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Abstract. This paper presents an approach to
classify correct and incorrect pronunciation in Yuhmu,
an endangered Indigenous Minority Language, using
acoustic embeddings combined with SVM and MLP
models. Unlike typical low-resource language tasks
focused on automatic speech recognition (ASR) or
machine translation, this work employs deep acoustic
representations to detect phonetic quality, achieving high
accuracy and consistency across different embedding
sizes. The results highlight the potential of leveraging
labeled audio data and advanced speech models like
WavLM to provide phonetic feedback and support
language revitalization. This research establishes a
foundation for deeper computational phonetic analysis
in Yuhmu and opens avenues for future exploration
in direct audio-to-audio translation, automatic phonetic
segmentation, and detailed phoneme-level evaluation,
contributing to the documentation and preservation of
underrepresented languages.

Keywords. Low resource languages, Yuhmu language,
supervised learning, speech analysis.

1 Introduction

Natural Language Processing (NLP) is a subfield
of Artificial Intelligence that aims to endow com-
putational systems with the ability to automatically
process human language, including its compre-
hension, generation, and structural transformation

[19]. Within this framework, the automatic
analysis of pronunciation emerges as a critical
component, operationalized through models that
capture acoustic-phonetic representations based
on articulatory parameters (vocal tract position,
voicing) and perceptual cues (formant frequencies,
spectral envelope) [22].

Pronunciation comprises two essential skills:
oral production (speaking) and auditory com-
prehension (listening). Speaking involves the
practical application of the phonological features
of the target language (TL), at both the segmental
level (phonemes and their combinations) and
the suprasegmental level (stress, rhythm, and
intonation), requiring conscious articulation for
effective communication. Conversely, listening
demands the decoding and interpretation of
these same elements in others’ speech, allowing
the learner to recognize and assimilate the
phonological features of the TL.

According to [22], the simultaneous development
of both skills is crucial for pronunciation acqui-
sition, as their interaction reinforces phonological
competence. While speaking emphasizes the
active execution of sounds, listening facilitates their
internalization through auditory exposure, thus
establishing a dynamic cycle between production
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and perception that supports comprehensive
language learning.

The analysis of suprasegmental elements
represents a significant methodological chal-
lenge in phonetic research, particularly when
evaluating isolated words. This phenomenon
creates an epistemological dilemma between two
approaches: (a) the precise assessment of
segmental and suprasegmental pronunciation, and
(b) the evaluation of overall speech intelligibility. As
noted by [1], this duality compels researchers to
establish specific diagnostic criteria for pronuncia-
tion while also providing meaningful feedback on
the analyzed lexical units.

Computer-Assisted Pronunciation Training
(CAPT) systems employ various evaluation
metrics to analyze oral production through
automated scoring methods. These metrics
operate at different levels of linguistic analysis
(complete utterances, isolated words, or specific
phonemes), enabling a granular assessment of
the speaker’s phonetic performance.

A critical aspect in the development of such sys-
tems lies in the distinction between High-Resource
Languages and Low-Resource Languages (LRLs).
This classification reflects the differing data
requirements of machine learning models, which
demand substantially different volumes of training
data to achieve accurate pronunciation analysis.
While high-resource languages typically possess
extensive phonetic corpora for development, LRLs
face significant technical challenges due to the
scarcity of available data, limiting the effectiveness
of CAPT systems in these linguistic contexts.

The computational study of Indigenous Lan-
guages faces significant challenges due to their
status as LRLs. Unlike high-resource languages
with extensive digital corpora, exhaustive gram-
matical descriptions, and well-developed com-
putational tools, these languages lack sufficient
documentary resources to capture their complex
dialectal variability. This limitation manifests in the
absence of systematic digitized materials, hinder-
ing both linguistic analysis and the development of
specialized technological applications.

This issue is exacerbated by two concurrent
factors: first, the phonetic and grammatical
particularities of these languages, which present

greater intra-linguistic variation; and second, the
challenges in their intergenerational transmission,
where phenomena such as disfluency and re-
sistance to learning compromise their linguistic
vitality. This situation not only complicates their
academic study but also threatens their very
preservation, requiring adaptive computational
approaches capable of operating with limited data
while documenting the structural richness of these
vulnerable languages.

