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Abstract. This paper introduces a novel approach to
constructive induction in genetic programming through
the Multidimensional Multiclass Genetic Programming
with Multidimensional populations also known as M3GP
algorithm. MB3GP is leveraged to create new features
that either augment the original dataset or transform it
into a refined version, resulting in improved performance
for learning algorithms. With this premise the primary
contribution of this work is the integration of an evolutive
layer structure within M3GP, where the n best-performing
features generated in the previous iterations are reused
to continuously enhance the algorithm’s performance.
This approach parallels the concept of layers in
neural networks, establishing a pathway for symbolic
construction methods, such as genetic programming, to
incorporate layered learning. The second contribution
is defining the structure of operation that can be
applied in any constructive induction method to connect
the improvement of symbolic models, and sampling
key points of improvement for configuration options.
The findings underscore the potential of evolutionary
layering to improve feature generation and model
accuracy, marking an advancement in the constructive
induction field into a deep learning process. The
result shows a higher tendency of fitness improvement
against non-layered networks for regression problems
and a lower improvement in classification problems,
opening the possibilities for a new niche for deep
evolutive networks.
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1 Introduction

One of the most advanced constructive induction
methods in recent years is Multidimensional

Multiclass Genetic Programming with Multidi-
mensional populations (M3GP), which leverages
multidimensional populations to address the
inherent complexity of feature engineering in
machine learning. M3GP aims to generate new
features that can transform the dataset to ease
the learning process for classification or regression
models. By constructing multidimensional features,
M3GP enhances the representational capacity of
the data, making it more suitable for various
learning algorithms [2].

In recent years, deep learning has emerged
as a powerful paradigm by employing layered
architectures that automatically extract hierarchical
representations from data. However, these models
often operate as black box [12], offering limited
interpretability despite their high performance. In
contrast, M3GP provides a symbolic approach to
feature construction, yielding transparent models
that encapsulate valuable insights about complex
patterns in the data. By drawing parallels with
deep learning’s layered structure, the incorporation
of evolutive layers within M3GP not only enhances
the quality of the generated features but also
bridges the gap between the interpretability of
symbolic methods and the hierarchical learning
capabilities characteristic of deep networks.

These newly generated features contribute to
improving solution quality and provide an enriched
basis for predictive modeling. = Consequently,
M3GP shows great promise for enhancing both
the performance and interpretability of machine
learning models, especially in challenging scenar-
ios where conventional feature engineering ap-
proaches and standard deep learning architectures
may fall short.
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Fig. 1. Classification clusters for a 3-class problem,
where the circles represent the class centroids. On
the left, a low-fitness M3GP individual; on the right, a
high-fitness individual
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Fig. 2. Special M3GP tree with d dimensions from the
root node. Each node contains a standard GP tree,
where the input data changes from p to d dimensions,
based on the number of nodes in the root node

2 Features in a Dataset

When analyzing a dataset, each column repre-
sents a variable that defines features describing
the problem, while each row is a sample that
provides insight into the desired behavior of
the solution. Often, datasets lack a structure
conducive to learning, either due to natural
complexities or data collection methods. Improving
a dataset refers here to enhancing the feature
content that describes the problem effectively.

Feature enhancement can occur through ei-
ther compilation or constructive induction (CI).
Compilation rewrites original features in a more
compact, logically equivalent form. In contrast,
Cl improves feature accuracy, sometimes at the
cost of increasing dimensionality, by constructing,
modifying, or deleting features [15].

This study focuses on data-driven CI, which
explores relationships among raw features to
transform them into a new, more effective space.
Cl aims to simplify the learning process by
transforming original features into a representation
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better suited for specific algorithms [22, 3]. This
transformation can also enhance interpretability, as
a simplified model can emerge when features are
sufficiently descriptive.

