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Abstract. In this study, an ensemble neural network 

(ENN) for Ethereum time series prediction was 
optimized using particle swarm optimization and genetic 
algorithms. Additionally, Type-1, Type-2, and Type-3 
fuzzy inference systems, of both Mamdani and Sugeno 
types, were designed for achieving the prediction. The 
integration performed with these fuzzy systems is 
achieved by utilizing the results from optimizing the ENN 
with each optimization algorithm. In this case, the 
Ethereum data is the series being used for testing the 
proposal. This approach aims to minimize prediction 
error by combining the responses of the ENN with Type-
1, Type-2, and Type-3 fuzzy systems, each consisting of 
five inputs and consequently 32 fuzzy rules are utilized. 
The results show that the Type-1, Type-2, and Type-3 
fuzzy system approach yields an accurate prediction of 
the Ethereum series, as further validated by statistical 
tests on the results of the fuzzy systems.  

Keywords. Ethereum time series, type-3 fuzzy system, 

time series ensemble neural networks, Mamdani model; 

Sugeno model. 

1 Introduction 

In the modern world, we live surrounded by data 
constantly changing over time. These temporal 
variations hide valuable information, from energy 
consumption patterns and stock prices to weather 
fluctuations and business performance metrics. 
Time series analysis, a specific branch of statistical 
and mathematical analysis, offer powerful tools to 
understand, model and predict these 
changes [1- 3]. 

A time series is nothing more than a sequence 
of data collected at regular intervals of time, with 

each point reflecting a unique moment in history. 
For example, the daily sales of a product, the 
temperature measured every hour, or the amount 
of web traffic to a site per minute [29, 36, 38]. 
These series not only capture current behavior, but 
also reflect long-term trends, recurring seasonality, 
and unpredictable patterns [4-7]. 

In machine learning, neural networks have 
proven to be powerful tools for solving complex 
problems in various areas such as computer 
vision, natural language, and time series 
prediction [8, 9]. 

However, despite their ability to model 
nonlinear patterns and relationships, individual 
networks can be limited by problems, such as 
overfitting or insufficient ability to capture all of the 
variability in the data [10-12]. 

To address these limitations, the ensemble 
neural networks approach arises. This method 
combines multiple neural networks with the aim of 
improving the precision and robustness of 
predictions, taking advantage of the diversity of 
models [13, 14]. By integrating several networks, 
the aim is to reduce the overall error by 
compensating for individual weaknesses and 
consolidating their strengths [15-19]. 

Recurrent Neural Networks are a type of neural 
network designed to compute sequences of data, 
such as time series, text, audio, or any information 
where the order of the data is relevant [19-21]. 

Unlike traditional neural networks (such as 
feedforward networks), RNNs can store 
information from previous inputs thanks to 
recurrent connections in their hidden layers. This 
allows them to model temporal and sequential 
dependencies [21-27]. 
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Particle swarm optimization, known as PSO, is 
a technique inspired by the collective behavior of 
natural systems, such as swarms of birds or 
colonies of insects. James Kennedy and Russell 
Eberhart introduced it in 1995 as an optimization 
method based on collective intelligence [27-30]. 

The PSO is a population algorithm, which 
means that it operates on a set of potential 
solutions called a "swarm." Each element of the 
swarm, recognized as a “particle,” expresses a 
possible solution to the problem. These particles 
move in the multidimensional search space guided 
by their own experience and that of the group, 
seeking to find the optimal solution or 
close to it [31]. 

Genetic algorithms (GAs) stand out as a 
powerful and inspiring technique. Based on 
biological evolution and natural selection, these 
algorithms simulate processes, such as 
reproduction, mutation, and selection to solve 
complex problems. Since their conceptualization in 
the 1970s, genetic algorithms have found 
applications in a wide variety of fields, including 
engineering, computational biology, system 
design, and business intelligence [32-34]. 

The appeal of genetic algorithms lies in their 
ability to explore large search spaces and find 
approximate solutions to problems that would 
otherwise be intractable using traditional methods. 
Just as nature uses evolution to adapt and 
optimize, these algorithms allow researchers and 
practitioners to address challenges such as path 
optimization, molecular structure prediction, and 
industrial design improvement, just to name a 
few [34-36]. 

The contribution of this study lies in the 
development of the neural ensemble and its 
optimization using PSO and GAs, along with the 
design of Type-1, Type-2, and Type-3 fuzzy 
systems to handle uncertainty in the prediction 
process of the ensemble neural network (ENN). 
This approach is tested with the forecast the 
Ethereum time series. A fuzzy system is proposed 
as a model for combining the outputs of the ENN 
for improving prediction. In previous research, 
Type-1 and Type-2 fuzzy systems were initially 
utilized, but this study introduces the Mamdani and 
Sugeno Type-3 fuzzy systems, consisting of 5 
inputs and one output, labeled "predicted," with 32 
fuzzy rules for time series prediction. Additionally, 

a comparison was made, demonstrating that Type-
3 systems deliver favorable results for time 
series forecasting. 

The article is structured as: Section 2 explains 
the fundamental concepts of Type-3 theory, 
Section 3 outlines the model, Section 4 presents 
the simulation results of the proposed method, and 
Section 5 provides the conclusions.  

2 Type-3 Fuzzy Systems 

Fuzzy sets are an extension of classical sets, 
allowing us to handle uncertainty and vagueness. 
They are based on fuzzy logic, which is a 
generalization of Boolean logic, and is utilized to 
model situations where concepts are imprecise 
or uncertain. 

A type-1 fuzzy system is the most common and 
refers to those systems in which real numbers 
between 0 and 1 represent the memberships of the 
fuzzy sets. In these systems, the membership 
function (MF) is a single function that assigns a 
membership value for each element in the domain, 
and that value is a real number between 0 
and 1 [32-35]. 

Type-2 fuzzy systems are a generalization of 
their type-1 counterparts. In a type-1 fuzzy system, 
each input and output value are represented by a 
single fuzzy number (given by a MF) [36-39]. 
However, in a type-2 fuzzy system, uncertainty is 
associated with the input and output values and the 
shape of the membership functions [40-42]. 

