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Abstract. Artificial Intelligence and Computer Vision 

have revolutionized Precision Agriculture, enabling 
automated crop monitoring. This study proposes a 
model based on Neural Networks to classify soil pH in 
Stevia rebaudiana Bertoni crops, optimizing agricultural 
management and crop sustainability. To achieve this, 
Stevia images were processed using data augmentation 
techniques, extracting color features in RGB and 
hexadecimal formats. A supervised Artificial Neural 
Network  was then trained to classify soil pH into acidic, 
optimal, and alkaline categories. The proposed model, 
StePHVIA, achieved 99% accuracy, outperforming 
pretrained architectures such as MobileNetV2 (97.38%) 
and ResNet-50 (76.38%). The evaluation was 
conducted using metrics such as Matthews Correlation 
Coefficient, accuracy, recall, and F1-score. These 
results confirm the effectiveness of Computer Vision and 
Deep Learning  in Precision Agriculture, providing a real 
time and low cost alternative for soil monitoring. 
StePHVIA facilitates the early detection of soil 
imbalances, optimizing fertilizer application and 
improving Stevia crop productivity. 

Keywords. Artificial Intelligence, computer vision, 

neural networks, precision agriculture, stevia. 

1 Introduction 

Artificial Intelligence (AI) has become increasingly 
important in agriculture by providing innovative 
tools to optimize production through data collection 
and analysis. Recent research has demonstrated 
that AI enhances precision in crop management 
and decision making efficiency by using machine 

learning (ML) algorithms and predictive analytics to 
assess plant health and predict resource demand 
[1, 2]. 

According to specialized literature [3], AI is 
defined as the capability of computational systems 
to perform tasks that traditionally require human 
intelligence, such as pattern recognition, decision 
making, and autonomous learning from data. 
Within this framework, Deep Learning (DL) 
algorithms enable machines to "learn" 
automatically from large volumes of data without 
the need for explicit programming for each task [4]. 
Similarly, predictive analytics employs historical 
data and mathematical models to anticipate future 
outcomes, which is particularly useful in agriculture 
for forecasting crop nutrient requirements and 
optimizing farm management [5]. 

Among the most widely used techniques in IA 
are Artificial Neural Network (ANN) [6], which have 
proven highly effective in various agricultural 
applications, such as detecting crop issues [7], 
classifying healthy and diseased plants [8], 
predicting crop yield [9], and optimizing the use of 
essential resources such as water [10] and 
fertilizers [11]. These characteristics make ANNs 
an essential tool in Precision Agriculture (PA), 
where improving efficiency and productivity is 
crucial to addressing the sector’s 
current challenges. 

A particularly relevant application of AI in 
agriculture is Computer Vision (CV), a technology 
that enables the precise identification of plant 
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issues through automated image analysis. Recent 
studies have demonstrated the effectiveness of CV 
in the early detection of crop alterations, facilitating 
the implementation of preventive and corrective 
strategies to minimize production losses 
[12,13,14]. According to [15], CV can assess visual 
attributes such as color, size, and leaf morphology, 
allowing for highly reliable diagnoses of plant 
physiological conditions and the detection of 
potential developmental anomalies. 

In this study, the selected crop is Stevia (Stevia 
rebaudiana Bertoni), a plant widely recognized for 
its leaves' high content of steviol glycosides (SG). 
These compounds serve as natural, calorie-free 
sweeteners and are safe for consumption by both 
children and adults. Native to South America, this 
species is now cultivated in various regions 
worldwide due to its remarkable adaptability to 
different climatic conditions, attributed to its high 
genetic variability. In its natural environment, it 
grows as a perennial plant; however, in colder 
climates, it behaves as an annual species. Genetic 
improvement efforts for Stevia focus on developing 
varieties with increased biomass production, 
resistance to environmental changes, and, most 
importantly, higher concentrations of secondary 
metabolites [16]. 

From a technological perspective, the most 
valuable compounds in Stevia rebaudiana are 

SGs, which are responsible for its characteristic 
sweetness. These include stevioside, 
rebaudiosides A, B, C, D, E, and F, dulcoside A, 
and steviolbioside. According to [17], the most 
common SGs are stevioside and rebaudiosides A 
and C, while the others are present in significantly 
lower concentrations. 

The production process of Stevia begins with 
the selection and planting of seeds or seedlings in 
soils that meet the optimal edaphoclimatic 
conditions for its development. Throughout its 
growth cycle, the plant requires a balanced nutrient 
supply and continuous soil pH monitoring to 
prevent mineral deficiencies or toxicities that could 
compromise its growth [18]. 

One of the main Stevia producers in Colima, 
Mexico is Rancho Tajeli (19.2370789, -
103.6769232), a family owned business founded in 
2015 in the municipality of Cuauhtémoc (Figure 1). 
Specializing in both soil and greenhouse 
cultivation, this company benefits from optimal 
agroclimatic conditions. 

As plants reach physiological maturity, their 
leaves are harvested, serving as the primary 
source of SG, the compounds responsible for their 
characteristic sweetness. The harvested leaves 
are then subjected to a drying process, which can 
be carried out through natural sun drying or using 
industrial dryers, depending on environmental 
conditions and available infrastructure. After 
dehydration, the dried leaves undergo extraction 
and purification processes, yielding refined SG 
concentrations in crystal or powder form, which are 
later used as natural sweeteners in the food 
industry [19]. 