In addition to the conventional approaches to
feature enhancement, deep learning architectures
exemplify how layered transformations can effec-
tively reshape raw data into highly informative
representations. In deep learning, each layer
acts as a feature extractor that progressively
abstracts the input data capturing complex,
non-linear relationships while filtering out irrelevant
information. This hierarchical transformation not
only simplifies the data space but also enhances
the model’s ability to generalize, leading to
improved performance in various tasks [1, 5].
Such a mechanism demonstrates that a structured,
layered approach can yield representations that
are both robust and efficient, providing a
compelling parallel to data-driven constructive
induction. In this context, the principles underlying
deep learning further motivate the exploration of
multi-layer strategies such as the evolutive layers
proposed in this work to transform and refine
the feature space, ultimately contributing to more
effective and interpretable solutions.

3 M3GP

M3GP is a tool based on genetic programming
(GP) [10] to improve the search space in
terms of locally maximizing the distance between
classes and thus increasing the performance in
classification and for regression the space is
changed to a more favorable representation for the
learning algorithm. This method is a variant of
tree-based GP called Multidimensional Multiclass
GP with Multidimensional Populations (M3GP)
[17], which is a wrapper approach for supervised
classification and regression [18]. M3GP evolves
a transformation of the form & : R? — R with
p,d € N using a special tree representation see
Fig 1, in essence mapping the p input features
of the problem to a new feature space of size
d. Afterward, M3GP applies the Mahalanobis
distance classifier [23] to measure the quality
of each transformation based on classification
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Fig. 5. Standard sub tree mutation, the only node that
cannot be mutated is the root node
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a leaf from the root node
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Fig. 7. Add new dimension, adding a new leaf to the root
node with a random generated tree

accuracy see Fig 1, for regression multiple linear
is applied to generate de prediction model.

In other words, M3GP is a wrapper-based GP
performing a feature treatment of the input data,

obtaining new data features that improve solution
quality. This section describes the key steps in the
M3GP evolutionary process:

Initialization of Multidimensional population:
M3GP begins by initializing a one dimension
population of individuals, where each individual
represents a transformation of the original features,
as is common in traditional GP. Each feature of
the root node can be viewed as a dimension
in a multidimensional space, see Fig 2. This
multidimensional representation provides M3GP
with a more flexible basis for generating solutions
that capture complex patterns in data, which is
particularly valuable for feature construction.

Fitness Evaluation: Each individual in the
population is evaluated based on its ability to
improve classification or regression performance.
Fitness is typically measured using classification
accuracy for multiclass tasks or an error metric
for regression, computed by applying the newly
generated features to a learning algorithm, such
as Mahalanobis distance for classification or
multiple linear regression for regression. The
fithess evaluation helps identify the most promising
individuals to evolve and create new features that
better separate or group the target classes or
improve prediction for regression.

Selection: M3GP uses a selection mechanism
(tournament selection [14]) to choose high-fitness
individuals for reproduction. Individuals with higher
fitness have a better chance of being selected,
ensuring that promising feature representations
are preserved and expanded in future generations.

Genetic Operators Crossover: Selected pairs
of individuals undergo crossover, where subsets of
their features are exchanged to produce offspring.
This operator enables the combination of useful
features from different individuals, enhancing
the diversity of feature space. Two possible
crossovers with equal probability are possible
standard crossover see Fig 3 and swapping of
dimensions crossover see Fig 4.

Genetic Operators Mutation: Mutation intro-
duces slight modifications to the feature set of an
individual. In M3GP, mutation can add see Fig 7,
modify see Fig 5, or remove see Fig 6 dimensions
within the feature set, encouraging exploration
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Fig. 8. Four layer sample of evolutive layers, each layer
fully runs M3GP to evolving the population to grow in
dimensions to improve the feature content, the best n
dimensions are chosen to be added to the next layer
as data features; because evolution drives the growth
development of the tree structure, some layers can have
more dimensions than others; all layers have a learning
model to guide the search; last layer is define to be the
final learning model
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Fig. 9. Evolutive layer structure: the first layer starts with
raw features; the best features are added to the next
layer to start a new M3GP run. This process repeats
for n layers until the last layer is reached

of the feature space and preventing premature
convergence; all mutations have equal probability.