In Mexico, there are sixty-eight Indigenous Lan-
guages distributed throughout the national territory,
with a higher concentration in the southern and
central regions of the country. These languages
exhibit significant internal diversity, as the linguistic
variants spoken in different communities give rise
to unique regional forms. According to the In-
digenous Languages Center [11], these languages
are grouped into eleven linguistic families: Álgica,
Yuto-Nahua, Cochimi-Yumana, Seri, Otomangue,
Maya, Totonaco-Tepehua, Tarasca, Mixe-Zoque,
Chontal and Huave.

The analysis of Mexican Indigenous Languages
(MIL), as well as other low-resource languages,
faces multiple challenges due to the limited
availability of audio and text data. To address these
limitations, a common strategy is transfer learning,
which enables the evaluation of these languages
using data from other languages. Additionally,
techniques such as the use of acoustic and
phonetic embeddings derived from high-resource
languages, or the training of neural networks based
on similar phonemes, are often employed.

To perform pronunciation evaluation processes
in MIL, various researchers primarily linguists have
collected recordings of words or sentences spoken
by native speakers from diverse communities.
These efforts have facilitated the construction of
digital audio corpora, typically involving between
five and thirty participants. An example is provided
by [17], which documents a corpus consisting of
six native speakers of Mixteco, specifically of the
still underdescribed variety spoken in Ixtayutla,
Oaxaca, which belongs to the Oto-Manguean
language family.

This study presents an analysis for the
classification of correct and incorrect pronunciation
in the Yuhmu language at the segmental level.
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The research establishes the methodological
foundations to examine the phonetic components
of words in this language through acoustic
embeddings extracted from two WavLM-based
models. Section 2 analyzes previous studies
related to the processing of LRL, with an emphasis
on MIL. Section 3 details the database used for the
analysis, while Section 4 describes the proposed
methodology. Subsequently, Section 5 presents
the results obtained. Section 6 provides an
analysis of the results by comparing them with the
existing literature, and finally, Section 7 discusses
the study’s conclusions and outlines directions for
future work.

2 Related Work

Pronunciation analysis considers relevant ele-
ments in the phonetic composition of words.
Methods used to classify pronunciation features
were initially developed via Computer-Assisted
Pronunciation Training (CAPT) systems based
on Hidden Markov Models (HMM), which have
been implemented in some LRL for various types
of analysis.

A comprehensive review of LRL [14] examined
progress in the processing of African, Indian,
Turkic, and Niger-Congo languages, highlighting
techniques such as automatic corpus projection
and alignment (via distributional similarity and
lexical induction) to transfer annotations from
high-resource languages, as well as key models
such as Multilayer Perceptrons (MLP) and HMMs
in Automatic Speech Recognition (ASR) adapted
to LRL phonetic units, and multilingual embeddings
for machine translation. Results indicate significant
advances (a F1 metric value of 0.44 in Part-of-
Speech Tagging).

In another study, [8] considered the analysis
of LRLs where a speech recognition system for
low-resource African languages such as Maninka,
Susu, and Pular was developed using radio
recordings to train unsupervised models. A custom
encoder named West African wav2vec was built,
achieving performance comparable to or better
than larger commercial models with less data. This
system enables the creation of a virtual assistant
capable of recognizing voice commands with high

accuracy (up to 88.1%), facilitating digital access
for illiterate populations in West Africa.

In [25], the development of a part-of-speech
tagger for the Khasi language, an Austroasiatic
language spoken in northeast India, is addressed.
Khasi lacks digital linguistic resources such as
annotated corpora or natural language processing
tools. To overcome this limitation, the authors
constructed a corpus comprising approximately
103,998 words and applied Brill’s transformation-
based learning method for automatic part-of-
speech tagging. This approach achieved an ac-
curacy of 97.73% on the validation set and 95.52%
on the test set, demonstrating the effectiveness of
the method in a low-resource setting.

In [6], the XLSR model was evaluated on LRLs.
Within the CommonVoice corpus, languages such
as Swedish (3 hours), Turkish (11 hours), and
Tatar (17 hours) are notably low in data. Similarly,
the BABEL dataset includes Swahili (30 hours)
and Tok Pisin (36 hours). Results show that
XLSR achieves significant improvements in these
languages, such as a 67% reduction in phoneme
error rate for Swedish, thanks to multilingual
transfer learning from high-resource languages.

