
Importance of the Parameterization Schemes in the WRF Model for
Wind Speed Forecasting: Case Study of Tepuxtepec, Michoacán

Itzagueri Garcı́a-Rodrı́guez1, Alma Rosa Mendez-Gordillo2,∗, Rafael Campos-Amezcua3,
Sixtos A. Arreola-Villa2, Erasmo Cadenas-Calderón1

1 Universidad Michoacana de San Nicolás de Hidalgo,
Facultad de Ingenierı́a Mecánica,

Mexico

2 Universidad Autónoma de Coahuila,
Facultad de Ingenierı́a Mecánica y Eléctrica Unidad Norte,

Mexico

2 TecNM/Centro Nacional de Investigación y Desarrollo Tecnológico,
Mexico

{itzagueri.garcia, ecadena}@umich.mx, {alma mendez, svilla}@uadec.edu.mx,
rafael.ca@cenidet.tecnm.mx

Abstract. The planning of wind energy dispatch con-
stantly faces the challenges of wind speed intermittency
and variability. Therefore, it is crucial to have models that
generate reliable forecasts to support the development
of this renewable energy source. This study evaluates
the performance of three configurations of the Weather
Research and Forecasting (WRF) model for hourly wind
speed forecasting in Tepuxtepec, Michoacán, Mexico,
with a 24-hour forecast horizon. Three parameterization
schemes were compared: WRF WMK, WRF TBG, and
WRF MYB. These schemes were selected based on the
geographic, climatic, and meteorological characteristics
of the region, as well as the need to assess the
WRF model’s performance under different physical
configurations. Simulations were conducted for four
representative dates—one per season—considering the
annual temperature cycle that influences wind behavior.

The simulations used MERRA-2 reanalysis data as
input and were evaluated against measurements from
NASA’s POWER project. The comparison between
simulated and observed wind speeds was performed
using four error metrics: Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), Bias, and the
Correlation Coefficient (r). Additionally, Prediction
Intervals (PIs) at 80% and 95% confidence levels were
calculated to assess the reliability of the forecasts.
The results showed that the WRF TBG configuration

outperformed the others, reducing RMSE by up to 60%
compared to WRF WMK. The forecasted values were
within the 80% PI for up to 80% of the total values, and
within the 95% PI for up to 100%. Seasonal evaluation
revealed that the model performed best in winter and
worst in summer, likely due to the influence of intense
convective processes during the latter season.

Keywords. WRF model, parameterization schemes,
wind speed forecasting.

1 Introduction

Currently, the primary application of wind energy
is electricity generation through wind turbines,
which efficiently and sustainably convert the kinetic
energy of the wind into electrical energy. According
to the International Energy Agency’s (IEA) World
Energy Outlook 2024, global renewable energy
generation capacity is projected to increase from
the current 4,250 GW to nearly 10,000 GW by 2030
[26]. Wind and solar energy are expected to lead
this expansion and represent a substantial portion
of global electricity generation in the coming
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decade. This projection underscores the strategic
role of wind energy in the global energy transition.

In terms of installed wind capacity, China leads
the world with 441,895 MW, followed by the United
States and Germany. Significant progress has
also been made in Mexico, with a total installed
capacity of 7,318 MW, positioning the country 17th
globally [56, 45]. This growth reflects Mexico’s
commitment to diversifying its energy matrix and
incorporating renewable sources to meet electricity
demand while promoting emission reductions and
greater energy independence [27, 3].

The first step in increasing installed capacity
is to identify sites with wind potential through a
comprehensive assessment that considers factors
such as wind speed and consistency, among other
important characteristics that enable the effective
harnessing of this resource. In Mexico, the Isthmus
of Tehuantepec is one of the regions with the most
significant wind resources worldwide. This region
has driven the development of numerous electricity
generation projects, solidifying the country’s role
as a key player in the international wind energy
market. In the search for other sites with
promising wind resources, this study analyzes the
locality of Tepuxtepec in the state of Michoacán.
Due to its topographic characteristics and wind
speed, Tepuxtepec represents a potential site for
investment in wind energy development.

In recent years, the need for accurate wind
speed forecasts has become more critical due
to growing energy demand and the increasing
contribution of renewable sources to electricity
generation. One of the main challenges in wind
energy generation lies in its strong dependence
on wind speed [28]. Multiple factors influence
this meteorological variable, making it one of
the most difficult to integrate into electrical
power generation systems. Accurate wind
speed forecasts are essential for energy dispatch
planning, as they allow for the generation of
electricity production estimates when combined
with other techniques [10].

