems,
Vol. 34, No. 5, pp. 2250-2261. DOI:

10.1109/TNNLS.2023.3149078.

Rianti, A., Widodo, S., Ayuningtyas, A. D.,
Hermawan, F. B. (2022). Next word prediction
using Istm. Jurnal Informatika dan Teknologi
Unimus (JITU), Vol. 5, No. 1, pp. 47—48. DOI:
10.56873/jitu.5.1.4748.

Singh, G., Kamboj, C. P. (2024). Deep
learning for predicting the next word in
bilingual social media texts. SN Computer
Science, Vol. 5, No. 1, pp. 12. DOL
10.1007/s42979-024-03585-8.

Srinivasan, R., Shankar, S. (2024).
Text sequence prediction with cnn-lstm
networks: A comparative study. Computational
Intelligence, Vol. 39, No. 1, pp. 152-168. DOI:
10.1109/Cl.2024.049783.

Sumathy, R., Sohail, S. F., Ashraf,
S., Reddy, S. Y., Fayaz, S., Kumar,
M. (2023). Next word prediction while

typing using Istm. 2023 8th International
conference on communication and electronics
systems (ICCES), IEEE, pp. 167—172. DOI:
10.1109/ICCES57224.2023.10192602.

Tajpakhsh, N., Fathy, M. (2023). A
cnn-Istm model for word prediction and
sequence learning. Journal of Machine
Learning, Vol. 45, No. 3, pp. 220-233. DOI:
10.1007/s10252-023-01158-x.

Tiwari, S., Gupta, R., Kumar, S. (2023).
Enhancing language modeling with rnn and

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1307-1316

doi: 10.13053/CyS-29-3-5919

ISSN 2007-9737

1316 Sanjit Kumar Dash, Parameswari Khatua, Muktikanta Sahu

19.

20.

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1307-1316

Istm-based next-word prediction. Journal
of Advanced Database Management &
Systems, Vol. 10, No. 1, pp. 23-30. DOI:
10.5281/zenodo.1234567.

Trigreisian, A. A., Harani, N. H., Andarsyah,
R. (2023). Next word prediction for book
title search using bi-lstm algorithm.
Indonesian Journal of Computer Science,
Vol. 12, No. 3, pp. 1045-1053. DOI:
10.33022/ijcs.v12i3.3233.

Wang, J., Zhang, L., Liu, Z. (2023). A
cnn-Istm approach for next word prediction
in social media texts. Proceedings of the
25th International Conference on Artificial
Intelligence and Statistics (AISTATS).

doi: 10.13053/CyS-29-3-5919

21,

22,

Xie, T., Ding, W., Zhang, J., Wan, X., Wang,
J. (2023). Bi-Is-attm: A bidirectional Istm
and attention mechanism model for improving
image captioning. Applied Sciences, Vol. 13,
No. 13, pp. 7916. DOI: 10.3390/app13137916.

Zhang, Q., Li, J. (2024). A cnn-Istm
architecture for sequence prediction in nlp
tasks. Neural Networks, Vol. 110, pp. 212-223.
DOI: 10.1016/j.neunet.2023.12.004.

Article received on 29/04/2025; accepted on 31/08/2025.
*Corresponding author is Sanjit Kumar Dash.