Another study applied transfer learning to en-
hance speech recognition in Amharic, an LRL, by
adapting pretrained English and Mandarin models.
The English-based model reduced word error
rate (WER) from 38.7% to 24.5%, outperforming
the Mandarin model (28.5%). These results
demonstrate the effectiveness of this approach
for languages with data scarcity, particularly when
knowledge is transferred from dominant languages
such as English [26].

Additionally, research efforts have addressed
improvements in ASR for LRL using multilingual
models, self-supervised learning, and cross-lingual
adaptation. For instance, [2] proposed an ASR
corpus for Quechua based on the Siminchik
dataset and evaluated SSL models such as
XLSR-53, XLS-R 128, and mHuBERT on six
Indigenous American languages, finding that
XLS-R 128 performed best, with an average
Character Error Rate (CER) of 36.8%. [20]
introduced wav2vec, a convolutional SSL model
trained without labels, reducing WER by up to 36%
in low-resource English settings.
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The work proposed in [12] applied wav2vec 2.0
combined with automatic language identification
on Indic languages such as Tamil and Malayalam,
achieving significant improvements in language
detection accuracy and ASR adjustment. In [23] a
multilingual ASR systems are developed using the
GlobalPhone corpus and adapted models to four
Ethiopian languages (Amharic, Oromo, Tigrinya,
Wolaytta), observing a WER reduction of up to
51.41% when incorporating related language data.

Finally, [7] addressed educational inequality
through machine learning models applied to
PISA-D data, showing that Indigenous youth in
Guatemala, Paraguay, and Senegal are 13% to
20% less likely to reach basic proficiency levels in
reading and mathematics.

The development of LRL processing has had
a significant impact across various regions of the
world, particularly in African and Asian languages,
as previously discussed. In contrast, the analysis
of Latin American Indigenous languages especially
those of Mexico has progressed more slowly in the
context of machine learning, mainly due to the lack
of structured and computable digital data.

Several recent studies have tackled machine
translation (MT) for Indigenous American lan-
guages, with particular focus on those spoken
in Mexico. In [28], 10 Indigenous languages
were studied, including five from Mexico: Nahuatl,
Hñähñu (Otomi), Wixarika (Huichol), Rarámuri,
and Bribri. A multilingual system was trained using
mBART pretraining with 13 GB of monolingual
data from high-resource languages and fine-tuned
with 140 MB of parallel data. The system
showed improvements over the baseline with an
average increase of 1.64 BLEU and 0.0749 CHRF;
for instance, Nahuatl achieved BLEU = 1.2 and
CHRF = 0.238, while Wixarika reached BLEU
= 6.74 and CHRF = 0.229. BLEU measures
n-gram overlap between machine translation
and reference, evaluating word-level precision,
while CHRF assesses similarity using character
n-grams, being more sensitive to morphological
and orthographic variations.

Later, [9] reported the results of the 2023 shared
task involving 11 languages (six from Mexico),
including a new professional corpus for Chatino.
The best-performing system (Sheffield) showed

an average CHRF improvement of +9.64 points
compared to 2021. Highlights include Nahuatl
(CHRF = 27.25), Otomi (CHRF = 15.30), and
Chatino (CHRF = 39.97).

Although the focus of [27] was on Formosan
languages, they also applied their technique to
the Spanish–Nahuatl pair using a parallel corpus
of 16,145 sentences and a bilingual lexicon from
AULEX. Three strategies were evaluated (lexicon
as parallel data, pseudo-parallel data, and a
combination of both), with the best result achieved
by the latter: +5.55 BLEU and +10.33 CHRF
for Spanish–Nahuatl. These studies demonstrate
substantial progress in MT quality for Indigenous
languages, with accumulated improvements of up
to +5.55 BLEU and +10.33 CHRF in the case
of Nahuatl.

In [5], the Indigenous Mexican languages
Nahuatl and Wixarika were examined. MT
models were trained using multilingual transfer
techniques (mBART50 and mBART50curr), and
their performance was evaluated on Spanish
translation tasks. The results were promising, with
BLEU scores reaching up to 12.74 for Nahuatl
and 7.84 for Wixarika. The study demonstrated
that curriculum transfer strategies can significantly
enhance performance, even without artificially
augmented resources.