To ensure efficient Stevia production, 
optimizing soil conditions is crucial, as the 
hydrogen potential (pH) plays a fundamental role 
in the availability of essential nutrients. The 
presence of micronutrients such as iron, zinc, 
magnesium, and boron is critical for various 
physiological functions of the plant, including 
photosynthesis and the synthesis of secondary 
metabolites. However, the availability of these 
elements is directly influenced by soil pH. Values 
outside the optimal range can alter nutrient 
absorption, leading to adverse effects on plant 
development and SG production [20]. 

In acidic soils (below pH 5.5), reduced calcium 
and magnesium absorption has been reported, 

 

Fig. 1. Rancho Tajeli 
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leading to nutrient deficiency symptoms such as 
leaf yellowing due to iron chlorosis . Additionally, 
soil acidity can cause aluminum and manganese 
toxicity, directly affecting plant physiology and 
reducing yield. In contrast, in alkaline soils (above 
pH 7.5), the absorption of micronutrients such as 
iron and zinc can be severely impaired, limiting 
chlorophyll biosynthesis and, consequently, 
Stevia's vegetative development. These conditions 
can visually manifest as brownish tones or 
necrosis along leaf margins, indicating critical 
nutrient deficiencies that compromise crop quality 
and productivity [20]. 

Given the impact of soil pH on Stevia 
physiology and its production of sweetening 
compounds, developing technological tools for 
continuous monitoring is essential. In this context, 
AI and CV applications represent an innovative 
and efficient alternative for classifying and 
predicting soil pH levels in agricultural settings. 
The combination of advanced image processing 
techniques with ANN models enables the 
identification of leaf coloration patterns and their 
correlation with pH values, facilitating the 
implementation of data driven agronomic 
strategies [21]. 

The integration of CV and ANN in agriculture 
represents an innovative solution to optimize 
resource use, enhance sustainability, and address 
current challenges in agricultural production. This 
approach not only enables the monitoring of key 
parameters such as soil pH and leaf physical 
characteristics but also facilitates the automatic 
classification of Stevia crop health into acidic, 
optimal, and alkaline categories. By leveraging this 
technology, crop quality is improved by detecting 
and correcting issues before they negatively 
impact production, providing valuable information 

to maximize yield and ensure the sustainability of 
a globally significant crop. 

The hypothesis proposed in this study is that 
the combination of CV and ANN will allow for high 
precision classification of soil pH levels using 
statistically significant metrics to evaluate model 
performance. These metrics include Matthews 
Correlation Coefficient (MCC), which provides a 
balanced measure of classifier performance, as 
well as accuracy, recall, and F1-score, offering a 
more comprehensive analysis of the system's 
effectiveness. To further validate the model, a 
Hold-Out method is applied, where the dataset is 
split into training and testing subsets to assess 
generalization performance and avoid 
overfitting [22, 23, 24]. 

Several studies exploring the use of advanced 
technologies in agriculture have been reviewed, 
and their results are presented in Table 1. These 
studies highlight the application of AI tools for 
resource optimization and agricultural productivity 
enhancement, reinforcing AI’s role in the digital 
transformation of the agrifood sector 

Finally, it is important to highlight that the 
previous studies presented in Table 1 have 
achieved significant results in various applications 
of AI in agriculture. However, none of them have 
specifically focused on evaluating soil pH in Stevia 
crops using ANN and CV. This gap in the literature 
underscores the relevance and novelty of the 
present research, which proposes an innovative 
solution for soil pH monitoring in Stevia cultivation 
using ANN and CV. 

This comprehensive approach not only 
optimizes Stevia production but also provides 
advanced technological tools to farmers, enabling 
them to address the challenges of modern 
agriculture with greater precision and efficiency. 
The system's ability to generate accurate 

Table 1. Related works 

Reference Crop Methodology Accuracy Results Observations 

[25] Cob CV and deep learning for 
disease detection 

92% Uses drone images to monitor crop health 
in real time. 

[26] Wheat ANN for yield prediction 88% Focused on optimizing water use through 
moisture sensors. 

[27] Potato Disease classification using 
ANN 

95% Combines multispectral images with 
convolutional ANNs. 

[28] Tomato Nutrient deficiency detection 
with CV 

90% The system identifies leaf color changes to 
predict nutrient issues. 

[29] Soybean CV and ANN for growth 
monitoring 

93% Uses high resolution cameras to capture 
detailed images of plant growth. 
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predictions minimizes the risks associated with soil 
condition fluctuations, maximizing economic, 
social, and environmental benefits. 

2. Materials and Methodology 

The proposed solution, as shown in Figure 2, 
utilizes a Wi-Fi hydroponics kit  [30] to automate 
the monitoring and control of hydroponic systems 
through the ThingSpeak cloud platform. The kit 
collects data from sensors measuring temperature, 
pH, electrical conductivity, and nutrient levels 
essential for optimal plant growth. 

The collected data serves as input for the 
Neural Network (NN), which, during training, 
adjusts its parameters using optimization 
algorithms to minimize prediction errors. After 
training, the model is evaluated using validation 
data, and parameters are fine tuned as needed to 
improve accuracy and ensure reliable predictions. 
This device enables precise soil pH measurement, 
a critical factor for optimizing plant development. 

The data collected by the sensor serves as 
input for training an ANN, which adjusts its 
parameters through optimization algorithms to 
minimize prediction errors. The model is then 
validated using an independent dataset, refining its 
parameters as necessary to enhance accuracy 
and ensure reliable predictions. 

2.1 Key Parameter 

Soil pH was selected as the primary parameter for 
assessing Stevia health due to its direct impact on 

the availability of essential nutrients. According to 
[5], an optimal pH range of 5.5 to 7.0 maintains a 
balanced nutrient supply, promoting healthy 
plant development. 