Feature Transformation and Constructive
Induction: M3GP’s evolutionary process is
designed to not only improve individual solutions
but also to construct new, derived features that
may provide higher-level abstractions of the data.
Through iterative transformations, M3GP refines
these features, encapsulating meaningful patterns
that represent the problem’s solution space. This
constructive induction process distinguishes M3GP
from traditional GP, as it allows for cumulative
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learning, where each generation builds upon the
previous ones.

Termination: The algorithm continues evolving
the population until a stopping criterion is met,
such as a maximum number of generations or
satisfactory fithess level is reach. The final
solution consists of a set of multidimensional
features that optimally represent the problem,
facilitating classification or regression tasks for
external models in this work Mahalanobis distance
and multiple linear regression respectively.

4 Evolutive Layer Concept in M3GP

The evolutive layer is an innovative enhancement
added to the M3GP algorithm, inspired by the
layered architecture of neural networks, where
each layer feeds into the next one. In this
approach, after each complete run of the M3GP
algorithm, a selection of the top-performing
features (for instance, the n best features) is
retained and fed into a subsequent execution of a
new M3GP run (raw features + best features).

The feature selection method is RELIEFF [8, 9]
based on the speed and resources required to run
on high feature datasets; however, it is important
to emphasize that the feature selection process
is a critical step in this framework and can be
carried out using any alternative method deemed
appropriate.  This initial selection constitutes
the first and foundational step in the proposed
deep learning framework, allowing the evolutionary
layering process to build upon the progressively
refined feature space and enhancing the overall
performance of the algorithm, see Fig 8.

By iteratively carrying forward the most useful
constructed inducted features, the evolutive layer
allows M3GP to refine its representation across
runs, effectively “learning in layers”. This
resembles how neural networks refine their
understanding through layers of neurons, where
each layer captures increasingly abstract patterns
from the data for a graphic approach see Fig 9.

This layer-based evolution approach allows
M3GP to create a cumulative learning structure,
where the features from one layer provide a
higher-level abstraction, making each subsequent
execution potentially more effective at capturing
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Table 1. Setting for M3GP with evolutive layer

Settings Value

Evolutive 50

Layers

Population 20 and 50

Generations 50

Initial 1

Dimensions

Initialization 6 depth full initialization

Data 70% Training : 30% Testing

Genetic op- Crossover 0.5, Mutation 0.5
erators

Function set  +,-,*,/ protected as in [10]

Terminal set  Ephemeral random
constants [0,1]

Bloat control 17 depth limit

Selection Lexicographic tournament of
size 5

Elitism Keep best individual in each
run.

Elitism  for Not keeping the best individ-
layers ual or keeping best individual
through layers

New n <=5
features
for layer

complex relationships within the data. This not
only improves classification or regression accuracy
but also introduces a structural hierarchy to the
feature construction process, enabling M3GP to
handle more challenging problems with greater
interpretability and efficiency. Having structural
hierarchy allows than any layer can become
the final solution, remember that is generating
symbolic model, and if any layer provides the
expected solution is no necessary to keep
adding layers.

Another key mechanism is the elitism between
layers.  Although it is possible to initiate a
subsequent layer without transferring the best
individual from the previous layer relying solely on

the raw data plus the new features to guide the
search, the inclusion of elitism has proven to be
a crucial adjustment. By carrying forward the best
individual from one layer to the next, the algorithm
preserves the quality of the transformations
achieved in earlier layers. This continuity not
only reinforces the learning process but also
ensures that high-performing features are not lost
during the transition between layers. In essence,
this elitism mechanism facilitates robust inter-layer
communication, contributing significantly to the
cumulative improvement and overall effectiveness
of the deep learning framework proposed in
this work.