The work by [21] focused on Highland Puebla
Nahuatl, a low-resource language of the Uto-
Aztecan family. The study introduced an
open speech translation corpus to document
this endangered language. Speech translation
(ST) models were compared, including cascaded
systems (ASR + MT) and end-to-end models,
with the latter outperforming the former. Results
showed that end-to-end approaches are promising
for resource-scarce languages.

Another study [13] explored MT for Nahuatl,
Otomi, and other Indigenous American languages.
Both statistical and neural models were employed,
and the use of external data was allowed.
Results demonstrated that multilingual models and
normalization techniques significantly improved
translation quality.

In turn, [16] conducted a MT analysis including
the Nahuatl–Spanish pair. Statistical (IBM Model 2)
and neural (transformers) models were evaluated
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Fig. 1. Phonetic symbols of vowels (those with a tilde
above them are considered nasal, while those without it
are oral)

under one-to-one and one-to-many configurations.
The results indicated that statistical models remain
competitive for LRLs, although neural models
yielded improvements in some cases. Second-best
results were achieved for Spanish–Bribri and
Spanish–Ashaninka pairs, underscoring the impor-
tance of adapting approaches to the characteristics
of each language.

Finally, [24] provided a broad overview of
NLP advances for Latin American Indigenous
languages, including Mexican languages such as
Nahuatl, Otomi, Mazateco, Tepehua, Mixteco,
and Popoluca. It was found that out of the 68
recognized Indigenous languages in Mexico, only
22 have been explored within NLP. Key tasks
addressed include MT, morphological analysis,
named entity recognition, and ASR. Nahuatl
and Otomi stood out for having multiple tasks
developed. Overall, approximately 40% of the
research focused on machine translation. Surveys
were conducted with over 350 speakers and 27 re-
searchers to identify challenges and opportunities.

While the analysis of MIL has shown promising
progress, their development has been mainly
concentrated in areas such as translation and
morphological analysis, with limited attention
to tasks related to pronunciation and speech
processing. Despite advances in multilingual and
transfer learning techniques, these have not yet
been widely applied to the phonetic analysis of
these languages.

Although the analysis of Mexican Indigenous
Languages has shown promising progress, their
development has primarily occurred in areas such
as translation and text-based work. However,

the use of audio data and parallel corpora for
their analysis still represents a significant challenge
within the research field, even in studies that lay the
foundational groundwork for their investigation.

For this reason, the present work specifically
focuses on the analysis and classification of
correct and incorrect pronunciation in the Yuhmu
language from digital audio recordings, a variant of
Otomi. To achieve this, characteristic embeddings
are employed that allow the identification of
patterns based on semantic relationships within
the audio data.

3 Yuhmu Language

Yuhmu language is a variant of Otomi (a
macrolanguage within the Otomangue linguistic
group, spoken by an ethnic and cultural group dis-
tributed across the south-central region of Mexico),
specifically located in the municipality of Ixtenco,
Tlaxcala, Mexico. This language is endangered,
as only a few elderly speakers (approximately
70 years old) maintain its pronunciation. Some
individuals under 60 years of age understand
the language, but there are no children acquiring
Yuhmu as their mother tongue [10], which has
caused a decline in the language and places it at
risk of extinction. Consequently, it is considered
a Low-Resource Language due to the scarcity of
digital data available for computational analysis.

According to a community census conducted
by [10], there are approximately ±75 Yuhmu
speakers, although their level of linguistic compe-
tence has not been thoroughly documented. The
language lacks a native writing system, which has
led to efforts aimed at phonetically representing its
sounds through the development of isolated writing
systems proposed by various historians.

Yuhmu consists of 32 phonemes classified
according to the International Phonetic Alphabet
(IPA), including 12 vowels (V) which can be either
oral or nasal, as illustrated in Fig. 1. It also includes
20 consonants (C), categorized based on the place
of articulation within the vocal tract. Unlike vowels,
consonants can be either voiced or voiceless.