In type-3, the membership functions are even 
more complex, allowing degrees of uncertainty to 
be represented not only in the input values but also 
in the degrees of membership themselves. In this 
case the fuzzy system has a higher level of 
abstraction and is mainly used in advanced 
research and cases with a lot of imprecision or 
variability [43-47]. 

Interval Type-3 Fuzzy Logic Systems (IT3FLSs) 
are postulated below. In non-singleton interval 
type-3 Mamdani fuzzy logic system (NSIT3 
MAMIT3FLS) [33, 34], the structure of Zadeh's kth 
generic rule is: 

𝑅2 
𝐾:𝐼𝐹𝑥1=𝑖𝔽1 

𝐾𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥1 𝑖𝑠 𝔽𝑖
𝑘𝑎𝑛𝑑 … 𝑥𝑛 , 

𝑖𝑠 𝔽𝑛 
𝑘 𝑇𝐻𝐸𝑁𝑦1𝑖𝑠 𝔾𝐽

𝐾 , … 𝑦𝑚 𝑖𝑠 𝔾𝑚
𝐾 , 

(1) 
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where i=1…, n (number of inputs), j=1…, m 

(number of outputs) y k = 1…, r (number of rules). 

In the approach based on Zadeh rules and a 

MAMIT3FLS, we must represent the rule 

antecedents as a fuzzy relation 𝔸𝑘, using the 

Cartesian product with interval type-3 fuzzy sets 

(IT3 FSs), 𝔽1 
𝐾, and the implication with the 

consequent of the j output, 𝔾𝑗
𝑘; then, the fuzzy 

relationship 𝑖j of rule ℝ is postulated as: 

𝔸𝑘 = 𝔽1 
𝐾   X …  X   𝔽𝑛 

𝑘 , (2) 

ℝ𝑗
𝑘  =  𝔸𝑘  →  𝔾𝑗

𝑘, (3) 

when is ℝ𝑗
𝑘  described as membership of the rules, 

μ
ℝ𝑗

𝑘  (𝑥, 𝑦𝑗)   is formulated as: 

μ
ℝ𝑗

𝑘  (𝑥, 𝑦𝑗)   = µ𝔸𝑘 →  𝔾𝑗
𝑘  (𝑥, 𝑦𝑗). (4) 

Consequently, when Mamdani implication is 

used, 𝔸𝑘  →𝔾𝑗
𝑘, with the multiple antecedents 𝔸𝑘, 

and consequents 𝔸𝑘, these are connected by the 

meet operator (П), then: 

µ𝔸𝑘→𝔾𝑗
𝑘(𝑥, 𝑦𝑗) = µ𝔽1 

𝑘 × … ×

𝔽𝑛 
𝑘 →𝔾𝑗

𝑘(𝑥, 𝑦𝑗) µ𝔽1 
𝑘 × … × 𝔽𝑛 

𝑘  (𝑥) П𝔾𝑗
𝑘( 𝑦𝑗), 

(5) 

µ𝔸𝑘→𝔾𝑗
𝑘(𝑥, 𝑦𝑗) =

µ𝔽1 
𝑘  (𝑥1)П…Пµ𝔽𝑛 

𝑘 (𝑥𝑛)П𝔾𝑗
𝑘(𝑦1)=[П𝑖=1

𝑛 µ𝔽1 
𝑘  (𝑥1)] П 

µ𝔾𝑗
𝑘 (𝑦𝑗). 

(6) 

Input n-dimensional, is given by the fuzzy 

relationship   𝔸𝑋Whose MF is:  

𝔸𝑥′(x) = μ𝕏1
(𝑥1|𝑥1

′ ) П … П μ𝕏𝑛
(𝑥𝑛|𝑥𝑛

′ ) 

=П 𝑖=1
𝑛 =μ𝕏𝑖

(𝑥1|𝑥1
′ ), 

(7) 

each relation of the fuzzy rule ℝ𝑗
𝑘 determines a 

fuzzy set of 𝔸𝑋 the consequent rule 𝔹𝑗
𝑘 =  𝔸𝑥′  o ℝ𝑗

𝑘   

in Y t such that:  

µ𝔹𝑗
𝑘 (𝑦𝑗|𝒙′) = µ𝔸𝑗

𝑘  o ℝ𝑗
𝑘  (𝑦𝑗|𝒙′) = sup [𝔸𝑥′(x) 

П µ𝔸𝑗
𝑘 → 𝔾𝑗

𝑘(𝑥, 𝑦𝑗)], y ∈ 𝑌. (8) 

3 Proposed Model 

The method consists of creating the recurrent ENN 
and optimization with PSO and GAs. The 
optimization was carried out regarding the number 
of modules, layers, and neurons of the ENN.  The 
outputs of these ENNs are combined with the 
fuzzy systems.  

The method consists of the optimization of 
ENNs with PSO and GA, and the outputs of these 
ENNs are combined with type-2 and type-3 fuzzy 
systems. Figure 1 shows the architecture of the 
model, where the results of the ENNs for Ethereum 
are integrated with a fuzzy system, and in this way, 
we obtain the final prediction and the error. 

Figure 1 illustrates the model, which begins with 
the historical data. The optimization algorithm, 
based on particle swarms, then determines the 
number of modules in the ENN, ranging from 1 to 
5. It also identifies the number of layers within each 
module, which can be between 1 and 3, and the 
number of neurons per layer, ranging from 1 to 3. 
The responses from the neural network ensemble 
are combined using an integration method, where 

 

Fig. 1. Designed model 
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Mamdani and Sugeno Type-3 fuzzy systems are 
applied. Both the input and output variables of the 
fuzzy system utilize Gaussian membership 
functions.  