It is important to note that different types of gen-
eration forecasts are defined by their time horizon
and the needs of the end user. Medium-term
forecasts (MTF), with horizons ranging from 2 to 20
days, are used by energy generators for decisions

related to supply security and grid maintenance.
System operators use short-term forecasts (STF),
which range from 6 to 48 hours, to prevent
congestion, schedule generation, and manage
loads. Very short-term forecasts (VSTF), with
horizons from minutes to six hours, are essential
for real-time operation and dispatch of generation
units, and for managing transmission constraints
[36, 4]. This study generated hourly wind speed
forecasts with a 24-hour forecast horizon, in
alignment with the STF category, making them
particularly useful for short-term planning and
operational decision-making in the energy sector.

Forecasting models are generally categorized
as global or regional. Global models [49, 20]
simulate atmospheric conditions on a worldwide
scale using low-resolution grids. Regional or
mesoscale models, on the other hand, focus
on smaller areas (on the order of hundreds
of kilometers) with significantly higher spatial
resolution. To enhance local applicability, a
technique known as downscaling is applied
to improve the resolution of global forecasts.
There are two main downscaling approaches:
statistical and dynamic [19, 14]. For atmospheric
features smaller than 10 km, models must
include non-hydrostatic processes to accurately
simulate mesoscale meteorology. Such processes
include solar radiation, turbulence, evaporation,
condensation, convection, and surface heat and
moisture fluxes.

The Weather Research and Forecasting (WRF)
model is among the most widely used regional
models for dynamic downscaling. It is extensively
used in operational meteorology and research
applications [43, 52]. Its main advantage lies
in its adaptability to a wide range of spatial
and temporal scales, from operational short-term
forecasting to long-term climate studies. This
flexibility is enabled by a wide variety of physical
parameterization schemes [48]. These schemes
allow users to tailor the model configuration to the
specific characteristics of the study area and the
atmospheric processes under investigation.

Therefore, the appropriate selection of physical
parameterizations is a key step in achieving reliable
forecasts in diverse geographic contexts [46, 17, 2].
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Parameterization schemes in WRF represent
physical processes that cannot be explicitly
resolved at the chosen resolution [21]. An
improper selection of these schemes can lead
to significant biases, particularly in variables
such as temperature, precipitation, and wind
speed [33, 18]. Thus, the configuration must
be tailored to the regional characteristics and
the meteorological objective of the study [51].
The use of appropriate schemes has been
shown to reduce uncertainty in simulation results,
producing more realistic atmospheric behavior and
improving forecast skill [16, 5]. This is the main
contribution of the present study, which evaluates
multiple WRF parameterizations for forecasting
wind speed at an unstudied site using modest
computational resources.

Recent research emphasizes the growing use of
advanced modeling techniques, including machine
learning (ML), to improve wind speed forecasting
in areas with high wind potential. ML models
can estimate spatio-temporal wind fields with
high accuracy, especially in regions with sparse
observational data. These approaches have been
employed to identify optimal zones for wind energy
development by forecasting wind speed across
diverse geographical areas [1, 7, 44]. Within this
context, the WRF model remains a powerful tool
due to its ability to simulate atmospheric dynamics
in any location of interest. Its flexibility is based on
proper domain configuration and the selection of
appropriate parameterizations [42].

To evaluate the performance of the model,
time series of wind speed data were generated
for multiple representative dates throughout the
year. These simulations were compared to
reference data from the National Aeronautics and
Space Administration (NASA) POWER project
[40]. NASA’s database was chosen for its open
access, georeferenced data retrieval capabilities,
and its availability of complete wind speed
records for the entire year. The selection of
the three parameterization schemes was driven
by the need to assess WRF’s performance in
a region with complex topography and variable
weather conditions. Each configuration allows
for analyzing wind behavior under different
atmospheric scenarios, based on the specific

features of the site. Forcing data were obtained
from the NCEP GFS Global Forecast Historical
Archive [41], and5 simulations were carried out
for each selected date. Model performance was
assessed using standard statistical error metrics
by comparing forecasted values against the NASA
reference data.

The remainder of this article is structured as
follows: Section 2 describes the methodology,
including the study area, data sources, date se-
lection process, and WRF configurations. Section
3 presents and analyzes the results, comparing
the different model configurations and evaluating
the prediction accuracy using error metrics and
prediction intervals. Section 4 summarizes the
main conclusions and discusses their implications
for wind energy project planning in Tepuxtepec and
similar regions. Finally, future research directions
and practical applications are proposed.