Values outside this range can compromise 
nutrient absorption, affecting SG production and, 
consequently, crop quality: 

 Acidic soils (pH < 5.5): Cause iron and 
magnesium deficiency, leading to leaf 
chlorosis (yellowing) and 
reduced photosynthesis. 

 Alkaline soils (pH > 7.5): Promote toxic 
accumulation of salts and micronutrients, 
potentially causing leaf necrosis (brown or 
burnt tones) and disrupting plant 
metabolic processes. 

These adverse effects on crop health are 
summarized in Table 2. 

2.2 Data Acquisition 

For soil pH measurement, the Atlas Scientific Wi-
Fi hydroponics kit (Fig. 3) was selected, enabling 
remote monitoring and control of hydroponic 
systems. This system uses an Adafruit HUZZAH32 
CPU, programmed via Arduino IDE, to upload data 
to ThingSpeak, a cloud platform. Its selection was 
based on several technological 
advantages, including: 

 High sensitivity and accuracy 
in measurements. 

 pH measurement range from 0 to 14 with a 
resolution of 0.01 pH. 

 Rapid response, allowing real time 
data acquisition. 

 Data visualization on both PC and mobile 
devices, ensuring efficient remote monitoring. 

Compared to traditional methods and 
conventional sensors, this device excels in 
durability, reliability, and adaptability to harsh 
agricultural conditions. Its integration with AI and 
CV tools ensures the acquisition of high quality 
data for soil pH analysis and prediction, even in 
hard to reach locations such as Rancho Tajeli. 

 
Fig. 2. Proposed solution 

Table 2. Key parameter 

Parameter Acidic Optimal Alkaline 

pH <5.5 5.5-7.5 >7.5 
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In addition to pH monitoring, images of Stevia 
plants were captured at Rancho Tajeli, resulting in 
a dataset of 200 images for further 
analysis (Fig. 4).  

To ensure consistent lighting and standardized 
image size, a nikon D7500 camera was mounted 
inside a portable lightbox, as shown in Figure 5. 

The lightbox measures 60 × 60 × 70 cm and 
features a 28 lux led ring light at the top, ensuring 
controlled illumination for image acquisition. 

2.3 Image Preprocessing and Augmentation 

Data preprocessing is a fundamental stage in AI 
model development, particularly in CV and ANN 
applications. This step enhances data quality and 
optimizes model accuracy. As noted in [31], 
preprocessing includes normalization, cleaning, 
and data transformation to minimize noise 
and inconsistencies. 

For image analysis, advanced techniques such 
as rescaling, segmentation, and background 
removal were employed, which have proven 
effective in agricultural applications [32, 33, 34]. 
These techniques ensure that the model receives 
clear and consistent input, facilitating ML. 
According to [35], proper preprocessing in 
agricultural environments enhances complex 
pattern detection and improves classification 
accuracy for plant health assessment. 

2.4 Extraction of Color Data in Hexadecimal 
Format 

To extract hexadecimal color data from the 
captured images of Stevia plants (Fig. 6), a CV 
approach was implemented using the OpenCV 
library. This process involved converting images to 
the HSV (Hue, Saturation, Value) color space to 
facilitate the detection of the predominant green 
color in the leaves. 

The image processing workflow consisted of 
the following steps: 

1. Conversion to the HSV color space: This 
enabled more effective segmentation of the 
green color, following the methodology 
described in [36]. 

2. Definition of a specific color range: A threshold 
was established to identify green areas in the 
image. 

3. Creation of a binary mask: Pixels within the 
defined range were assigned a value of 1 
(white), while the rest were set to 0 (black). 

 

Fig. 3. Atlas Scientific Wi-Fi Hydroponics Kit 

 

Fig. 4. Example of 4 images of Stevia plants captured 

with the light box 

 

Fig. 5. Portable Lightbox 
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4. Application of the mask to the original image: 
This allowed isolation of the regions of interest, 
corresponding to Stevia plants. 

5. Contour detection: Green areas were identified 
by extracting contours, locating the region with 
the highest presence of green. 

6. Centroid calculation: The central point of each 
contour was determined for a more precise 
analysis. 

2.5 Data Augmentation via Rotation and 
Mirroring 

To enhance the model's generalization capability, 
data augmentation techniques (Fig. 7) were 
applied using the Pillow library. The following 
strategies were implemented: 

 Image Rotation: Each image was rotated in 
60° increments, generating six different 
rotated versions of each original sample. 

 Dataset Expansion: Starting from 200 original 
images, the rotation process produced 1,200 
images (200 original × 6 rotations). 

 Horizontal Mirroring: A horizontal reflection 
transformation was applied to each rotated 
image, effectively doubling the dataset size to 
2,400 images (1,200 rotated images × 2, 
including mirrored versions). This step further 
enriched the dataset by capturing symmetrical 
variations relevant to soil pH classification. 

The application of these techniques enhanced 
the model, allowing it to better adapt to different 
perspectives of Stevia plants and improve its 
performance in classifying the visual 
characteristics of the plants. To enhance the 
model’s generalization capabilities, Gaussian 
noise was introduced as a data augmentation 
technique. This method [38] perturbs the original 
data by adding small variations drawn from a 
normal distribution with mean zero and a standard 
deviation of 0.02. The augmentation process was 
applied to all relevant features, ensuring that the 
generated samples retained the overall distribution 
characteristics while introducing slight variations 
that help the model learn more robust patterns. As 
a result, the dataset was expanded to a total of 
7,590 samples through rotation, mirror, and 
Gaussian noise augmentation, applying a scaling 
factor of n to the original dataset size (2,400 × n ≈ 
7,590). This factor reflects the additional 
augmentation achieved through Gaussian noise, 
where each image in the 2,400 image dataset was, 
on average, expanded by n-1 additional 
variations [37]. 