5 Experiments

This work uses matlab with a variant of GPLAB [19]
to run M3GP, all settings can be seen in Table 1.
Four dataset of real world problems see Table 2.
The main objective of using real world problems is
to define a baseline based on previous results [17,
18], with this the objective is to improve over classic
M3GP. Each problem executed 30 times.

The MCD3 dataset is a land classification
problem based on satellite data, the second
classification problem is to be able to detect a heart
disease [7]. Yacht [4] is a regression problem
to predict hydrodynamic performance of sailing
based on different feature adjustments and finally
the tower problem [21] predict the output of the
distillation process.

The configuration of the layered network can
significantly affect solution quality. One key factor is
the allocation of computational resources for each
run, to balance the use of resources between basic
M3GP and new implementation with evolutive layer
the following adjustment were done.

One configuration employs a population of 20,
50 generations and 50 layers to achieve the same
number of evaluations as the basic M3GP [17,
18] were 100 generations and 500 individual are
used (100x500 = 50000). Most deep learning
model escalate with more resources to test this
possibility a second configuration of evolutive
layer of M3GP is tested with a population of 50
individual, increasing the evaluations to 125 000
(50 layers x 50 population x 50 generations).
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Table 2. Datasets for experiments

Type Problem Information
Classification MCD3[13] Features 6 x
322 Samples 3
Classes
Classification Heart [7] Features 13 x
270 Samples 2
Classes
Regression Yacht [4] Features 6 x
308 Samples
Regression Tower [21] Features 25 x

4999 Samples

Table 3. Overall results for MCD3, the best median
solutions between M3GP variants. The p values are
based on the Friedman test

Method Training p Testing p Feat Nod
value value ures es

M3GP 99.5 N/A 95.3 N/A 5 66

M3GP 97.7 2e- 95.3 0.96 4 8

NE 7

SR

M3GP 99.1 0.93 95/8 0.07 4 6

NE

MR

M3GP 99.1 0.29 95.8 0.16 5 97

SR

M3GP 99.1 0.94 96.9 0.00 6 93

MR

Another aspect is the elitism strategy used
to maintain the best solution across different
layers, which is essential for keeping fitness stable.
However, maintaining a high degree of elitism can
lead to bloat [11, 20].

To address this, a second configuration was
implemented that utilizes only the raw features
plus the best n features generated in the previous
layer. This small but crucial adjustment leaves the
hard task to the genetic operator to find a new
best individual to improve the features, in other
word the populations restarts each layer, balancing
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the population tree size back to one dimension,
preserving the best features and bloat control by
lowering the elitist pressure.

In the end, all the experiments are conformed
by five M3GP variants, the first is classic M3GP
without any layers or changes, the second method
uses the full method of M3GP with evolutive layer
and elitism between layers, but runs with the same
number of evaluation that classic M3GP which
reflect in a lower population of 20 individuals to
compensate the extra evaluation by each layer,
from now on named M3GP SR (Same Resources),
the third variant of the method is M3GP with
evolutive layers running with a higher population
to increase the search resources, from now on
named M3GP MR (More Resources) and finally the
fourth and fifth method is M3GP SR and M3GP MR
but without elitism between layers, this means that
the best individual of the population is not transfer
to the new layer, to let evolution start over from
scratch with the new features of the previous layer,
from now on named M3GP NE (No Elitism) SR
and MR.

6 Results

6.1 Classification

The MCDS3 classification results are shown in
Table 3, showing the best median values for
training, testing, features, and nodes, and the
p value of the Friedman test to validate the
distribution of training and testing against classic
M3GP.

The overall training fitness of classic M3GP
was not surpassed and there were no statistically
significant difference between the best results
except with the M3GP NE SR that got a worst
result over all other methods. For testing there
is statistical significance improvement over classic
M3GP by the variant M3GP MR that uses evolutive
layers and elitism; Fig 10 illustrates the distribution
of the solutions using boxplots to represent quartile
ranges.