Performance of the Type-3 fuzzy integration is 
evaluated with various MFs for the fuzzy rules. For 
the Type-3 fuzzy integrators, two MFs, labeled "low 
prediction" and "high prediction," are used for both 
inputs and outputs of the fuzzy system. These MFs 
are of Gaussian, Generalized Gbell, Trapezoidal, 
and Triangular types, with different lag and scale 
parameters, as detailed in the tables, to achieve 
better time series prediction. 

If we have 5 modules in the ENN, the fuzzy 
system includes 5 input variables. The rules 
applied are based on the potential combinations 
determined by the number of inputs and MFs in the 
fuzzy system. Given 5 inputs and two MFs for 
each, there are 32 possible rule combinations. 

3.1  Time Series Prediction 

Ethereum (ETH) is one of the largest 
cryptocurrencies following Bitcoin. It is a 
decentralized platform that enables the 
development of smart contracts and decentralized 
applications (dApps). ETH serves as the fuel for 
transactions and operations within the Ethereum 
network. Initial coin sale (ICO) was held in 2014, 
where approximately $18 million was raised. 2015: 
It started with a price of approximately 0.30 USD 
per ETH. 2017: ETH reached $1,400 in January 
2018 during the cryptocurrency boom. 2021: 
Thanks to the surge in interest in smart contracts 
and DeFi (decentralized finance) applications, it 
reached an all-time high price of $4,891 in 
November 2021. 2022-2023: The price fluctuated 
due to market volatility, ranging between 
$1,000- 2,000.  

Ethereum time series: This work determines 
two periods to evaluate the proposed method. 
From 01/01/20 to 04/14/23, we plot the historical 
data in the x-axis, in this case, the day, and in the 
y-axis the closing of Ethereum (as shown in 
Figure 2).  In the experiments, 70% of the data 
were used for the ensemble neural network 
training and 30% to test the network [48]. The type-
3 system for integrating the outputs of the ENN is 
in Figure 3. 

4 Simulation Results  

This section presents the experimental results and 
comparisons for the Ethereum Time Series, using 
a (Type-1, Type-2, and Type-3) fuzzy integration 
method and Comparisons between particle 
optimization and the genetic algorithms are 
also  shown.  

Statistical tests were performed with the results 
of two fuzzy systems type-1, type- 2 and type-3 of 
Mamdani and Sugeno type, also using the different 
Gaussian, generalized bell and triangular systems. 

Table 1 displays the rules of the fuzzy system, 
which are based on 5 inputs, each having two 
membership functions. This results in 32 possible 
fuzzy rules. These rules are applied to Type-1, 
Type-2, and Type-3 fuzzy systems, where "Lw" 
represents low and "Ht" represents high. 

 

Fig. 2. Ethereum time series 

 

Fig. 3. Type-3 Fuzzy System for the Ethereum series 
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Table 2 displays the results of PSO from 29 
experiments, but only 10 best results are shown. 
The prediction error is 0.010604 and is shown in 
row 1.  

In this table, NM refers to the number layers, 
NN means the number neurons, and PE indicates 
the prediction error and the average Duration of the 
experiments is: 0.2:12:35. 

Table 3 shows the results of the Mamdani type-
1 fuzzy integration using the Gaussian, 
generalized bell, triangular, and trapezoidal 
membership functions and AV represents the 
average prediction error of 29 experiments using 
the PSO. 

Table 4 demonstrates the result of Integration 
with the Sugeno type-1 fuzzy system with the 

Table 1. Fuzzy rules for predicting Ethereum 

Pred 1 Pred 2 Pred 3 Pred 4 Pred 5 Prediction 

Lw Lw Lw Lw Lw Lw 

Ht Ht Ht Ht Ht Ht 

Lw Lw Lw Lw Ht Lw 

Ht Ht Ht Ht Lw Ht 

Lw Lw Lw Ht Ht Lw 

Ht Ht Ht Lw Lw Ht 

Lw Lw Ht Ht Ht Ht 

Ht Ht Lw Lw Lw Lw 

Lw Ht Ht Ht Ht Ht 

Ht Lw Lw Lw Ht Lw 

Lw Ht Lw Ht Lw Lw 

Ht Lw Ht Lw Ht Ht 

Lw Ht Lw Lw Lw Lw 

Ht Lw Ht Ht Ht Ht 

Lw Lw Ht Lw Lw Lw 

Ht Ht Lw Ht Ht Ht 

Lw Lw Lw Ht Lw Lw 

Ht Ht Ht Lw Ht Ht 

Lw Lw Ht Ht Lw Lw 

Ht Ht Lw Lw Ht Ht 

Lw Ht Ht Lw Lw Lw 

Ht Lw Lw Ht Ht Ht 

Lw Lw Ht Ht Lw Lw 

Ht Ht Lw Lw Ht Ht 

Lw Ht Ht Lw Ht Ht 

Ht Lw Lw Ht Ht Lw 

Lw Ht Lw Ht Lw Lw 

Ht Lw Ht Lw Ht Ht 

Lw Ht Ht Ht Ht Lw 

Ht Lw Lw Ht Ht Lw 

Lw Ht Lw Ht Ht Ht 

Ht Lw Ht Lw Lw Lw 
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Gaussian, generalized bell, triangular, and 
trapezoidal MFs and AV represents the average 
prediction error of 29 experiments using the PSO. 

Table 5 demonstrates the results of the 
Mamdani type-2 fuzzy integration using the 
Gaussian, generalized bell, triangular, and 
trapezoidal membership functions and AV 

represents the average prediction error of 29 
experiments using PSO. 

Table 6 shows the results of the Sugeno type-2 
fuzzy integration using the Gaussian, generalized 
bell, triangular, and trapezoidal membership 
functions and AV represents the average 
prediction error of 29 experiments using PSO. 

Table 2. PSO results for the ERNN for Ethereum time series. 

NM NL NN PE 

2 1 11,17, 23,4 0.010604 

2 2 14, 24 0.010645 

3 2 24,18,12 24,22,18, 
25,8,20 

0.010626 

2 3 3,4,20 9,12,17 0.010634 

2 2 6,9,3,16 0.10631 

2 2 15,20,22,9 0.010613 

2 2 18,12 0.0010628 

3 1 11,4,26 0.010642 

2 2 13,13,8,20 0.0106329 

2 2 11,17,19,4 0.010646 

Table 3. Results of Mamdani type-1 (PSO). 