2 Methodology and Data

2.1 Study Site

The municipality of Contepec, located in the
northeast of the state of Michoacán, Mexico, is
geographically situated at coordinates 20◦01′30′′

N and -100◦14′15′′ W, at an altitude of 2,490
meters above sea level.

From a climatic perspective, the region has a
temperate climate with rainfall concentrated in the
summer. Average temperatures in the area range
from 8.6◦C to 22.4◦C [11].

The Tepuxtepec Dam is also found in this
area. The potential land uses are agricultural
and livestock, and the physiography of the
region consists of mountains, hills, plains, and
valleys [25]. These topographic and climatic
characteristics were taken into account when
selecting configurations for each parameterization
scheme. Figure 1 shows a map of the central
region of the Mexican Republic, highlighting the
study site for this research. The inset photo
illustrates the flat terrain, where part of the
Tepuxtepec Dam can be seen.
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Fig. 1. Site of study: Tepuxtepec, Michoacán, Mexico.

2.2 NASA POWER Reference Databases

Various sources of information were examined
to select the database for wind speed records.
Two meteorological stations near the study site
were identified: the Tepuxtepec station, located
at 19◦59′48′′ N and -100◦13′49′′ W, and the
Temascales station, situated at 20◦03′03′′ N and
-100◦08′58′′ W [25]. However, the records from
these stations were incomplete, leading to the
exploration of the Prediction Of Worldwide Energy
Resources (POWER) database, developed by the
Langley Research Center (LaRC) at the National
Aeronautics and Space Administration (NASA).
This database provided recent measurements and
complete, easily accessible records. The NASA
POWER (MERRA-2) data represent an excellent
choice for wind resource analysis, particularly in
areas with limited measurement infrastructure. The
NASA database was chosen because it offers
recent measurements, enables precise location
selection for the study site, and provides complete
and easily accessible records [40]. NASA-POWER
wind data have been validated in various wind
energy studies for reliability in areas lacking ground
stations [31, 57]. The data are derived from
MERRA-2 and undergo quality control processes
ensuring consistency.

The data obtained spans from January 1, 2024,
to December 31, 2024, with an hourly temporal
resolution, and at 10 meters above the surface.
The WRF model also provides wind speed at
this height, allowing for direct validation without

extrapolating wind speed to different heights. In
addition to wind data, accurate surface information
was required for the model setup. Land cover data
were obtained from INEGI’s Serie VI database,
which includes updated satellite-based vegetation
classification validated through field campaigns
[13]. These data were used in the WRF
Preprocessing System.

2.3 Selection of Dates for Wind Speed
Forecast Generation

In order to ensure appropriate forecast date
selection, the wind was considered a meteoro-
logical variable that fluctuates over time due to
various factors, including atmospheric pressure,
temperature, and changes in topography. These
factors lead to wind direction and speed shifts
throughout the day and across seasons [58]. At the
study site, differences in heating between the land
and the water body create local winds, including
daytime and nighttime breezes. The sample
was segmented using the K-means technique,
part of machine learning, specifically unsupervised
learning [15]. This approach aided in identifying
patterns and clusters in the wind data, enabling a
more informed selection of representative dates for
forecasting. The number of clusters was generated
using measurements from 2024 extracted from
the NASA POWER project. These clusters
were selected based on the results of the elbow
method and the silhouette index, which graphically
identifies the optimal number of clusters. These
techniques facilitated the determination of the
most appropriate grouping of data points, ensuring
robust and meaningful segmentation for analyzing
wind patterns. To reduce computational cost while
ensuring data representativeness, the K-means
algorithm was applied to the 2024 hourly wind
speed time series. The number of clusters was
evaluated using the elbow method, which shows
a consistent reduction in the sum of squared
errors (SSE), stabilizing from four clusters onward
(Figure 2). Although the decrease in SSE
becomes progressively smaller after K = 3, the
difference between K = 4 and higher values is
minimal, indicating that additional clusters do not
contribute significantly to improved representation.
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Fig. 2. K-means: Elbow Method used to determine the
optimal number of clusters.

Fig. 3. Box-plots of descriptive statistics show
differences in mean, standard deviation, minimum, and
maximum wind speeds across the clusters.