To evaluate statistical significance among all
methods, the Nemenyi test was applied. The
results show no significant difference between the
elitist variant and classic M3GP for training see
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Table 4. Overall results for Heart, the best median
solutions between M3GP variants. The p values are
based on the Friedman test
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Fig. 11. Training (*) and Testing (**) fitness reached by
the classification problem Heart at the end of each run

Table 5. Overall results for Tower, the best median
solutions between M3GP variants. The p values are
based on the Friedman test

Method Training p Testing p Feat Nod
value value ures es

M3GP 94.7 N/A 79 N/A 12 110

M3GP 90.4 3e- 77.7 0.61 8 5

NE 7

SR

M3GP 93.1 0.16 79 0.48 4 8

NE

MR

M3GP 94.1 0.99 79 0.83 12 95

SR

M3GP 95.5 0.78 79 0.99 12 142

MR

Method Training p Testing p Feat Nod
value value ures es

M3GP 19.74 N/A 22.05 N/A 38 354

M3GP 2555 0.00 26.89 0.00 15 86

NE

SR

M3GP 24.36 0.02 25.61 0.00 16 95

NE

MR

M3GP 14.77 0.03 17.80 2e- 207 3718

SR 4

M3GP 14.19 6e- 18.32 0.01 223 3907

MR 5

Table 9; however, for testing, the elitist variants
were significantly different see Table 10.

The behavior of classification improvement of the
evolutive layer for MCDS3, can be seen in Fig 14
and Fig 15 where the figures show the maximum,
median and minimum of the beast individual in
each layer overall the 30 runs, for MCDS3 training
there is a continual improvement until the 100
accuracy is reach, for testing there is a tendency
of improvement on the elitist variants of evolutive
layers.

For Heart classification problem the results are
shown in Table 4, for training the best result was
obtained by M3GP MR but without a statistical
significance based on the overall distribution, the
worst result was obtained by M3GP NE SR that
has lower distribution solution range. For testing
fitness the solution was the same on all methods
sharing the same distribution with no significant
statistical difference, the most compact distribution
was obtained by M3GP NE MR, the boxplot
distribution are shown in Fig 11.
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Fig. 12. Training (*) and Testing (**) fitness reached by
the regression problem Tower at the end of each run

Table 6. Overall results for Yatch, the best median
solutions between M3GP variants. The p values are
based on the Friedman test

Method Training p Testing p Feat Nod
value value ures es

M3GP 0.3126 N/A 0.7206 N/A 29 955

M3GP 0.6395 0.00 0.9479 0.32 14 48

NE

SR

M3GP 0.5455 0.01 0.8038 0.82 16 71

NE

MR

M3GP 0.0194 0.00 8.9462 1e- 198 4771

SR 11

M3GP 0.0105 0.00 7.4593 5e- 216 5575

MR 12

The Nemenyi test results show no significant
difference between the elitist variant and classic
M3GP for training or testing see Table 7 and
Table 8.

The behavior of classification improvement of
the evolutive layer in the heart problem, are
shown in Fig 16 and Fig 17, it shows a
continual improvement over all variants with elitism,
on non-elitist variants show spikes of lost and
improvement over each layer, generates by not
keeping the best individual between layers.
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Fig. 14. MCD3 problem with More Resources that
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represents the best median of classic M3GP

6.2 Regression

In the regression problem, Tower results shown
in Table 5, showing the best median values for
training, testing, features, and nodes and the
p value of the Friedman test to validate the
distribution of training and testing against classic
M3GP. The worst results were obtained by the no
elitism variants (regression problems are evaluated
minimizing the root mean square error). The
best results were obtained by both variants with
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Fig. 15. MCD3 problem with More Resources that
classic M3GP, training fitness reached by the end of each
evolutive layer in range of max-median-min, dotted line
represents the best median of classic M3GP

evolutive layers with elitism see Fig 12, the
improvement beats classic M3GP solution quality
by 5.5 in training and 4.25 in testing, and also the
range of solution is statistically significant p value
of 0.01 or less.