2.6 Conversion and Representation of Color 
Data 

To achieve a compact representation of color 
information, the central pixel value of each image 
was selected and converted into hexadecimal 
format. These values were then transformed into a 
24-bit binary matrix, corresponding to the RGB 
(Red, Green, Blue) channels [39]. 

This transformation enabled an efficient data 
structure for processing by the ANN, facilitating the 
classification of soil pH into three categories: 

● Acidic, 

● Optimal, 

● Alkaline. 

By applying this approach, the model’s 
prediction accuracy for Stevia crop health was 
optimized, ensuring a reliable classification based 
on leaf color analysis. 

 

Fig. 6. Extraction of Color Data in Hexadecimal Format 
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2.7 Evaluation Metrics 

To assess the model’s performance, it is essential 
to select appropriate metrics that enable an 
objective interpretation and comparison of results.  

As stated in [40], classification models are 
typically evaluated using the following metrics: 
Precision, Recall (Sensitivity), F1-score and 
Accuracy. These metrics, defined in Equations (1) 

to (4), provide a comprehensive analysis of the 
model’s classification performance.  

2.7.1. Precision 

Precision (Eq. 1) is defined as the proportion of 
correct positive predictions among all instances 
identified as positive by the model.  

This metric evaluates the accuracy of positive 
predictions, which is particularly important in 
applications where false positives can have a 
significant impact, such as disease diagnosis and 
fraud detection [41]: 

Precision (P) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 , (1) 

where:  

 TP (True Positives): Correctly predicted 
positive cases. 

 FP (False Positives): Incorrectly predicted 
positive cases. 

2.7.2. Recall (Sensitivity) 

Recall (Eq. 2), also known as sensitivity or the true 
positive rate, evaluates the proportion of actual 
positive instances that were correctly identified by 
the model. This metric is crucial in scenarios where 
false negatives can have severe consequences, 
such as in security systems or disease 
detection [42]. 

Recall (R) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (2) 

where: 

 FN (False Negatives):  Incorrectly predicted 
negative cases. 

2.7.3. F1-Score  

The F1-score (Eq. 3) is the harmonic mean of 
precision and recall. It is especially useful when 
class imbalance exists, as it provides a balance 
between both metrics [43]: 

F1 − score =  2 ∗
𝑃 ∗ 𝑅

𝑃 + 𝑅
, (3) 

 

Fig. 7. Data Augmentation via Rotation and Mirroring 
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This indicator is valuable in applications where 
neither precision nor recall alone can be prioritized, 
but rather a balance between both is required. 

2.7.4. Accuracy 

Accuracy (Eq. 4) measures the overall proportion 
of correct predictions relative to the total number of 
analyzed instances. This metric is useful when 
classes are balanced, but it can be misleading in 
cases with class imbalances [44]: 

Accuracy =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
, (4) 

where: 

 TN (True Negatives): Correctly predicted 
negative cases. 

2.7.5. Confusion Matrix 

These metrics (precision, recall, f1-score and 
accuracy) are derived from the confusion matrix 
(Table 3), which categorizes the model’s 
predictions into four main groups:  

1. True Positives (TP): Correctly identified 
positive cases. 

2. False Positives (FP): Negative cases 
incorrectly classified as positive. 

3. True Negatives (TN): Correctly identified 
negative cases. 

4. False Negatives (FN): Positive cases 
incorrectly classified as negative. 

The confusion matrix provides a detailed 
summary of the model’s performance on a test 
dataset with known real labels [45]. Its analysis 
allows for an interpretation of prediction 
distribution, identifying how often the model 
classifies correctly and where errors occur. This 
tool is essential in classification model evaluation, 
as it enhances the understanding of prediction 
quality and helps detect potential biases in 

the model. 
Evaluation metrics derived from the confusion 

matrix have been widely implemented in CV and 
ANN classification studies. Precision and recall 
were leveraged to evaluate an agricultural disease 
classification system [46], the F1-score was 
applied to benchmark the effectiveness of different 
ANN architectures for medical image classification 
[47], and accuracy was employed to assess object 
detection models in aerial images [48]. 

2.7.6. Matthews Correlation Coefficient  

Additionally, MCC, defined in Equation (5), is 
employed as a complementary metric to evaluate 
model performance. According to [49], MCC is a 
statistically reliable metric that provides a balanced 
assessment of model quality.  

This formula extends the MCC for multiclass 
classification by incorporating information from all 
confusion matrix elements (Table 4), providing a 
balanced evaluation even in the presence of 
class imbalances. 

𝑀𝐶𝐶

=
∑𝑘∑𝑙∑𝑚𝐶𝑘𝑘𝐶𝑙𝑚 − 𝐶𝑘𝑙𝐶𝑚𝑘

√∑𝑘(∑𝑙𝐶𝑘𝑙)(∑𝑚, 𝑚 = 𝑘𝐶𝑘𝑚) ⋅ ∑𝑘(∑𝑙𝐶𝑙𝑘)(∑𝑚, 𝑚 = 𝑘𝐶𝑚𝑘)
, (5) 

where: 

 Ckk represents the diagonal elements of the 

confusion matrix (correctly classified instances 
for each class). 

 Ckl and Clk represents the misclassified 
instances, where class k was predicted as 
class l. 

 Clm and Cmk represent other off 

diagonal misclassifications. 

Unlike traditional metrics such as precision or 
accuracy, MCC accounts for class distribution in 
the dataset, making it particularly useful in 
scenarios with imbalanced classes. 