Gaussian Bell Generalized Triangular Trapezoidal 

0.2716 0.2470 0.2563 0.2598 
0.2717 0.2470 0.2556 0.2598 
0.2716 0.2470 0.2562 0.2598 
0.2716 0.2470 0.2563 0.2598 
0.2716 0.2470 0.2563 0.2599 
0.2716 0.2470 0.2563 0.2599 
0.2716 0.2471 0.2563 0.2597 
0.2717 0.2470 0.2562 0.2598 
0.2717 0.2470 0.2562 0.2598 
0.2716 0.2470 0.2563 0.2598 
0.2716 0.2470 0.2561 0.2598 

Table 4. Results of Sugeno type-1 (PSO) 

Gaussian Bell Generalized Triangular Trapezoidal 

0.5336 0.5971 0.6248 0.5764 
0.5536 0.5978 0.6258 0.5765 
0.5536 0.5971 0.6248 0.5763 
0.5536 0.5971 0.6248 0.5764 
0.5536 0.5972 0.6248 0.5764 
0.5536 0.5972 0.6248 0.5764 
0.5536 0.5972 0.6248 0.5764 
0.5536 0.5972 0.6248 0.5765 
0.5536 0.5971 0.6248 0.5764 
0.5536 0.5971 0.6247 0.5764 
0.5587 0.6024 0.6301 0.5816 
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Table 7 demonstrates the results of integration 
with the Mamdani type-3 fuzzy system with 
Gaussian MFs, and AV represents the average 
time and prediction error of 29 experiments 
using PSO. 

Table 8 shows the results of the Mamdani type-
3 fuzzy integration using the Generalized Gbell 
membership function and AV represents the 
average time and prediction error of 29 
experiments using PSO. 

Table 5. Results of type-2 fuzzy Integration (PSO) 

Gaussian Bell Generalized Triangular Trapezoidal 

0.4138 0.4335 0.3390 0.4596 
0.4130 0.4333 0.3984 0.4600 
0.4138 0.4335 0.3990 0.4596 
0.4137 0.4335 0.3990 0.4596 
0.4137 0.4335 0.3990 0.4596 
0.4138 0.4335 0.3990 0.4596 
0.4137 0.4335 0.3990 0.4596 
0.4137 0.4335 0.3990 0.4596 
0.4138 0.4335 0.3990 0.4596 
0.4138 0.4335 0.3990 0.4596 
0.4204 0.4385 0.4019 0.4647 

Table 6. Results of Sugeno type-2 fuzzy Integration (PSO) 

Gaussian Bell Generalized Triangular Trapezoidal 

0.1386 0.0606 0.1483 0.1484 

0.1386 0.0606 0.1483 0.1483 

0.1386 0.0606 0.1483 0.1484 

0.1385 0.0606 0.1483 0.1483 

0.1386 0.0606 0.1483 0.1483 

0.1386 0.0606 0.1483 0.1483 

0.1386 0.0606 0.1483 0.1486 

0.1386 0.0606 0.1483 0.1484 

0.1386 0.0606 0.1483 0.1483 

0.1384 0.0606 0.1483 0.1484 

0.13852 0.0606 0.1483 0.14834 

Table 7. Results integration Mamdani type-3 Gaussian membership functions (PSO) 

Experiments Duration Prediction Error 

1 01:18:34 0.3962 
2 01:18:39 0.3962 
3 01:19:33 0.3962 
4 01:18:16 0.3962 
5 01:18:16 0.3747 
6 01:19:51 0.3962 
7 01:19:16 0.3962 
8 01:17:49 0.3962 
9 01:18:21 0.3752 
10 01:17:46 0.3753 
AV 01:19:23 0.3824 
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Table 9 shows the results of the Mamdani type-
3 fuzzy integration using the Generalized Gbell 
membership function and AV represents the 
average time and prediction error of 29 
experiments using PSO. 

Table 10 demonstrates the integration results 
with the Mamdani type 3 fuzzy system with 
Trapezoidal MFs, and AV represents the average 
time and prediction error of 29 experiments 
using PSO. 

Table 11 demonstrates the integration with the 
Sugeno type-3 fuzzy system with Gaussian MFs, 
and AV represents the average time and prediction 
error of 29 experiments using PSO. 

Table 12 presents the integration results of the 
Sugeno Type-3 Fuzzy system Using Generalized 
Gbell membership functions and AV represents the 
time and average prediction error of 29 
experiments using PSO. 

Table 8. Results integration Mamdani type-3 Gbell Membership functions 

Experiment Duration Prediction Error 

1 01:18:34 0.3358 
2 01:18:34 0.356 
3 01:18:35 0.3559 
4 01:18:54 0.3358 
5 01:18:16 0.3559 
6 01:19:11 0.3358 
7 01:19:16 0.3358 
8 01:17:49 0.3558 
9 01:18:21 0.3559 

10 01:18:34 0.3358 
AV 01:18:29 0.3461 

Table 9. Results integration Mamdani type-3 Triangular Membership functions 

Experiments Duration Prediction Error 

1 00:47:04 0.5379 
2 00:47:13 0.5380 
3 00:47:07 0.5379 
4 00:47:10 0.5379 
6 00:49:19 0.5382 
7 00:46:35 0.5379 
8 00:46:31 0.5379 
10 00:46:55 0.5379 
16 00:47:27 0.5379 
30 00:47:28 0.5379 
AV 00:48:22 0.5380 

Table 10. Results integration Mamdani type-3 Trapezoidal Membership functions. 