Therefore, K = 4 was selected to balance statistical
performance and climatological reasoning. This
choice also aligns with the natural division of the
data into four seasons, allowing for the selection of
one representative day per season. The boxplots
of descriptive statistics (Figure 3) confirm that each
cluster exhibits distinct wind patterns in terms of
mean, variability, and range. Thus, the reduced
set of four representative days ensures seasonal
coverage and preserves the essential variability
required for evaluating wind forecast performance
across diverse atmospheric conditions. Although
the initial interpretation suggested three clusters,

Table 1. Representative simulation dates selected for
each season based on K-means clustering.

Season Simulation Dates

Winter January 21, 2024

Spring April 11, 2024

Summer July 16, 2024

Autumn October 6, 2024

four were chosen, guided by both numerical criteria
and climatological knowledge. This choice allowed
for capturing seasonal variability in the data by
selecting one representative day for each season.

The decision to use four clusters was further
validated by the box-plots of descriptive statistics in
Figure 3, which clearly show differences in mean,
standard deviation, minimum, and maximum wind
speeds across the clusters. These patterns
highlight distinct wind behaviors in each cluster,
confirming that the reduced dataset is both
representative and appropriate for the objectives
of this study. Consequently, a proposal of days
grouped by week was created, representing each
cluster type with days in homogeneous groups.
From these, only one day per cluster was selected
to represent the others. Table 1 presents the
chosen dates for the four seasons.

2.4 Parameterizations Schemes and WRF
Modeling

This study focuses on atmospheric modeling
using the open-source WRF model, emphasizing
the role of physical parameterization schemes
in improving the quality of wind forecasts. By
selecting configurations tailored to the site’s
orographic and land-use characteristics, we seek
to increase the physical realism of the model
outputs. The configuration used in this study was
designed for a 24-step-ahead forecast horizon,
balancing detail and computational feasibility.
This approach facilitates high-quality, site-specific
forecasts without relying on other techniques
that base their construction on anemometric
measurements and improves reproducibility in
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Fig. 4. Delimitation of the control domain for simulating
Tepuxtepec, Michoacán, Mexico, at a resolution of 10
km.

Table 2. Parameterization scheme combinations used in
the WRF model, specifying the microphysics, planetary
boundary layer (PBL) and cumulus convection options.

Schemes Microphysics PBL Convection

WRF WMK WMS6 MYNN2.5 Kain-Fritsch

WRF TBG Thompson Boulac Grell-Freitas

WRF MYB Morrison YSU BMJ

similar regions. While this study focused on
physical model optimization, future research will
integrate hybrid and machine learning models with
WRF outputs to improve short-range forecasts,
as suggested by recent work [9, 12]. The
WRF model, version 4.0 [53], was utilized with
a single-domain configuration and a horizontal
resolution of 10 km. Figure 4 illustrates the spatial
configuration of the nested simulation domains
used in the WRF model. The outer domain
provides synoptic-scale conditions, while the inner
domains progressively refine the resolution to
better capture local atmospheric processes. The
innermost domain focuses on the Tepuxtepec
area, allowing a detailed representation of wind
dynamics influenced by local topography and
land use. This nested approach is essential
for achieving accurate mesoscale forecasting in
complex terrain. Initial and boundary conditions
were obtained from the NCEP GFS Historical

Archive (NCEP GFS 0.25 Degree Global Forecast
Grids Historical Archive) [41], extracting data solely
for the designated simulation dates.

In the WRF model, microphysics describes the
representation of particle-level processes occur-
ring in clouds, such as condensation, freezing,
melting, deposition, and droplet coalescence,
which determine the formation and evolution of
precipitation [47]. The Planetary Boundary Layer
(PBL) is the part of the atmosphere in direct contact
with the Earth’s surface, where intense turbulent
processes occur. In this layer, heat, moisture,
and momentum exchange between the surface
and the air, influencing cloud formation, pollutant
dispersion, and the evolution of wind near the
ground. In the WRF model, PBL parameterization
is crucial, especially for forecasts at heights
such as 10 meters above ground level, as it
directly impacts the accuracy of meteorological
predictions [47].

Convection parameterization in meteorological
models is crucial for representing small-scale
processes that cannot be explicitly resolved
due to limitations in spatial resolution. This
parameterization is particularly relevant in regions
where vertical air movements significantly influ-
ence local weather development. Convection
is related to the dynamic processes of vertical
air transport (updrafts and downdrafts), which
generate convective clouds (e.g., cumulus) and are
linked to energy and moisture transfer, as well as
storm development [47].