 An MCC close to +1 indicates a highly 
accurate model. 

 An MCC of 0 suggests random classification 
performance. 

Table 3. Confusion Matrix 

Actual values 

Predicted Values 

TN FN 

FP TP 
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 An MCC of -1 reflects completely incorrect 
classification, indicating a poorly 
performing model. 

By incorporating MCC into the model 
evaluation, a more precise and objective 
interpretation of overall performance is achieved. 
This ensures that the ANN not only classifies most 
cases correctly but also maintains a balanced 
performance across all categories in the 
analyzed problem. 

2.8 ANN Architecture 

The hyperparameters of the ANN were optimized 
using Particle Swarm Optimization (PSO) to 
determine the best configuration of layers, 
neurons, dropout rate, and activation function. 
Inspired by the collective behavior of swarms in 
nature, PSO iteratively adjusts candidate solutions 
based on their individual best positions (pbest) and 
the global best position (gbest), allowing for an 
efficient exploration of the hyperparameter space. 

This optimization process enhances 
convergence towards an optimal ANN architecture 
by balancing exploration and exploitation, reducing 
computational costs compared to exhaustive 
search methods. The effectiveness of PSO in 
optimizing neural networks has been 
demonstrated in various domains, including 
network security, power distribution, and intelligent 
transportation systems, where it has outperformed 
traditional tuning approaches in terms of accuracy 
and computational efficiency [50,51,52]. 

The optimization process (Table 5) allowed us 
to find the best combination of hyperparameters, 
resulting in an efficient and high-performance 
ANN, as demonstrated in previous studies on 
similar applications. 

2.8.1 Layers and Neurons 

The model architecture begins with an input layer, 
which receives the previously normalized features 
using StandardScaler. This normalization process 
ensures that each variable has a mean of 0 and a 
standard deviation of 1, facilitating training and 
preventing scaling issues in input values. This 
approach enhances generalization capability and 
improves classification accuracy, as demonstrated 
in previous studies on similar applications [53, 54, 
55]. 

The hidden layers consist of three levels with 
270 neurons. Each of these layers uses the 
Rectified Linear Unit (ReLU) activation function, 
widely recognized for its ability to handle non 
linearity and mitigate the vanishing gradient 
problem, promoting deep learning in the model. 

To enhance training stability and efficiency, 
Batch Normalization is applied after each hidden 
layer, a technique that reduces internal covariate 
shift and accelerates model convergence. 
Additionally, Dropout with a 30% rate is 
incorporated, preventing overfitting by randomly 
deactivating certain neurons during training, 
ensuring better generalization to unseen data. 

Finally, the output layer consists of three 
neurons, corresponding to each classification 
category (acidic, optimal, and alkaline). This layer 
employs the softmax activation function, which 
assigns a probability to each class, allowing the 
model to select the category with the 
highest confidence. 

2.8.2 Training 

The model is trained using the Adam optimizer, an 
algorithm that combines the advantages of 
Momentum and RMSprop, providing stability and 
fast convergence. This technique has proven to be 
efficient in multiclass classification tasks, making it 
suitable for this study [56,57]. 

The model was trained for 100 epochs, 
iteratively refining its weights to minimize the 
sparse categorical cross-entropy loss function. 
This function is particularly suitable for multiclass 
classification as it efficiently processes integer-
encoded labels [58]. 

Table 4. Confusion matrix used in MCC formula for 

multiclass classification 

 Predicted 
A 

Predicted 
B 

Predicted 
C 

Actual A Ckk Ckl Ckm 

Actual B Clk Ckk Clm 

Actual C Cmk Cml Ckk 
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2.8.3 Performance Evaluation 

To assess the model’s effectiveness, the Hold-Out 
methodology was implemented, a widely used 
supervised learning approach. The dataset, 
consisting of 7,590 samples, was generated using 
200 original images and enhanced through data 
augmentation techniques including rotation, 
mirroring, and Gaussian noise addition as 
mentioned in section 2.5 Data argumentation via 
rotation and mirroring. This ensures that the 
training set is robust and diverse, without altering 
the real distribution of the data. The final dataset 
consists of a combination of original and 
synthetically generated images. The data was split 
as follows: 

 80% for the training set (6,072 samples): 
Implemented to optimize model weights and 
improve generalization.  

 20% for the validation set (1,518 samples): 
Implemented to evaluate model performance 
on unseen data and prevent overfitting. 

To measure the model’s effectiveness, key 
evaluation metrics were employed to assess its 
predictive capability: 

 Accuracy: Reflects the percentage of correct 
predictions over the total number of 
evaluated samples. 

 MCC: Evaluates class balance, particularly 
useful in scenarios with imbalanced classes. 

The ANN architecture summarized in Table 6 
provides an overview of the proposed model. 

Table 5. PSO for Neural Network Hyperparameter Tuning 

Algorithm: PSO for Neural Network Hyperparameter Tuning 

Input: Number of particles (n_particles = 10), search space boundaries (bounds), max iterations (iters = 5). 

Search Space Boundaries: Hidden layers (1-5), neurons (64-512), dropout rate (0.1-0.5), activation function (ReLU or 

Tanh), optimizer (Adam, SGD, RMSProp, Adadelta, Adagrad), epochs (50, 100, 150). 

1. Initialization: Set swarm with random values within the defined bounds. 

2. Iterative Optimization: Repeat for iters iterations: 

- Evaluate each particle’s position by training and testing an ANN with the selected hyperparameters. 

- Update personal best (pbest) if the new position yields a better performance. 

- Update global best (gbest) among all particles. 