Experiments Duration Prediction Error 

1 00:42:42 0.4518 
2 00:41:23 0.4517 
3 00:42:05 0.4517 
4 00:47:47 0.4517 
5 00:41:00 0.4519 
6 00:41:59 0.4518 
7 00:41:00 0.4517 
8 00:42:01 0.4517 
9 00:42:04 0.4517 
10 00:42:06 0.4518 
AV 00:43:10 0.4517 
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Table 13 demonstrates the integration with the 
Sugeno type-3 fuzzy system with Triangular MFs, 
and AV represents the average time and prediction 
error of 29 using PSO. 

Table 14 presents the integration results of the 
Sugeno Type-3 Fuzzy system Using Trapezoidal 
MFs and AV represents the average time and 
prediction error of 29 experiments using PSO. 

Table 15 presents the results of the GA based 
on 30 experimental runs. However, only the top 10 
best results are displayed in the table.  

The prediction Error of 0.010501 and shown in 
row 7. In this table, NM refers to the number layers, 
NN means the number of neurons, and PE 
indicates the prediction. 

Table 16 represents the results of the Mamdani 
type-1 fuzzy system with different MFs and AV 

Table 11. Results integration Sugeno type-3 Gaussian Membership functions 

Experiments Duration Prediction Error 

1 00:00:03 0.0458 
2 00:00:03 0.0458 
3 00:00:03 0.0458 
4 00:00:03 0.0459 
5 00:00:03 0.0459 
6 00:00:03 0.0458 
7 00:00:03 0.0458 
8 00:00:03 0.0458 
9 00:00:03 0.0458 
10 00:00:03 0.0459 
AV 00:00:03 0.04581 

Table 12. Results integration type-3 Sugeno Gbell Membership functions 

Experiment Duration Prediction Error 

1 00:00:03 0.0371 
2 00:00:03 0.0371 
3 00:00:03 0.0372 
4 00:00:03 0.0371 
5 00:00:03 0.0373 
6 00:00:03 0.371 
7 00:00:03 0.0371 
8 00:00:03 0.0372 
9 00:00:03 0.0371 

10 00:00:03 0.0372 
AV 00:00:03 0.0371 

Table 13. Results integration type-3 Sugeno Triangular Membership functions 

Experiment Duration Prediction Error  

1 00:00:03 0.0527 
2 00:00:03 0.0528 
3 00:00:03 0.0527 
4 00:00:05 0.0527 
5 00:00:03 0.0527 
6 00:00:07 0.0529 
7 00:00:08 0.0528 
8 00:00:03 0.0527 
9 00:00:03 0.0527 
10 00:00:03 0.0527 
AV 00:00:03 0.0527 
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represents the average time and prediction error of 
29 experiments using a GA. 

Table 17 represents the Sugeno type-1 fuzzy 
system results with different MFs and AV 
represents the average time and prediction error of 
29 experiments using a GA. 

Table 18 presents the results of the Mamdani 
type-2 fuzzy system with various MFs, where AV 
indicates the average time and prediction error 
from 29 experiments conducted using a 
Genetic Algorithm. 

Table 19 displays the results of the Sugeno 
type-2 fuzzy system with various MFs, where AV 

Table 14. Results integration type-3 Mamdani Trapezoidal functions 

Experiment Duration Prediction Error 

1 00:00:03 0.0371 
2 00:00:03 0.0371 
3 00:00:03 0.0372 
4 00:00:03 0.0371 
5 00:00:03 0.0373 
6 00:00:03 0.371 
7 00:00:03 0.0371 
8 00:00:03 0.0372 
9 00:00:03 0.0371 
10 00:00:03 0.0372 
AV 00:00:03 0.0371 

Table 15. GA results for the ERNN for Ethereum Time Serie 

Pm Pc NM NL NN PE 

0.05 1 2 3 9,13,24,9,13,24 0.010542 

0.08 1 2 1 12,12 0.010545 

0.02 0.04 2 2 18,15,18,15 0.010514 

0.06 0.9 2 2 20,15,20,15 0.010533 

0.8 0.9 2 3 20,1,28, 30,1,26 0.010516 

0.3 0.9 2 1 19,19 0.10522 

0.03 0.5 2 2 2,8,4,19 0.10501 

0.09 0.5 2 3 28,1.21, 28,1,21 0.010498 

0.01 1 2 2 10,5,10,5 00.010531 

0.07 0.9 2 2 29,24, 29,24 0.010523 

Table 16. Results of type-1 fuzzy Integration (GA) 

Gaussian Bell Generalized Triangular Trapezoidal 

0.2715 0.2469 0.2562 0.2603 

0.2715 0.2469 0.2562 0.2603 

0.2698 0.2458 0.2562 0.2603 

0.2698 0.2458 0.2562 0.2603 

0.2716 0.2470 0.2563 0.2603 

0.2716 0.2470 0.2563 0.2603 

0.2716 0.2470 0.2562 0.2603 

0.2697 0.2458 0.2554 0.2599 

0.2716 0.2458 0.2563 0.2603 

0.2698 0.2458 0.2556 0.2599 

0.2708 0.2464 0.2561 0.2602 
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indicates the average prediction error from 29 
experiments conducted using a Genetic Algorithm. 

Table 20 shows the integration results of the 
Mamdani Type-3 Fuzzy system using Gaussian 
MFs, with AV representing the average time and 
prediction error from 29 experiments conducted 
with a Genetic Algorithm. Table 21 presents the 
integration results of the Mamdani Type-3 Fuzzy 
system Using Generalized Bell membership 
functions and AV represents the average time and 

prediction error of 29 experiments using a Genetic 
Algorithm. Table 22 presents the integration results 
of the Mamdani Type-3 Fuzzy system Using 
Trapezoidal MFs and AV represents the average 
time and prediction error of 29 experiments using 
a Genetic Algorithm. Table 23 presents the 
integration results of the Mamdani Type-3 Fuzzy 
system Using Trapezoidal MFs and AV represents 
the average time and prediction error of 29 
experiments using a Genetic Algorithm. 