Table 1 summarizes the phonetic representation
of Yuhmu consonants. This table contains two

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1257–1270
doi: 10.13053/CyS-29-3-5913

WavLM-Based Automatic Pronunciation Assessment for Yuhmu Speech: ... 1261

ISSN 2007-9737



Table 1. Symbols of the International Phonetic Alphabet
for Consonants in Yuhmu

Airway obstruction site

Airway obstruction mode Bilabial Alveolar Palatal Velar Glottal

plosive
voiceless p t k kw P

voiced b d g gw

affricates voiceless ts tS

fricative
voiceless s S h

voiced z

nasal voiced m n

tap or flap voiced R

approximant voiced j w

main columns, each describing more specific fea-
tures:

- Manner of airflow obstruction: Describes
how the airflow is modified as it passes
through the vocal tract, using terms such
as plosive, affricate, fricative, nasal, among
others, and whether the sounds are voiced
or voiceless (i.e., whether or not vocal fold
vibration occurs).

- Place of airflow obstruction: The specific
location within the respiratory tract where the
airflow is obstructed, impeding the normal
passage of air from the lungs. Depending
on the position of the tongue, lips, or glottis,
the obstruction may be classified as bilabial,
alveolar, palatal, velar, or glottal.

Given that Yuhmu, like many Indigenous
languages, lacks a standardized writing system, its
transmission and preservation rely fundamentally
on orality. This makes phonetic and acoustic
analysis particularly relevant, as sounds constitute
not only the primary means of communication but
also the main medium for linguistic documentation.
In this context, considering the absence of
a conventional writing system and the sole
availability of phonetic representations, the use of
digital audio is proposed as a form of analysis.

Our audio sample consists of 24 Yuhmu speak-
ers (12 native speakers, 7 non-native speakers with
good pronunciation, and 5 non-native speakers
with poor pronunciation), representing approxi-
mately 32% of an estimated total population.

This proportion is appropriate for small popula-
tions and is especially important in the study of
Low-Resource Languages [18], as such languages
typically have fewer speakers and limited digital
resources for their documentation.

The digital audio dataset consists of 5,835
correct pronunciations and 2,620 incorrect pro-
nunciations, based on a core dictionary of 330
words that cover all phonemes of the language
for machine learning analysis. The words include
phonetic combinations that form different words in
Yuhmu. The word structure in Yuhmu is generated
from the following patterns: C-V, C-C-V, C-C-C-V,
and C-V-V-V. These combinations can occur at the
beginning, middle, or end of a word, and in some
cases, represent a single word. The tonal aspect of
the words is also considered, observing variations
of high, low, and low-high tones [10].

The base dictionary used for Yuhmu words is
the one proposed by [10], which describes all
phonemes incorporated in the language and is
subjectively analyzed. The digital recordings vary
in duration from 376 ms to 1.118 s. The recordings
include a transcription of the phonemes present in
each word, which does not follow a conventional
writing system but rather represents the written
form of the pronunciation. The dataset used in
this study is not publicly available and cannot be
shared due to ownership restrictions. However, it
may be accessible upon reasonable request under
specific conditions.

4 Proposed Methodology

The proposed methodology for classifying correct
and incorrect Yuhmu pronunciation consists of
three stages, as illustrated in Figure 2.

First, data preprocessing is performed, where
the analysis of digital audio information involves
data cleaning and normalization.

In the second stage, two pre-trained WavLM
models are used to obtain embeddings. Finally, in
the third stage, two classifiers are considered, and
through hyperparameter tuning using grid search,
the best model for classifying the Yuhmu language
is identified.
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Fig. 2. Methodology phases for classification of
Yuhmu language

4.1 Pre-processing

The use of computational techniques has been
instrumental in the development of data pre-
processing. The audio recordings, which are
integrated in the form of sentences, tend to contain
background noise; therefore, it is necessary to
perform digital audio segmentation. This is
essential because the analysis in this research is
conducted at the word level, in addition to removing
elements irrelevant to pronunciation analysis.

For preprocessing the digital audio, the open-
source software Audacity is used, which allows
audio editing and digital sound recording of native
and non-native pronunciations of the language.