To evaluate statistical significance among all
methods for tower, the Nemenyi test was applied.
The results show significant difference between the
elitist variant and classic M3GP for training see
Table 11; however, for testing, the elitist variants
are not significantly different see Table 12.

The training fithess improves through all the
layers in a stable manner see Fig 18, where each
layer has a tendency to lower the root mean square
error. But for testing fitness just the maximum
shows overfitting but after some layers a tendency
to recover alignment with the median and minimum
see Fig 19.

For last the regression problem Yacht, the results
are shown in Table 6, were the best median
values for training, testing, features, and nodes and
the p value of the Friedman test to validate the
distribution of training and testing against classic
M3GP. The worst results were obtained by the no
elitism variants, which is expected by not keeping
in the best solution to the next layer it forces the
layer to start over the search, keeping a low bloat

oo Heart M3GP MR Training Fitness
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iyl

§ L _/ _____ — oo _/
Eiva :

0 ~ ax

< Median

g2r Min

90

88
0 5 10 16 20 25 30 35 40 45 50
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Fig. 16. Heart problem with More Resources that
classic M3GP, training fitness reached by the end of each
evolutive layer in range of max-median-min, dotted line
represents the best median of classic M3GP

solution with fewer features and nodes, also a low
overfitting between training and testing fitness.

The best training results were obtained by M3GP
with evolutive layers and elitism, the improvement
is significant by a whole digit but the improvement
came with a high bloated solution, overfitting the
testing solution quality, best testing values were
obtained by classic M3GP.

The quality of solutions are statistically different
with a p value of 0.00 of the Friedman test for
training, where each variant has a statistically
significant separation from classic M3GP, it is
also different from M3GP NE and M3GP evolutive
layers, M3GP NE is different from M3GP evolutive
layers. On testing there’s only two groups that
are statistically significant M3GP and M3GP NE
are equal, but different from M3GP SR and M3GP
MR evolutive layers. The overall range of solution
quality shown in Fig 13. The Nemenyi test show
significant difference between the elitist variant and
classic M3GP for training see Table 13 and testing
see Table 14.

From Fig 21 we can see behavior of fitness
through each evolutive layer, on each figure the
classic M3GP median appears as a dotted line
(fitness to beat). The no elitism variants show the
erratic behavior produced by not applying elitism
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Fig. 19. Tower problem with Same Resources that
classic M3GP, testing fitness reached by the end of each
evolutive layer in range of max-median-min, dotted line
represents the best median of classic M3GP
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Fig. 18. Tower problem with More Resources that
classic M3GP, training fitness reached by the end of each

evolutive layer in range of max-median-min, dotted line
represents the best median of classic M3GP

where layer restarts most of the time with a worse
fithess, on the other hand elitism provides stable
improvement of fitness see Fig 20, improving
over the median even the max, median and min
values are below the goal (remembering that for
regression lower values is better). The high
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Fig. 20. Yacht problem with More Resources than classic
M3GP but without elitism between layers. Testing fitness
reached by the end of each evolutive layer in range of
max-median-min, dotted line represents the best median
of classic M3GP

overfitting can be seen in Fig 22, a part of the max
values were cut off to make visible the median and
min values.
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Fig. 21. Yacht problem with Same Resources than
classic M3GP but with elitism between layers. Testing
fitness reached by the end of each evolutive layer in
range of max-median-min, dotted line represents the
best median of classic M3GP
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Fig. 22. Yacht problem with Same Resources as

classic M3GP, with elitism between layers, testing fitness
reached by the end of each evolutive layer in range of
max-median-min, dotted line represents the best median
of classic M3GP