The three selected configurations WRF WMK,
WRF TBG, and WRF MYB were chosen based on
their physical diversity and proven applicability
to complex terrain.WRF TBG combines Thompson
microphysics, BouLac PBL, and Grell-Freitas
cumulus schemes, offering accurate wind repre-
sentation as reported in similar studies [21].

Three schemes with different parameterization
configurations were evaluated for each proposed
date (Table 2). These schemes were designed
based on the site’s topographic and climatic
characteristics, and abbreviations were created
using the first letter of each parameterization name
for easier identification. This method was effective
because the parameterizations for microphysics,
planetary boundary layer (PBL), and convection
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did not share overlapping initials, allowing for
clear distinction.

• WRF WMK configuration. It utilizes the
WSM6 scheme for microphysics, which
simulates the formation and evolution of
hydrometeors, including water vapor, rain,
and more. This microphysics scheme
is recognized for balancing complexity and
computational efficiency [23]. MYNN 2.5
for the planetary boundary layer (PBL) is
based on a hierarchy of second-order closures
and is designed to represent turbulence
in the boundary layer accurately. This
approach proves beneficial in high-resolution
simulations where a detailed representation
of turbulence is essential [39]. The
Kain-Fritsch scheme for deep convection
addresses the effects of convective storms
not explicitly resolved by the model. It
employs a one-dimensional column model that
simulates the development and dissipation of
convective clouds, adjusting the temperature
and humidity profiles to reflect convective
transport [32].

• WRF TBG configuration. It employs the
Thompson scheme for microphysics, which
simulates the formation and evolution of
hydrometeors, including water vapor and
rain. This microphysics scheme is a
single-moment parameterization [50]; BouLac
for the planetary boundary layer (PBL)
uses a first-order closure parameterization
that calculates the boundary layer height
and turbulent diffusion coefficients based
on turbulent kinetic energy (TKE) [8]; and
Grell-Freitas for convection. This deep
convection parameterization scheme is an
advanced version of the Grell scheme
that incorporates a stochastic representation
of convective clouds and their interactions
with the environment. It is suitable for
high-resolution models and enables a smooth
transition between resolved and unresolved
convection scales [22].

• WRF MYB configuration. It employs the
Morrison double-moment scheme for mi-

crophysics, which enables a more accu-
rate depiction of microphysical processes
in clouds. This scheme is particularly
beneficial in research examining the impact of
aerosols on cloud formation and precipitation
[37]. The YSU (Yonsei University) scheme
is used for the planetary boundary layer
(PBL); it is a first-order parameterization
that extends turbulent mixing throughout the
entire boundary layer, including an explicit
representation of the upper inversion layer.
This scheme is recognized for its effectiveness
in simulating atmospheric phenomena across
various geographic and climatic conditions
[24]. Additionally, the Betts-Miller-Janjic (BMJ)
scheme for convection adjusts temperature
and humidity profiles toward a targeted state
based on observational data, which helps
facilitate a realistic portrayal of convective
processes. This scheme is particularly
suited for operational applications due to
its computational efficiency and capability
to simulate convection in diverse climatic
environments [29].

Simulations were executed on a PowerEdge T320
server with an Intel Xeon 1.8 GHz dual-core
processor and 50 GB RAM. Although this
configuration offers moderate processing power,
it still constrained the number and resolution of
simulations. As a result, a representative-date
strategy based on K-means clustering was
implemented to balance computational feasibility
with atmospheric variability coverage.

2.5 Error Metrics

In order to validate the models, the following error
metrics were used: Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), Bias, and
the Correlation Coefficient (r). These metrics are
widely utilized because each offers complementary
insights into the model’s error [55]:

• Root Mean Square Error (RMSE). Sig-
nificantly penalizes large errors, making it
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effective in highlighting major discrepancies
between forecasts and actual data:

RMSE =

√√√√ 1

N

N∑
i=1

[
yi(Pred)

− yi(Obs)

]2
. (1)

• Mean Absolute Error (MAE). Measures the
average error without excessively weighting
extreme errors, providing a clear view of the
average error:

MAE =
1

N

N∑
i=1

∣∣yi(Pred)
− yi(Obs)

∣∣ . (2)

• Bias. Indicates whether the model tends
to overestimate or underestimate the variable
systematically:

Bias =
1

N

N∑
i=1

[
yi(Pred)

− yi(Obs)

]
. (3)

• Correlation Coefficient (r): Assesses how
effectively the model represents the temporal
variability of the actual variable. A high
value signifies that, despite any magnitude
errors, the model aligns with the trend of the
observed data:

r =

N∑
i=1

(
yi(Pred) − ȳ(Pred)

) (
yi(Obs) − ȳ(Obs)

)√(
yi(Pred) − ȳ(Pred)

)2√(
yi(Obs) − ȳ(Obs)

)2 .
(4)

These metrics are appropriate for validating the
performance of the WRF model because, together,
they enable the assessment of both the magnitude
of errors and the model’s capability to replicate the
variability and trend of wind speed. This step is
crucial in numerical forecasting, as demonstrated
in this study.