The audio files follow a standardized normalization
procedure:

1. Recordings are unified into a single channel
and converted to WAV format (Waveform
Audio Format), which enables uncompressed
recording, ensures compatibility with software
devices, and allows storage of additional
metadata. The use of a single channel
facilitates analysis in computational and
closed environments.

2. Background noise or signals unrelated to the
words in the audio segments are identified
and attenuated.

3. The segmented digital audio signals corre-
sponding to individual words are amplified
to 12 dB, nearly doubling the auditory
power, which improves the audio volume and
enhances perception of the words’ sounds.

4. If necessary, noise attenuation is performed
again, since amplification tends to increase
unwanted signals such as electrical noise.

5. Finally, the audios are imported and labeled
according to correct or incorrect pronunciation.

4.2 Embedding Extraction

Considering the preprocessed digital audio, it
is possible to begin analyzing important signal
features, which may be in the time or frequency
domain, taking into account various aspects
referenced in the literature for analyzing audio
signals representing speech.

WavLM is a pre-trained model proposed by
[4] designed to address a variety of speech
processing tasks. This model jointly learns masked
speech prediction and noise reduction during
pre-training.

This means that WavLM not only preserves the
ability to model speech content through masked
speech prediction but also enhances its potential
for non-automatic speech recognition tasks by
improving speech noise reduction.

The model is trained on a large dataset, ranging
from 60,000 to 94,000 hours of data. Its
architecture is based on the Transformer model,
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Table 2. Sample distribution by gender and
pronunciation type, where h denotes male and m
denotes female

Correct Correct Incorrect
gender natives non-natives

train test train test train test
h 3 2 3 1 2 1
m 5 2 2 1 1 1

Fig. 3. Model Architecture of WavLM

Fig. 4. Representation of proposed embedding as a
characteristic tensor

comprising a convolutional feature encoder and a
Transformer encoder (Fig. 3).

The proposal also includes a simulation of
noisy/overlapping speech with multiple speak-
ers and various background noises for self-
supervised pre-training.

Speech classification has proven useful in major-
ity languages, serving as a fundamental basis for
analyzing whether a word is pronounced correctly
or not. For the present methodological develop-
ment, two pre-trained models are considered that
output embeddings (numerical representations of
elements such as words or phrases in a vector
space that capture their meanings and semantic

Table 3. Model comparison: overall performance and
consistency in pronunciation analysis by gender

Model Accuracy Precision Recall F1-score Std. Dev. Embedding

size

SVM-1 0.8586 0.8322 0.8855 0.8770 0.0204 256

MLP-1 0.8441 0.8895 0.8333 0.8581 0.0211 256

SVM-2 0.8381 0.8386 0.9479 0.8889 0.0451 768

MLP-2 0.8402 0.8621 0.9157 0.8877 0.0282 768

relationships [3]), with the aim of performing
classification through embeddings.

The first model is ”WavLM-Base-Plus for
Speaker Diarization” [15], which provides embed-
dings of size 512 and focuses on voice diarization
the process of identifying and separating voices of
different speakers within a recording. The second
model is the base ”WavLM” [4], which outputs a
tensor of embeddings sized 1×N×768, where N
is the temporal dimension of the analyzed audio.
This can be visualized as shown in Fig. 4, where
the X-axis (Embedding Dimension) represents the
dimensionality of each generated embedding, and
the Y-axis (Temporal Sequence), which segments
the temporal duration of each digital audio signal
into 20 ms intervals, varies according to the
duration of the analyzed audio segment.

The colors correspond to the different numerical
representations of the resulting embeddings. It is
important to note that these values do not have
physical units, as embeddings are dimensionless
and constitute an abstract numerical encoding of
the relevant features of the input data, as well as
their semantic relationships.

To maintain a consistent analysis standard, it
was proposed to convert the embedding tensor
into a single vector representation, similar to
the representation provided by the other model.
Therefore, an average was computed across the
columns of the resulting tensors to obtain an
embedding of size 768. Thus, there are two
embedding representations from the two models,
with sizes 512 and 768 respectively.