7 Conclusions

7.1 Summary

The presented approach offers a way to improve
classification and regression accuracy without

Table 7. Nemenyi statistical test for training on the
heart problem: "Equal” means that the distributions of
solutions are not significantly different (with an alpha
of 0.05); ”Not” indicates that the distributions are
significantly different; and "Not Applicable” (NA)

Train Heart M3GP M3GP M3GP M3GP M3GP
NE NE SR MR
SR MR
M3GP NA  Not Equal Equal Equal
M3GP NE SR NA Not Not Not
M3GP NE MR NA Equal Not
M3GP SR NA Equal
M3GP MR NA
Table 8. Nemenyi statistical test for testing on the

heart problem: "Equal” means that the distributions of
solutions are not significantly different (with an alpha
of 0.05); ”Not” indicates that the distributions are
significantly different; and "Not Applicable” (NA)

Test Heart M3GP M3GP M3GP M3GP M3GP
NE NE SR MR
SR MR

M3GP NA Not  Equal Equal Equal

M3GP NE SR NA Not Not Not

M3GP NE MR NA Equal Not

M3GP SR NA Equal

M3GP MR NA

changing any settings of existing methods; the
improvement comes from introducing an evolutive
layer for feature construction, providing a new
learning structure where the induction of features
built upon each layer creates further opportunities
for improvement.

The new structure can operate with the same
resources as classic M3GP to achieve a good
solution; however, allocating more resources
increases both solution quality and complexity.

The variant without elitism shows a loss of
fitness at each layer change by starting a new
layer population with improved features from the
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Table 9. Nemenyi statistical test for training on the
MCD3 problem: "Equal” means that the distributions of
solutions are not significantly different (with an alpha
of 0.05); ”Not” indicates that the distributions are
significantly different; and "Not Applicable” (NA)

Table 11. Nemenyi statistical test for training on the
Tower problem: "Equal” means that the distributions of
solutions are not significantly different (with an alpha
of 0.05); ”Not” indicates that the distributions are
significantly different; and "Not Applicable” (NA)

Train MCD3 M3GP M3GP M3GP M3GP M3GP
NE NE SR MR

Train Tower M3GP M3GP M3GP M3GP M3GP

NE NE SR MR

SR MR SR MR
M3GP NA Not Equal Equal Equal M3GP NA Not Not Not Not
M3GP NE SR NA  Not Not Not M3GP NE SR NA  Equal Not Not
M3GP NE MR NA  Equal Equal M3GP NE MR NA  Not Not
M3GP SR NA  Equal M3GP SR NA  Equal
M3GP MR NA M3GP MR NA

Table 10. Nemenyi statistical test for testing on the
MCD3 problem: "Equal” means that the distributions of
solutions are not significantly different (with an alpha
of 0.05); ”Not” indicates that the distributions are
significantly different; and "Not Applicable” (NA)

Test MCD3 M3GP M3GP M3GP M3GP M3GP
NE NE SR MR

SR MR
M3GP NA Equal Equal Equal Not
M3GP NE SR NA  Equal Equal Not
M3GP NE MR NA Equal Equal
M3GP SR NA  Equal
M3GP MR NA

previous layer, causing the loss of the best
individual between layers.

The benefits of this configuration allow the
search for new features to restart, reducing solution
complexity and resource usage—in other words,
minimizing the bloating effect through lower elitism
pressure. Overall fitness is lower, however, without
improvement compared to classic M3GP.