- Adjust velocity and position using PSO Equation (6): 

v = w*v + c1 * r1 * (pbest - xid) + c2 * r2 * (gbest - xid)                                                                (6) 

where:  

 v is the velocity of the particle in dimension d. 

 xid is the position of the particle 

 w is the inertia weight, which controls the influence of the previous movement. 

 c1 and c2 are the learning coefficients that regulate the influence of pbest and gbest. 

 r1,r2 are random numbers in the range [0,1], introducing randomness in the exploration process. 

After updating velocity, the position update follows: 

position = position + velocity 

3. Convergence: After iterations, return the gbest hyperparameters with the best model performance. 

4. Optimal Configuration: The best ANN configuration found: 

- Number of hidden layers = 3 

- Number of neurons per layer = 270 neurons  

- Dropout rate = 30%  

- Activation function = ReLU for hidden layers, Softmax for the output layer 

- Optimizer = Adam 

- Number of epochs = 100 
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3 Results 

As part of the results analysis, a Comma 
Separated Values (CSV) file was generated using 
images captured from Stevia plants at Rancho 
Tajeli and pH values obtained through a portable 
soil detector. The dataset consists of 200 images, 
classified into three categories: optimal, acidic, 
and  alkaline. 

Additionally, descriptive statistics, such as 
mean, median, mode, and standard deviation, 
were computed to evaluate the distribution and 
variability of the recorded soil pH values. 

3.1 Statistical Analysis of Soil pH 

According to the results presented in Table 7, the 
analyzed soils exhibit a predominantly optimal pH, 
with a slight tendency toward acidity. The median 
and mode, both with a value of 6.36, indicate that 
most values cluster around this range, suggesting 
that this value is representative of the predominant 
soil conditions in the evaluated fields. 

However, the standard deviation of 1.55 reveals 
a significant dispersion in the values, indicating the 
presence of both acidic and alkaline conditions in 
different cultivation areas. This variability highlights 
the importance of implementing monitoring and 
adjustment strategies to ensure optimal growth 
conditions for Stevia. 

Table 6. StePHVIA Neural Network Model Algorithm 

Algorithm: Neural Network Model for pH Classification in Stevia Crops 

Input: Training data Xtrain ∈  Rn×3(RGB feature values), labels ytrain ∈  { 0, 1, 2} (pH categories: acidic, optimal, 

alkaline), learning rate α, number of epochs e,batch size s. 

Output: Trained neural network model and evaluation metrics (accuracy and MCC). 

1. Initialization: Define the sequential architecture 

- First hidden layer with 270 neurons, weights W1 ∈  R270×3, biases b1 ∈  R270 Batch Normalization, ReLU activation, 

and Dropout (30%). 

- Second hidden layer with 270 neurons, weights  W2 ∈  R270×270, biases b1 ∈  R270 Batch Normalization, ReLU 

activation, and Dropout (30%). 

- Third hidden layer with 270 neurons, weights W3 ∈  R270×270, biases b1 ∈  R270 Batch 

Normalization, ReLU activation, and Dropout (30%). 

-Output layer with 3 neurons, weights Wo ∈  R3×270, biases bo ∈  R3, and softmax activation function. 

2. Training: For each epoch i from 1 to e=100: 

- Shuffle Xtrain y and ytrain. Divide into batches of size s. 

For each batch: 

1. Compute forward propagation: 

Z1 = W1X + b1, A1 = ReLU(BatchNorm(Z1)). 

Z2 = W2A1 + b2, A2 = ReLU(BatchNorm(Z2)). 

Z3 = W3A2 + b3, A3 = ReLU(BatchNorm(Z3)). 

Zo = WoA3 + bo, Ao = softmax(Zo). 

2. Compute the loss L using sparse categorical crossentropy sparse categorical crossentropy: 

L = − 1ss∑i=1
3∑j=1yij log(Aoj). 

3. Backpropagation and parameter update using Adam. 

4. Validation: Evaluate on Xval to obtain: 

-Accuracy (Eq. 4) 

- Matthews Correlation Coefficient (Eq. 5) 
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3.2 RGB Color Extraction and Processing 

The generated CSV file also contains the RGB 
color percentages for each image, along with the 
average of these values in hexadecimal format. 
This data allows the ANN to process and adjust its 
weights effectively. 

For each image, the system calculates the 
percentage of each color channel RGB relative to 
the total number of pixels in the image. These 
values are then converted into hexadecimal codes, 
facilitating interpretation and processing within 
the ANN. 

Finally, the program stores the image name, 
RGB channel values, and their hexadecimal 
representation in the CSV file. 

3.3 Category Labeling: Acidic, Optimal, and 
Alkaline 

To classify the leaf samples based on their RGB 
characteristics, the K-means clustering algorithm 
was applied. This unsupervised machine learning 
technique partitions data into k clusters by 
minimizing intra-cluster variance. K-means is 
efficient, easy to implement, and interpretable, 
making it suitable for tasks like this where data is 
unlabelled [59]. It works well with numerical and 
continuous features like RGB values and ensures 
that each cluster represents a homogeneous group 
of similar data. In this study, three clusters were 
defined, each representing a different category of 
soil pH based on leaf coloration. 

After obtaining the RGB values and converting 
them into hexadecimal codes, the samples were 
classified into three distinct categories: acidic, 
optimal, and alkaline (Fig. 8). This categorization is 
based on the dominant color components in 
each cluster: 

 Acidic Category: Characterized by a 
dominance of the red (R) and green (G) 
channels, leading to yellowish tones. The 
mean RGB values recorded for these samples 
were (98.99, 107.50, 51.39). 