3 Results and Discussion

3.1 Comparison of Configurations

The results obtained from the simulations with
the three proposed configurations (WRF WMK,

WRF TBG, and WRF MYB) demonstrate signifi-
cant differences in performance, assessed through
RMSE, MAE, bias, and correlation with NASA
data (Figure 6). The WRF TBG configuration
(Thompson, BouLac, Grell-Freitas) distinguishes
itself by providing accurate estimates for most
analyzed dates. In Figure 5, the graphs of the wind
speed time series for the proposed forecast dates
can be observed; each time series corresponds
to records obtained from the NASA database
and those derived from the three parameterization
schemes of the WRF Model.

Since all forecasts have deviations, it is
appropriate to calculate probability bands of
occurrence [54] in addition to the predicted values.
This is useful because it gives the user an
estimate of the best and worst-case scenarios
that may arise. Therefore, prediction intervals
were calculated for the WRF TBG model, which
exhibited the best performance, to assess the
accuracy percentage of the top model within
these intervals.

These results demonstrate that WRF TBG
reduces absolute errors and offers more excellent
temporal stability, especially in regions with com-
plex topography, like Tepuxtepec. The difference
in model performance underscores the importance
of carefully selecting parameterizations, as specific
combinations of microphysics, boundary layer [5,
35], and convection schemes directly affect the
quality of the forecast.

Table 3 compares error metrics for the
three WRF model configurations (WRF WMK,
WRF TBG, and WRF MYB). WRF TBG
consistently stood out by showing the lowest
error values and the highest correlation with
NASA data. For example, on January 21, 2024,
WRF TBG achieved an RMSE of 2.12 and a
correlation of 0.47, significantly outperforming
WRF WMK, which had an RMSE of 5.15 and
a negative correlation (-0.21). This behavior
indicates that WRF TBG provides estimates closer
to the actual values and a greater ability to capture
wind variability.

On April 11, 2024, WRF TBG once again
emerged as the best option, exhibiting an RMSE
of 2.81 and an MAE of 2.33, compared to the
higher values of WRF WMK (RMSE of 3.18 and
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Fig. 5. Hourly wind speed time series comparison between the NASA-POWER database and WRF model outputs
using three different parameterization schemes (WRF WMK, WRF TBG, and WRF MYB) for four representative dates.
Each subplot corresponds to a specific date selected through K-means clustering, allowing the evaluation of model
performance under different seasonal conditions.

MAE of 2.66). This trend persisted through the
summer (July 16, 2024), when WRF TBG recorded
an RMSE of 0.95 and an MAE of 0.77, the only
configuration with errors below 1. This indicates a
superior ability to capture atmospheric conditions
during intense convection. Finally, in October,
WRF TBG demonstrated its superiority with an
RMSE of 2.05 compared to WRF WMK’s 3.10.

The superiority of WRF TBG can be explained
by the specific characteristics of its parameter-
izations. Thompson (Microphysics): it enables
a more precise representation of the formation
and evolution of hydrometeors, enhancing the
simulation of clouds and precipitation, which
are crucial elements in surface wind prediction.
BouLac (Planetary Boundary Layer): it i based
on turbulent kinetic energy (TKE), and provides
a thorough treatment of turbulence, which is
essential in complex terrains like Tepuxtepec.

Grell-Freitas (Convection): it effectively represents
the transition between resolved and unresolved
convection scales, enhancing the fit under variable
convection conditions.

The results of WRF TBG are particularly
noteworthy regarding RMSE and correlation. For
example, on January 21, 2024, WRF TBG
achieved an RMSE of 2.12 and a correlation of
0.47, compared to 5.15 and -0.21, achieved by
WRF WMK. This trend remained consistent across
most of the analyzed seasons, indicating that
the proper selection of parameterizations directly
affects forecast quality.