For the classification problems the results
present small improvement overall, but still
significant by reaching higher results (MCDS3 in
training and Heart in testing) than running M3GP
without evolutive layers. Another detail is the
number of features is between 5 and 12, it might
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Table 12. Nemenyi statistical test for testing on the
Tower problem: "Equal” means that the distributions of
solutions are not significantly different (with an alpha
of 0.05); ”Not” indicates that the distributions are
significantly different; and "Not Applicable” (NA)

Test Tower M3GP M3GP M3GP M3GP M3GP

NE NE SR MR

SR MR
M3GP NA Not Not Equal Equal
M3GP NE SR NA  Equal Not Not
M3GP NE MR NA  Not Not
M3GP SR NA Equal
M3GP MR NA

look small considering that 50 layers of building
features were needed to reach that small number,
in the end the hidden layers take many more
feature to build upon to reach the last layer, but
in the end any layer can be transformed and
optimize the search for a better solution. The
node count is significantly higher which impacts
readability and increases the overall resources
needed for improvement.

In the regression problems, training fitness of
the best solution (maximum, median and minimum)
shows a tendency of decreasing the error over
higher layer bypassing the classic M3GP fitness
(goal to beat), the testing result shows a continual
tendency of improvement until reaching a point of



ISSN 2007-9737

Evolutive Layers In M3GP Basis For Symbolic Deep Learning Models 1437

Table 13. Nemenyi statistical test for training on the
Yacht problem: "Equal” means that the distributions of
solutions are not significantly different (with an alpha
of 0.05); ”Not” indicates that the distributions are
significantly different; and "Not Applicable” (NA)

Train Yacht M3GP M3GP M3GP M3GP M3GP
NE NE SR MR
SR MR

M3GP NA Not Not Not Not

M3GP NE SR NA Equal Not  Not

M3GP NE MR NA Not  Not

M3GP SR NA Equal

M3GP MR NA

Table 14. Nemenyi statistical test for testing on the
Yacht problem: "Equal” means that the distributions of
solutions are not significantly different (with an alpha
of 0.05); ”Not” indicates that the distributions are
significantly different; and "Not Applicable” (NA)

Test Yacht M3GP M3GP M3GP M3GP M3GP
NE NE SR MR
SR MR

M3GP NA  Equal Equal Not Not

M3GP NE SR NA  Equal Not Not

M3GP NE MR NA  Not Not

M3GP SR NA Equal

M3GP MR NA

over fitting. Let’'s remember that no elitist variant
don’t present this effect, so a deeper layer provides
improvement in regression along with over fitting.

Finally, the presented real world problems in this
article are from different domains, M3GP is able
to find a transformation to ease learning load on
the classification and regression methods, making
the domain not a factor for improvement in the
evolutive layer for feature improvement search of
more favorable space.

7.2 Practical Implications

Overall, one remark needs to be addressed for
Tower: classic M3GP is unable to improve training

and testing, and the same occurs with other
state-of-the-art algorithms [18]. This remarkable
improvement raises a question about problem
difficulty; for example, the classification problems
are almost solved by reaching accuracies between
95 and 99, pushing elitist variants towards
overfitting when nearing 100 accuracy. Something
to keep in mind is that each layer alone constitutes
a solution, and we can utilize any of these layers
individually before overfitting begins to appear.

If resources or computational time present a
problem, the layer configuration can be predefined
by the user, utilizing the previous version of M3GP,
which is M2GP [6], where the number of features
at the root node is defined at the beginning of
the evolutionary process. In this way, predefined
evolutionary layers can be utilized, limiting the
complexity of the symbolic model.

Another recommendation is based on Nemenyi’s
statistical analysis, which shows no significant
difference between running M3GP with evolution-
ary layers using the same resources as classic
M3GP and increasing the resources to perform
more evaluations.

7.3 Future Work

For classification, a different method for class
distance must be implemented, Mahalanobis
works great with classic M3GP but fall short in
improving the new variants, or combine different
methods in each layer (as activation function
in neuronal networks) to improve evolutive layer
effect.

Another development will be feature analysis
and tree pruning to reduce the incremental impact
of feature size on deeper layers. Also utilizing
different learning methods in predefined evolutive
layers to find a synergy between methodologies.

Lastly the implantation of transfer learning
between layers [16] to allow shortcuts in the
learning process.
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