 Alkaline Category: Exhibited lower intensity of 
the red (R) and green (G) channels, resulting 
in brownish or burnt tones, which may indicate 
nutrient deficiencies or salt accumulation. The 
mean RGB values for this category were 
(76.44, 83.12, 43.57). 

 Optimal Category: Defined by the highest 
intensity in the green (G) and red (R) channels, 
suggesting a healthy green color in the leaves. 
The mean RGB values recorded for this 
category were (117.52, 128.29, 63.80). 

These results establish a correlation between 
leaf colorimetry and soil pH, providing a key input 
for the development of AI based models aimed at 
automatically classifying the health status of 
Stevia crops. 

3.4 Training Results of the StePHVIA Model 

Figures 9 and 10 presents the evolution of 
accuracy and loss over the 100 training epochs of 

 
Fig. 8 .Clustering of RGB Colors (Percentages) 

 

Table 7. Statistical measuring 

Statistical Measuring Value 

Mean  6.09 

Median  6.36 

Mode  6.36 

Standard Deviation 1.55 
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the StePHVIA model. A stable trend and a 
progressive improvement in performance were 
observed in both the training and 
validation datasets. 

3.4.1 Accuracy per Epoch 

The evolution of accuracy during training is 
illustrated in Figure 9. A rapid increase is evident 
in the first 20 epochs, followed by stabilization 
around 99%. Validation accuracy follows a similar 
pattern, remaining slightly below training accuracy, 
indicating that the model generalizes well with no 
significant signs of overfitting. 

3.4.2 Loss per Epoch 

As shown in Figure 10, the loss function behavior 
is observed throughout training. In the initial 
iterations, a sharp decrease in training loss is 
observed, converging to a value close to 0.0185 in 
the final epochs. Validation loss, despite initial 
fluctuations, follows a downward trend, staying 
close to training loss, confirming the 
model’s stability. 

These results indicate that StePHVIA has 
achieved optimal performance, with 99% accuracy 
and low loss, demonstrating a high capacity to 
correctly classify the soil pH status in Stevia crops. 
The stability of the metrics and the convergence of 
training and validation values further reinforce the 
model's reliability in classification tasks. 

3.5 Confusion Matrix Results 

As demonstrated in Figure 11 presents the 
confusion matrix obtained during the evaluation of 
the StePHVIA model, providing a detailed 
representation of the model’s performance in 
classifying soil pH into three categories: acidic, 
optimal, and alkaline. 

Each cell in the matrix indicates the number of 
predictions made for each category in comparison 
with the actual values. The results show that the 
model exhibits a high level of accuracy, with 
predominant values along the main diagonal, 
indicating correct classification in most cases. 

 The first row shows that the model correctly 
classified 477 samples of optimal soils with 
no errors. 

 The second row indicates that out of 531 acidic 
soil samples, 528 were classified correctly, 
while 2 were misclassified as optimal and 1 as 
alkaline. 

 The third row reveals that the model correctly 
identified 495 alkaline soil samples, with a 
small number of errors, 15 were misclassified 
as acidic. 

The model’s performance in classifying optimal 
soils was perfect (100%), while errors in the acidic 
and alkaline categories were minimal, 
demonstrating a robust discrimination capability. 

 

Fig. 9 .Accuracy per Epochs 

 

Fig. 10 .Loss per Epochs 
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3.6 Model Comparison: MobileNetV2 vs. 
ResNet-50 vs. StePHVIA 

To evaluate the performance of the proposed 
StePHVIA model, a comparison was conducted 
with two pretrained neural network architectures: 
MobileNetV2 and ResNet-50. These models were 
selected based on their distinctive characteristics 
and applicability to image classification tasks under 
different computational constraints. All models 

were trained using the same dataset and under 
similar conditions to ensure a fair evaluation. 

3.6.1 MobileNetV2 

MobileNetV2 [60] is a convolutional neural network 
(CNN) optimized for mobile devices and 
environments with hardware constraints. It utilizes 
depthwise separable convolutions and inverted 
residual blocks, which significantly reduce the 
number of parameters and computational cost 
without compromising accuracy. 

MobileNetV2 results: 

 Validation Accuracy: 97.38% 

 Validation Loss: 0.0199 

 MCC: 0.97 

 Metric Report: 
○ Macro Average Precision: 97% 
○ Macro Average Recall: 98% 
○ Macro Average F1-score: 97% 

MobileNetV2 demonstrated a good balance 
between precision and recall (Fig. 12), performing 
particularly well in the alkaline category, where it 
showed strong reliability in identifying this class 
with high precision and recall. 

3.6.2 ResNet-50 

ResNet-50 [61] is a 50 layer deep convolutional 
neural network based on residual blocks. Its 
architecture allows for training deeper networks 
without suffering from the vanishing gradient 
problem. However, due to its high complexity, it 
requires more data and greater computational 
power for optimal performance. 

ResNet-50 results: 

 Validation Accuracy: 76.38% 

 Validation Loss: 0.58 

 MCC: 0.65 

 Metric Report: 

○ Macro Average Precision: 76% 
○ Macro Average Recall: 74% 
○ Macro Average F1-score: 75% 

 

Fig 11. Confusion Matrix for StePHVIA model 

 

Fig. 12. Confusion Matrix (%) for MobilNetV2 model 
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ResNet-50 exhibited lower performance 
compared to MobileNetV2 (Fig. 13). Its metrics 
indicate generalization issues, with a reduced 
ability to distinguish between pH classes. The 
fluctuation in accuracy and recall suggests that the 
model may have overfitted the training data, failing 
to generalize effectively to unseen data. 