4.3 Classification

The representation of audio through embeddings
enables the establishment of semantic relation-
ships in NLP. To visualize these representations in
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Fig. 5. Visual representation of the dataset pronunciation embeddings: a) 256-dimensional and b) 768-dimensional

an interpretable manner, the t-SNE (t-distributed
Stochastic Neighbor Embedding) technique has
been used. t-SNE is a nonlinear dimensionality
reduction method primarily employed for the
visualization of high-dimensional data, projecting
embeddings into a two-dimensional space. In this
visualization, two groups of embeddings have been

plotted, facilitating the identification of patterns and
differences between both data sets (Fig. 5).

Following the visualization of embeddings, two
classification models were trained: a Multilayer
Perceptron (MLP, a neural network composed of
an input layer, one or more hidden layers, and
an output layer, where each neuron applies a
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Table 4. Comparison of previous works on Low-Resource Languages (LRL). (ASR: Automatic Speech Recognition, MT:
Machine Translation, ST: Speech Translation)

Reference Language(s) Task Main Technique Highlighted Result

Doumbouya et al. (2021) Maninka, Susu, Pular ASR Regional wav2vec Accuracy: 88.1% (commands)

Conneau et al. (2020) Swedish, Turkish, Tatar ASR XLSR 67% reduction in PER

Woldemariam et al. (2020) Amharic ASR Transfer learning from English WER: 38.7% → 24.5%

Chen et al. (2023) Quechua and 5 others ASR XLS-R 128 (SSL) Average CER: 36.8%

Zheng et al. (2021) Nahuatl, Otomi, etc. MT Multilingual mBART BLEU: up to 6.74; CHRF: 0.238

Ebrahimi et al. (2023) Chatino, Otomi, etc. MT mBART + professional corpus CHRF: Otomi 15.30; Chatino 39.97

Chen et al. (2022) Nahuatl, Wixarika MT mBART50curr BLEU: up to 12.74

Shi et al. (2021) Nahuatl (Puebla) ST (speech to text) ASR + MT / Direct ST ST outperforms cascade model

Tonja et al. (2024) Nahuatl, Otomi, etc. Multitask NLP Systematic review 40% focused on MT (22/68 languages studied)

Present work Yuhmu (Otomi)
Pronunciation Acoustic embeddings Accuracy, Precision, Recall, and F1-score:
classification + SVM/MLP 83-94% classification performance

nonlinear activation function) and Support Vector
Machines (SVM, a supervised learning model
that seeks to find the optimal hyperplane that
maximally separates classes). A grid search
(a hyperparameter optimization technique used
to find the best combination of parameters in a
machine learning model) was applied to identify the
ideal hyperparameters for classification.

The analysis was divided into two sections.
For the 512 dimensional embeddings, a balanced
distribution between male and female speakers
was generated, as shown in Table 2, to ensure a
controlled dataset for training and testing phases.
66 % of the data was used for training and 33
% for testing, maintaining equitable representation
of both genders in each subset. For the
768 dimensional embeddings, a cross-validation
approach was employed, which was also part of
the hyperparameter search process.

5 Results

This section presents the results obtained during
the hyperparameter search for the MLP and SVM
models. The optimization process included the
evaluation of different values for key parameters,
such as the learning rate, number of hidden layers,
and neurons in the case of the MLP, as well as
the kernel type and regularization parameter for
the SVM.

The best results obtained for each model are
reported, defined based on performance metrics
such as accuracy, precision, recall, and F1-score.

These results use vector representations gener-
ated by embeddings of sizes 512 and 768.

Table 4 shows the most consistent models iden-
tified in the classification of correct and incorrect
pronunciation, selected based on their balance
among the evaluation metrics obtained through the
grid search procedure. Table ?? presents the
configurations used in each case, detailing the
parameters of the SVM and MLP models employed
in the gender-controlled analyses (CG) and in the
6-fold cross-validation (CV).

6 Analysis of Results

This work is distinguished by focusing on the
classification of correct and incorrect pronunciation
in Yuhmu, a largely unexplored area within the
context of MIL (Minority Indigenous Languages),
where automatic translation and textual analysis
predominate. Compared to previous approaches
prioritizing tasks such as ASR (Automatic Speech
Recognition) or MT (Machine Translation), this
study represents a methodological advance by
applying acoustic embeddings to model pho-
netic patterns.

The results obtained (see Table 3) in both
models surpass in consistency those reported in
prior work on LRL (Low-Resource Languages)
for phonological classification or low-resource
ASR tasks.