Table 17. Results of type-1 Sugeno fuzzy Integration 

Gaussian Bell Generalized Triangular Trapezoidal 

0.1322 0.1440 0.0588 0.1583 
0.1322 0.1440 0.0589 0.1584 
0.1323 0.1439 0.0589 0.1585 
0.1324 0.1439 0.0589 0.1583 
0.1325 0.1440 0.0588 0.1583 
0.1322 0.1440 0.0589 0.1582 
0.1322 0.1440 0.0589 0.1583 
0.1325 0.1439 0.0589 0.1583 
0.1325 0.1440 0.0589 0.1583 
0.1325 0.1439 0.0587 0.1583 
0.1323 0.1439 0.0588 0.1583 

Table 18. Results of type-2 fuzzy Integration (GA) 

Gaussian Bell Generalized Triangular Trapezoidal 

0.4152 0.4734 0.3995 0.4996 
0.4153 0.4733 0.3999 0.4997 
0.4152 0.4732 0.3999 0.4997 
0.4152 0.4733 0.3998 0.4997 
0.4151 0.4733 0.3998 0.4996 
0.4151 0.4732 0.3997 0.4996 
0.4152 0.4733 0.3997 0.4996 
0.4152 0.4733 0.3997 0.4996 
0.4153 0.4733 0.3997 0.4997 
0.4152 0.4734 0.3998 0.4997 
0.4152 0.47899 0.3997 0.4996 

Table 19. Results of type-2 fuzzy Integration (GA) 

Gaussian Bell Generalized Triangular Trapezoidal 

0.5668 0.6061 0.6506 0.6213 
0.5667 0.6061 0.6503 0.6210 
0.5666 0.6062 0.6526 0.6227 
0.5666 0.6062 0.6526 0.6277 
0.5666 0.6062 0.6503 0.6210 
0.5566 0.6063 0.6503 0.6210 
0.5667 0.6062 0.6503 0.6211 
0.5670 0.6061 0.6540 0.6240 
0.5669 0.6062 0.6503 0.6210 
0.5669 0.6062 0.6536 0.6237 
0.5656 0.6061 0.6514 0.6224 
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Table 19. Results of type-2 fuzzy Integration (GA) 

Gaussian Bell Generalized Triangular Trapezoidal 

0.5668 0.6061 0.6506 0.6213 
0.5667 0.6061 0.6503 0.6210 
0.5666 0.6062 0.6526 0.6227 
0.5666 0.6062 0.6526 0.6277 
0.5666 0.6062 0.6503 0.6210 
0.5566 0.6063 0.6503 0.6210 
0.5667 0.6062 0.6503 0.6211 
0.5670 0.6061 0.6540 0.6240 
0.5669 0.6062 0.6503 0.6210 
0.5669 0.6062 0.6536 0.6237 
0.5656 0.6061 0.6514 0.6224 

Table 20. Results integration type-3 Mamdani Gaussian Membership functions (GA) 

Experiment Duration Prediction Error 

1 00:04:07 0.3752 
2 00:04:07 0.3751 
3 00:03:58 0.3752 
4 00:04:02 0.3752 
5 00:04:01 0.3752 
6 00:04:01 0.3752 
7 00:03:57 0.3752 
8 00:04:05 0.3758 
9 00:04:00 0.3753 

10 00:04:03 0.3751 
AV 00:03:59 0.37525 

Table 21. Results integration type-3 Mamdani Gbell Membership functions (GA) 

Experiment Duration Prediction Error 

1 00:05:58 0.9472 
2 00:06:03 0.9473 
3 00:06:03 0.9473 
4 00:06:06 0.9473 
5 00:06:01 0.9472 
6 00:06:02 0.9472 
7 00:06:06 0.9473 
8 00:05:58 0.9472 
9 00:05:42 0.9473 
10 00:05:46 0.9472 
AV 00:05:42 0.9472 

Table 22. Results integration type-3 Mamdani Triangular Membership functions (GA) 

Experiment Duration Prediction Error 

1 01:21:13 0.5472 
2 01:20:30 0.5471 
3 01:20:30 0.5472 
4 01:21:32 0.5473 
5 01:19:09 0.5471 
6 01:19:06 0.5472 
7 01:18:28 0.5472 
8 01:20:00 0.5472 
9 01:20:47 0.5472 
10 01:19:00 0.5473 
AV 01:19:56 0.5471 

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1765–1783
doi: 10.13053/CyS-29-3-5910

Martha Pulido, Patricia Melin, Oscar Castillo1776

ISSN 2007-9737



 

Table 24 presents the integration results of the 
Sugeno Type-3 Fuzzy system using Gaussian 
membership functions (MFs), where AV denotes 

the average time and prediction error from 29 
experiments conducted using a Genetic Algorithm.  

Table 23. Results integration type-3 Mamdani Trapezoidal Membership functions (GA) 

Experiment Duration Prediction Error 

1 00:47:10 0.5041 
2 00:47:06 0.5041 
3 00:47:05 0.5041 
4 00:47:26 0.5041 
5 00:47:19 0.5042 
6 00:47:25 0.5041 
7 00:47:49 0.5042 
8 00:46:31 0.5040 

9 00:48:27 0.5042 
10 00:46:18 0.5041 
AV 00:46:58 0.5041 

Table 24. Results integration type-3 Sugeno Gaussian membership functions GA 

Experiment Duration Prediction Error 

1 00:00:03 0.0606 
2 00:00:03 0.0607 
3 00:00:03 0.0607 
4 00:00:03 0.0606 
5 00:00:03 0.0607 
6 00:00:03 0.0606 
7 00:00:03 0.0605 
8 00:00:03 0.0606 
9 00:00:03 0.0605 
10 00:00:03 0.0608 
AV 00:00:06 0.06062 

Table 25. Results integration type-3 Sugeno Gbell membership functions GA 

Experiment Duration Prediction Error 

1 00:00:04 0.0405 
2 00:00:07 0.0405 
3 00:00:11 0.0405 
4 00:00:03 0.0406 
5 00:00:07 0.0407 
6 00:00:03 0.0406 
7 00:00:07 0.0407 
8 00:00:04 0.0405 
9 00:00:07 0.0405 

10 00:00:11 0.0405 
AV 00:00:06 0.0405 

Table 26. Results integration type-3 Sugeno Trapezoidal GA 

Experiment Duration Prediction Error 

1 00:00:04 0.0589 
2 00:00:08 0.0589 
3 00:00:12 0.0590 
4 00:00:08 0.0589 
5 00:00:03 0.0589 
6 00:00:04 0.0589 
7 00:00:07 0.0588 
8 00:00:03 0.0588 
9 00:00:07 0.0588 

10 00:00:11 0.0589 
AV 00:00:07 0.05887 
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Table 25 presents the integration results of the 
Sugeno Type-3 Fuzzy system Using Generalized 
Gbell membership functions and AV represents the 
average time and prediction error of 29 
experiments for the Ethereum time series with a 
genetic algorithm.  