3.6.3 StePHVIA 

StePHVIA is a hybrid model that combines CV and 
an ANN. Instead of using convolutions to extract 
features, StePHVIA directly utilizes RGB values 

from Stevia plants and a supervised deep learning 
approach with augmented data. 

StePHVIA Results: 

 Validation Accuracy: 99% 

 Validation Loss: 0.0185 

 MCC: 0.9823 

 Metric Report: 
○ Macro Average Precision: 99% 
○ Macro Average Recall: 99% 
○ Macro Average F1-score: 99% 

The StePHVIA model demonstrated strong 
classification performance (Fig. 14), achieving high 
precision and recall across all categories. Notably, 
it performed exceptionally well in the Optimal and 
Alkaline categories, with 100% accuracy in both, 
while maintaining a high reliability in identifying the 
Acidic class. 

StePHVIA demonstrated exceptional 
performance, significantly surpassing 
MobileNetV2 and ResNet-50 in key evaluation 
metrics such as accuracy, recall, and the MCC. 
This model's combination of CV techniques and 
ANN proved to be a powerful approach, enabling it 
to accurately classify soil pH levels with 
remarkable precision.  

The model’s validation accuracy of 98.91% and 
recall of 99% reflect its ability to correctly identify 
the majority of relevant samples. Most notably, 
StePHVIA achieved an MCC of 0.9823, which 
underscores the model's high classification 
reliability. The MCC score, in particular, 
demonstrates that the model not only has high 
accuracy but also robust performance in 
distinguishing between the different classes, even 
in the case of imbalanced data. This exceptional 
performance is clearly shown in Table 8, 
highlighting StePHVIA’s superior classification 
capabilities compared to other architectures. 

In addition to its strong classification 
performance, StePHVIA also demonstrates 
remarkable computational efficiency. These 
results confirm the effectiveness of ANN and CV  in 
PA, providing a real time and low cost alternative 
for soil monitoring. Additionally, the comparison of 
training times highlights the model’s efficiency: 
while StePHVIA required only 50 seconds, 

 

Fig 13. Confusion Matrix (%) for ResNet-50 model 

 

Fig. 14. Confusion Matrix (%) for StePHVIA model 
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pretrained CNNs such as MobileNetV2 and 
ResNet-50 required 5 hours 35 minutes and 6 
hours 48 minutes, espectively. This significant 
reduction in computational cost makes StePHVIA 
a practical and scalable solution for resource 
limited environments. 

The tests were performed on a Central 
Processing Unit (CPU) with the following 
technical specifications: 

 Operating System: Windows 11 

 Host: Alienware Aurora R7 

 Processor: Intel Core i7-8700 

 RAM: 16 GB 

3.7 Web Application 

Additionally, a web application (Fig. 15) was 
implemented and hosted on a local server to 
facilitate the uploading and prediction of Stevia 
plant images. This tool provides an intuitive and 
accessible interface, allowing users to upload 
images of Stevia plants directly from their devices. 
The application processes these images using the 
previously trained NN model, classifies pH levels 
into acidic, optimal, and alkaline, and presents the 
results in a clear and visual manner. 

The functionality of this platform includes the 
automatic management of uploaded images, which 
are stored in a dedicated directory for further 
analysis. Furthermore, the application is scalable 
and can be deployed on a remote server in the 
future, expanding its reach and usefulness for 
farmers and other stakeholders interested in the 
evaluation of Stevia crops. 

4 Conclusions 

These results demonstrate the potential of the 
system as a practical and accurate tool for the 
continuous monitoring of soil health and Stevia 
plants. Its implementation enables farmers to 

quickly identify problematic areas, optimizing the 
use of fertilizers and soil amendments, and 
promoting a more efficient crop 
management strategy. 

In combination with ANN and CV, this model 
represents a significant advancement in PA, 
enabling data driven decision making and 
enhancing the productivity and sustainability of 
Stevia crops. 

The developed system not only reduces 
reliance on manual and costly methods, which are 
typically slower and less accurate, but also 
facilitates real time informed decision making. This 
significantly contributes to improving crop 
productivity and sustainability by providing precise 
data on soil pH status and Stevia plant health. 

The integration of ANN and CV enables a PA 
approach, enhancing farm management efficiency 
and supporting high quality production. StePHVIA 
stands out as an innovative tool, promoting 
sustainable and optimized farming practices. 

5 Discussion and Future Work 

The StePHVIA model demonstrated high reliability 
in classifying Stevia soil pH, outperforming 
MobileNetV2 and ResNet-50 with 98.81% 
accuracy and an MCC of 0.9823. Its RGB based 
approach proved computationally efficient, while 
augmentation techniques enhanced model 
generalization. However, further validation is 
needed, as the dataset was collected under 
controlled conditions. External factors like leaf 
damage, pests, and water stress could impact 
classification accuracy, requiring improved 
preprocessing techniques. 

To enhance scalability, future research will 
expand the dataset with images from diverse soil 
types and climates, incorporating field trials, to 
validate real-world performance. Addressing these 
aspects will establish StePHVIA as a key tool in 

Table 8. Comparison of the resutls 

Model Validation 
Accuracy(%) 

Recall (%) F1-Score(%) Validation 
Loss 

MCC Training 
Time 

MobileNetV2 97.38 97.00 97.00 0.0199 0.9722 2h 17m 
ResNet-50 76.38 74.00 75.00 0.058 0.65 6h 48m 
StePHVIA 98.81 99.00 99.00 0.0185 0.9823 50s 
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precision agriculture, enhancing efficiency and 
sustainability in Stevia cultivation. 
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