3.2 Prediction Intervals (PI)

Prediction intervals are typically based on the
Mean Squared Error (MSE) because it estimates
the variance of the forecast error [54]. The square
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Fig. 6. Evaluation of forecast accuracy using four statistical metrics: RMSE, MAE, BIAS, and Pearson correlation
coefficient (r), for each parameterization scheme (WRF MYB, WRF TBG, and WRF WMK) across four representative
simulation dates. The graphs illustrate the temporal variation in model performance, highlighting the consistency and
relative advantages of each configuration.

root of the MSE provides an estimate of the
standard deviation of the forecast error.

The standard assumption for constructing pre-
diction intervals is that the forecast errors are
normally distributed with a mean of zero.

Given this assumption, an approximate predic-
tion interval for the subsequent observation is
calculated using the following expression:

Fn+h ± z ·
√
MSEh. (5)

where n is the index of the last observed point
in the time series, h represents the prediction
horizon, that is, the number of steps into the future
for which the estimate is being made, z is the
width and probability of the prediction interval, and
MSEh for multi-step forecasts.

The 80% and 95% prediction intervals pro-
vide valuable information about the reliability of
the forecast (Figure 7). It was noted that
WRF TBG displayed the least dispersion in its
prediction intervals, further affirming its stability
and robustness for the study site. The graphs
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Fig. 7. Hourly wind speed prediction intervals (80% and 95%) generated by the WRF TBG parameterization for four
representative dates. The shaded areas represent the uncertainty bands, and the black lines indicate the NASA-POWER
reference data. Coverage percentages show the proportion of NASA values falling within each interval, illustrating the
reliability of the forecasts under different seasonal conditions.

created for each season illustrate how the series
predicted by WRF TBG stays within the prediction
intervals, particularly during winter and autumn,
when uncertainty was significantly reduced.

Overall, it is observed that for the 80% interval,
the percentage of observations falling within it
ranges approximately from 70% to 80%, while for
the 95% interval, the range extends from 95% to
100%. This indicates that assuming the normality
of errors and calculating the standard deviation
from the MSE, the model effectively captures most
of the actual measurements within the proposed
prediction intervals, especially in the 95% case.

Although the WRF model can be config-
ured for different forecast horizons, this study

focused on 24-hour forecasts to align with
the representative-event-based design. Future
work will explore shorter and extended forecast
windows. This characteristic suggests that the
WRF TBG configuration is accurate in point values
and consistent over time.

Beyond technical accuracy, accurate wind speed
forecasting improves the economic performance
of power systems by reducing imbalance costs,
minimizing the need for spinning reserves, and
avoiding penalties from deviation between fore-
casted and generated energy [34, 6]. It also
increases revenue opportunities for wind producers
through improved market participation and risk
management [30], while supporting the broader
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Table 3. Forecast performance metrics for each
parameterization scheme and simulation date. Values
are based on comparisons with NASA-POWER wind
speed data.

SCHEMES RMSE MAE BIAS r

January 21, 2024

WRF WMK 5.15 4.72 4.68 -0.21

WRF TBG 2.12 1.73 1.30 0.47

WRF MYB 2.57 2.08 1.94 0.07

April 11, 2024

WRF WMK 3.18 2.66 1.16 -0.49

WRF TBG 2.81 2.33 0.78 -0.55

WRF MYB 2.81 2.40 0.79 -0.56

July 16, 2024

WRF WMK 1.32 1.16 0.90 0.41

WRF TBG 0.95 0.77 0.48 0.34

WRF MYB 1.85 1.44 0.99 -0.33

October 16, 2024

WRF WMK 3.10 2.54 2.44 0.50

WRF TBG 2.05 1.79 1.33 0.26

WRF MYB 2.51 2.06 1.79 0.52

integration of renewables and reducing emissions
[38].

4 Conclusion and Future Work

The comparative analysis of WRF model con-
figurations shows that choosing parameterization
schemes significantly affects forecast accuracy.
Among the options evaluated, the WRF TBG
configuration (Thompson, BouLac, Grell-Freitas)
was the most suitable for the Tepuxtepec region.
It exhibited the lowest RMSE and MAE values
and the highest correlation with NASA’s observed
measurements (MERRA-2, POWER Project). The
effectiveness of this configuration stems from the
Thompson scheme’s capability to model relevant
microphysical processes in the region, the BouLac
scheme’s ability to accurately capture turbulence in

the boundary layer, and the Grell-Freitas scheme’s
adaptability in representing convective processes.