Table 26 displays the integration results of the 
Sugeno Type-3 Fuzzy system using triangular 
MFs, with AV representing the average time and 
prediction error from 29 experiments conducted 
using a Genetic Algorithm. 

Table 27. Results integration of type-3 Sugeno Trapezoidal GA 

Experiment Duration Prediction Error 

1 00:00:03 0.0422 
2 00:00:06 0.0423 
3 00:00:03 0.0422 
4 00:00:10 0.0422 
5 00:00:07 0.0422 
6 00:00:08 0.0423 
7 00:00:07 0.0422 
8 00:00:07 0.0423 
9 00:00:07 0.0424 

10 00:00:07 0.0423 
AV 00:00:09 0.0422 

Table 28. Test for Ethereum Time Series for Type-1 Mamdani 

FuzzyType System Mean Standard deviation Mean Error P Value 

Gaussian PSO 0.2716345 0.0000484 0.0000090 
0.000 

Gaussian GA 0.270886 0.000887 0.00016 

Generalized Bell PSO 0.2470103 0.0000310 0.00000058 
0.000 

Generalizad Bell GA 0.246400 0.000591 0.00011 

Triangular PSO 0.256197 0.000211 0.000039 
0.192 

Triangular GA 0.256107 0.000298 0.000055 

Trapezoidal PSO 0.2598103 0.0000557 0.000010 
0.000 

Trapezoidal GA 0.260231 0.000154 0.000029 

Table 29. Test for Ethereum Time Series for Type-1 Sugeno. 

Fuzzy Type System Mean Standard deviation Mean Error P Value 

Gaussian PSO 0.1385690 0.0000660 0.000012 
0.000 

Gaussian GA 0.132345 0.00138 0.000026 
Generalized Bell PSO 0.0606006 0.0000025 0.00000048 

0.000 
Generalizad Bell GA 0.1439621 0.0000494 0.00000092 

Triangular PSO 0.1483172 0.0000468 0.00000087 
0.266 

Triangular GA 0.11 0.164 0.031 
Trapezoidal PSO 0.1483310 0.0000930 0.000017 

0.000 
Trapezoidal GA 0.1583207 0.0000774 0.000014 

Table 30. t-statistical test for Ethereum Time Series for Mamdani Type-2 

Fuzzy Type System Mean Standard deviation Mean Error P Value 

Gaussian PSO 0.4207 0.0292 0.0055 0.328 

Gaussian GA 0.4151964 0.0000637 0.00012 

Generalized Bell PSO 0.4386 0.0275 0.0051 0.000 

Generalized Bell GA 0.4732966 0.0000325 0.0000060 

Triangular PSO 0.398914 0.000210 0.000039 0.000 

Triangular GA 0.399748 0.000115 0.000021 

Trapezoidal PSO 0.459676 0.000162 0.000030 0.000 

Trapezoidal GA 0.4996483 0.0000509 0.0000094 

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1765–1783
doi: 10.13053/CyS-29-3-5910

Martha Pulido, Patricia Melin, Oscar Castillo1778

ISSN 2007-9737



 

Table 27 presents the integration results of the 
Sugeno Type-3 Fuzzy system using Trapezoidal 
MFs and AV represents the average time and 
prediction error of 29 experiments using a 
Genetic Algorithm. 

4.1. Comparison of results 

This subsection shows the comparisons between 
particle optimization algorithms and the genetic 
algorithm are also shown, statistical tests were 
performed with the results of two fuzzy systems 
type-1, type-2, and type-3 of Mamdani and Sugeno 
type, also using the different Gaussian, 
generalized bell and triangular systems. 

4.1.1. Mamdani Type-1 with PSO and GA 

To compare the results of two Mamdani type-1 
fuzzy systems using the two optimization 
algorithms, PSO and GA for the prediction of 
Ethereum time series, the statistical t test was 

used, in which Gaussian membership functions 
were used, Generalized Bell, Triangular and 
Trapezoidal we can deduce that there is 
substantial evidence supporting the relationship 
between the MandaniType-1 PSO fuzzy system 
and the Mamdani Type-1 GA System, in the 
statistical tests using the Gaussian MF with the 
GA, in the generalized bell function the GA was 
also better, with the Triangular membership 
function it was also GA and with the Trapezoidal 
membership function it was PSO, a 95% 
confidence interval was used, and the results of 
each of these tests are shown in the Table 28. 