Unlike generalist models applied to African
or Indic languages [8, 26], this study focuses
on a highly endangered MIL where acoustic
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Table 5. Model configuration summary. CG: Analysis controlled by gender. CV: 6-fold cross-validation using 768-
dimensional embeddings. For MLP models, hidden layer configurations indicate the number of layers and neurons per
layer

Model Analysis Kernel / Activation Hidden Layers Reg. / C
Learning & Optimizer
SVM-1 CG Polynomial (degree 3) – C = 1, γ = scale
–
MLP-1 CG ReLU (30, 80, 80) α = 0.001 (L2)
Adaptive, Adam
SVM-2 CV Linear – C = 1
–
MLP-2 CV Sigmoid (55, 55) α = 0.0001 (L2)
Constant, Adam

analysis is key for phonological documentation.
Likewise, the use of multilingual models such as
wav2vec 2.0 [20, 12] and systems like XLSR [6]
has shown that knowledge transfer from majority
languages improves speech recognition. In this
sense, the models implemented in this research
partially replicate this logic by utilizing deep speech
representations, but applied to a different task:
phonetic quality detection.

Furthermore, in the context of Mexico’s In-
digenous languages, works such as [28, 5, 9]
have achieved significant advances in machine
translation; however, pronunciation classification
remains underdeveloped. Table 5 presents a
comparison of previous studies conducted on
low-resource and Indigenous languages of Mexico,
where our analysis outperforms these works in
terms of pronunciation classification accuracy.
Therefore, this study contributes to a new
research direction that is essential for educational
applications such as pronunciation feedback and
phonetic training in multilingual contexts, where
resources are scarce and languages lack adequate
representation in speech technologies.

7 Conclusions and Future Work

The preservation and revitalization of low-resource
languages have become increasingly critical in the
face of global linguistic homogenization. These
languages often lack sufficient digital resources
for computational analysis, which hinders their
documentation, study, and transmission. Research

efforts focused on developing automatic process-
ing and analysis methods for these languages
are essential, as they provide the foundation for
creating technological solutions that support both
learners and native speakers.

The analysis presented in this document is
especially relevant in the Mexican context, where,
according to [24], only a fraction of MIL have been
computationally explored. In this scenario, the use
of labeled audio recordings to detect pronunciation
errors represents a significant contribution not
only to NLP but also to language revitalization
efforts, as it enables the development of phonetic
support tools that can benefit both speakers
and researchers.

In particular, models such as WavLM are
considered key tools for obtaining acoustic
representations that capture detailed phonetic
information, even in low-resource settings such
as the one addressed in this work. The
base WavLM model, which provides a tensor of
embeddings, has shown improved classification
performance when the technique of averaging the
column values of the tensor is applied. This
approach yields more representative and stable
embeddings for the task of pronunciation error
detection. In this classification task, all available
instances are used, and it has been observed
that gender-based separation tends to yield lower
performance, possibly due to the specificity and
variability inherent in such analyses.

Specifically, the phonetic analysis carried out
for the Yuhmu language lays the groundwork to
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address other linguistic processing aspects in this
language, establishing a starting point for further
research lines that remain largely unexplored, such
as the analysis of specific phonetic conditions
affecting pronunciation. Currently, these aspects
have not been systematically addressed in
computational contexts.

As future work, we propose exploring tasks
such as direct audio-to-audio translation without
intermediate text, automatic phonetic segmenta-
tion, and detailed phoneme-level pronunciation
analysis. These research directions would not only
expand the scope of developed technologies but
also provide key tools for the documentation and
preservation of endangered languages.
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¿cuántas lenguas hay en el mundo?

12. Kumar, L. A., Dineshraja, V., Naveena,
K. S., Renuka, D. K., Resmi, S., Phaniraj,
H., Abdul Jabbar, F. (2023). Self-supervised
language identification asr models for low
resource indic languages. 2023 International
Conference on Modeling, Simulation & Intelli-
gent Computing (MoSICom), IEEE.

13. Mager, M., Oncevay, A., Ebrahimi, A.,
Ortega, J., Rios, A., Fan, A., Gutierrez-
Vasques, X., Chiruzzo, L., Giménez-Lugo,
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