Additionally, using 80% and 95% prediction
intervals proved to be a key tool for assessing
forecast uncertainty and validating the stability of
WRF TBG under variable atmospheric conditions.

These results are relevant to developing more
accurate prediction models and offer essential
information for assessing wind potential in the
Tepuxtepec region, aiding in the planning of
renewable energy generation projects.

The results demonstrated that the WRF TBG
configuration outperformed the other configura-
tions, reducing the RMSE by an average of up to
60% compared to WRF WMK.

The forecasted values were accurate within the
80% prediction interval for up to 80% of the
total values and within the 95% prediction interval
for a maximum of 100%. Seasonal evaluation
indicated improved model performance in winter
and diminished performance in summer, likely due
to the impact of intense convection during the latter
season.

As potential future research directions, it is
suggested that hybrid models that integrate
WRF with artificial intelligence techniques be
investigated to enhance wind forecast accuracy
in areas with complex topography, such as
Tepuxtepec site.

Additionally, it is suggested that the model’s
performance be evaluated over longer forecast
horizons and under extreme atmospheric condi-
tions. Regarding practical applications, the results
obtained can be crucial in planning and optimizing
wind energy projects. They contribute to identifying
sites with high energy potential and enhancing
Mexico’s renewable energy matrix.

Acknowledgments

The authors express their gratitude to CONAHCYT
for the financial support provided to Itzagueri
Garcı́a-Rodrı́guez for his graduate studies and the
research scholar grants 324425.

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1441–1456
doi: 10.13053/CyS-29-3-5904

Itzagueri García-Rodríguez, Alma Rosa Mendez-Gordillo, et al.1452

ISSN 2007-9737



References

1. Amato, F., Guignard, F., Walch, A.,
Mohajeri, N., Scartezzini, J.-L., Kanevski,
M. (2022). Spatio-temporal estimation of wind
speed and wind power using extreme learn-
ing machines: predictions, uncertainty and
technical potential. Stochastic Environmental
Research and Risk Assessment, Vol. 36,
No. 8, pp. 2049–2069. DOI: 10.1007/s00477-
022-02219-w.
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recientes en el pronóstico de velocidad de
viento para generación eólica. Master’s thesis,
Universidad Nacional de Colombia.

5. Banks, R. F., Tiana-Alsina, J., Baldasano,
J. M., Rocadenbosch, F., Papayannis, A.,
Solomos, S., Tzanis, C. G. (2016). Sensitivity
of boundary-layer variables to pbl schemes
in the wrf model based on surface meteoro-
logical observations, lidar, and radiosondes
during the hygra-cd campaign. Atmospheric
Research, Vol. 176–177, pp. 185–201. DOI:
10.1016/j.atmosres.2016.02.024.

6. Barthelmie, R. J., Pryor, S. C., Takle, E. S.,
Kjellström, J. O. T., Vanderwende, J. P.,
Bach, K. E. (2008). Wind energy development
and its impact on atmospheric boundary layer
processes. Bulletin of the American Meteoro-
logical Society, Vol. 89, No. 9, pp. 1303–1314.
DOI: 10.1175/2008BAMS2397.1.

7. Bouche, D., Flamary, R., d’Alché Buc, F.,
Plougonven, R., Clausel, M., Badosa, J.,
Drobinski, P. (2022). Wind power predictions
from nowcasts to 4-hour forecasts: a
learning approach with variable selection. DOI:
10.48550/ARXIV.2204.09362.

8. Bougeault, P., Lacarrere, P. (1989).
Parameterization of orography-induced
turbulence in a mesobeta–scale model.
Monthly Weather Review, Vol. 117, No. 8,
pp. 1872–1890. DOI: 10.1175/1520-
0493(1989)117¡1872:pooiti¿2.0.co;2.

9. Chen, X., Liu, Y. (2021). A hybrid model
based on wrf and machine learning for
short-term wind speed forecasting. Renew-
able Energy, Vol. 178, pp. 319–335. DOI:
10.1016/j.renene.2021.06.023.

10. Clean Energy Ministerial (2020).
Grid integration series: variable
renewable energy forecasting -
scaling up renewable energy project.
www.cleanenergyministerial.org/resources-
cesc/grid-integration/grid-integration-studies/.

11. Colegio Nacional de Abogados
Municipalistas (2024). Enciclopedia de
los Municipios y Delegaciones de México.
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de generación del recurso eólico y solar
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a corto plazo para parques eólicos. Ingenierı́a
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