4.1.2. Type-1 Sugeno with PSO and GA 

To compare the results of two Sugeno type-1 fuzzy 
systems using the two optimization algorithms, 
PSO and GA for the prediction of Ethereum time 
series, the statistical t test was used, in which 
Gaussian membership functions were used, 

Table 31. t statistical test for Ethereum Time Series for Sugeno Type-2 

Fuzy Type System  Mean Standarddeviation MeanError P Value 

Gaussian PSO 0.5587 0.0275 0.0051 0.187 
Gaussian GA 0.56568 0.003147 0.00058 
Generalized Bell PSO 0.6025 0.0275 0.0051 0.477 
Generalizad Bell PSO 0.606179 0.000062 0.000012 
Triangular PSO 0.6302 0.0275 .0051 0.000 
Triangular GA 0.65142 0.00145 0.00027 
Trapezoidal PSO 0.5816 0.0275 0.0051 0.000 
Trapezoidal GA 0.62241 0.00214 0.00040 

Table 32. t statistical test for Ethereum Time Series for Type-3 Mamdani 

Fuzzy Type ¿System Mean Standard deviation Mean Error P Value 

Gaussian PSO 0.3825 0.0106 0.0020 0.001 
Gaussian GA 0.000196 0.000196 0.00036 
Generalized Bell PSO 0.4517483 0.0000688 0.000013 0.000 
Generalizad Bell GA 0.9472517 0.0000509 0.0000094 
Triangular PSO 0.538041 0.000148 0.000027 0.000 
Triangular GA 0.54711966 0.0000626 0.000013 
Trapezoidal PSO 0.3462 0.0102 0.0019 0.000 

Trapezoidal GA 0.5041207 0.0000620 0.000012 

Table 33. t statistical test for Ethereum Time Series for Type-3 Sugeno 

Fuzy Type System  Mean Standard deviation Mean Error P Value 

Gaussian PSO 0.0458276 0.0000455 0.0000084 0.000 
Gaussian GA 0.0606241 0.0000872 0.000016 
Generalized Bell PSO 0.0527414 0.0000682 0.000013 0.000 
Generalizad Bell GA 0.0405621 0.0000820 0.000015  
Triangular PSO 0.0437000 0.0000655 0.000012 0.000 
Triangular GA 0.0588793 0.0000620 0.000012 
Trapezoidal PSO 0.0371483 0.0000688 0.000013 0.000 
Trapezoidal GA 0.0405621 0.0000820 0.000015 
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Generalized Bell, Triangular and Trapezoidal we 
can conclude that there is significant evidence 
between the Sugeno Type-1 PSO fuzzy system 
and the Sugeno Type-1 GA System, in the 
statistical tests using the Gaussian MF with the 
GA, in the generalized bell function the PSO was 
also better, with the Triangular membership 
function it was also GA and with the Trapezoidal 
membership function it was PSO, a 95% 
confidence interval was used, and the results of 
each of these tests are shown in the Table 29. 

4.1.3. Mamdani Type-2 with PSO and GA 

To compare the results of two Mamdani type-2 
fuzzy systems using the two optimization 
algorithms, PSO and GA for the prediction of 
Ethereum time series, the statistical t test was 
used, in which Gaussian membership functions 
were used, Generalized Bell, Triangular and 
Trapezoidal we can conclude that there is 
significant evidence between the MamdaniType-2 
PSO fuzzy system and the Mamdani Type-2 GA 
System, in the statistical tests using the Gaussian 
MF with the GA, in the generalized bell function the 
PSO was also better, with the Triangular 
membership function it was also PSO and with the 
Trapezoidal membership function it was PSO, a 
95% confidence interval was used, and the results 
of each of these tests are shown in the Table 30. 

4.1.4. Sugeno Type-2 with PSO and GA  

To compare the results of two Sugeno type-2 fuzzy 
systems using the two optimization algorithms, 
PSO and GA for the prediction of Ethereum time 
series, the statistical t test was used, in which 
Gaussian membership functions were used, 
Generalized Bell, Triangular and Trapezoidal we 
can conclude that there is significant evidence 
between the Sugeno Type-2 PSO fuzzy system 
and the Sugeno Type-2 GA System, in the 
statistical tests using the Gaussian MF with the 
PSO, in the generalized bell function the PSO was 
also better, with the Triangular membership 
function it was also PSO and with the Trapezoidal 
membership function it was PSO, a 95% 
confidence interval was used, and the results of 
each of these tests are shown in the Table 31. 

4.1.5. Mamdani Type-3 with PSO and GA 

To compare the results of two Mamdani Type-3 
fuzzy systems using the two optimization 
algorithms, PSO and GA for the prediction of 
Ethereum time series, the statistical t test was 
used, in which Gaussian membership functions 
were used, Generalized Bell, Triangular and 
Trapezoidal we can conclude that there is 
significant evidence between the Mamdani Type-3  
PSO fuzzy system and the Mamdani Type-3 GA 
System, in the statistical tests using the Gaussian 
MF with the GA, in the generalized bell function the 
PSO was also better, with the Triangular 
membership function it was also PSO and with the 
Trapezoidal membership function it was PSO, a 
95% confidence interval was used, and the results 
of each of these tests are shown in the Table 32. 

4.1.6. Sugeno Type-3 with PSO and GA 

To compare the results of two Sugeno type-2 fuzzy 
systems using the two optimization algorithms, 
PSO and GA for the prediction of Ethereum time 
series, the statistical t test was used, in which 
Gaussian membership functions were used, 
Generalized Bell, Triangular and Trapezoidal we 
can conclude that there is significant evidence 
between the Sugeno Type-2 PSO fuzzy system 
and the Sugeno Type-2 GA System, in the 
statistical tests using the Gaussian MF with the 
PSO, in the generalized bell function the GA was 
also better, with the Triangular membership 
function it was also PSO and with the Trapezoidal 
membership function it was PSO, a 95% 
confidence interval was used, and the results of 
each of these tests are shown in the Table 33. 

5. Conclusions 

This article tested two optimization algorithms to 
obtain the best network architecture, the 
responses of this network were integrated with 
type-3 fuzzy systems, with different types of 
Gaussian, generalized bell, trapezoidal and 
triangular MFs to obtain the best prediction error. 
To compare the optimization algorithms using 
particles and the genetic algorithm, statistical tests 
were performed with the results of two fuzzy 
systems type-1, type-2 and type-3 of Mamdani and 
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Sugeno type, also using the different Gaussian, 
generalized bell, triangular and trapezoidal 
member functions for each type of system. We can 
conclude that in most cases the best was the 
optimization algorithm using particles. As future 
work, it is necessary to carry out tests with this 
method using other time series and also change 
the optimization of ensemble neural 
network method. 
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