

Arduino Devices as A Platform for Execution of Machine
Learning Algorithms: A Brief Review and Experimentation

Juan José Flores Sedano, Hugo Estrada-Esquivel*, Alicia Martínez Rebollar

TecNM/Centro Nacional de Investigación y Desarrollo Tecnológico CENIDET,
Mexico

{m20ce084, hugo.ee, alicia.mr}@cenidet.tecnm.mx

Abstract. At present, the Internet of Things and Artificial

Intelligence are among the most relevant transformative
technologies for making a smart world a reality. In this
context, this paper explores the transformative synergy
between the Internet of Things (IoT) and Artificial
Intelligence (AI) by integrating AI algorithms into Arduino
devices. The literature review has demonstrated a
current need for optimization in implementing AI
algorithms on Arduino platforms. Through a empirical
literature review and practical experimentation, this
paper provides a comprehensive analysis of several
Arduino boards, including the Portenta H7 Lite, Arduino
Uno, Wemos D1 ESP8266, and Arduino Nano 33 BLE,
comparing their performance for AI projects. The
selection of an IoT board is emphasized based on
project-specific needs and budget considerations. The
research presented in this paper reveals the impact of
combining IoT, AI, and Arduino on reshaping
interactions with the connected world, paving the way for
intelligent systems enabled for decision-making and to
execute complex tasks

Keywords. Artificial intelligence, Arduino platform, IoT

1 Introduction

The convergence of Artificial Intelligence (AI) and
the Internet of Things (IoT) has emerged as a
pivotal field that aims to explore the synergy
between IoT and AI, fundamentally reshaping how
we interact with our environment. This research
work focuses on unlocking a realm of possibilities
for intelligent decision-making and automation [1]
by seamlessly integrating AI algorithms into
Arduino devices. As the IoT revolution, redefining
real-time connectivity between devices, sensors,
and systems, is complemented by the
convergence with AI, enhancing the learning and
adaptive capabilities of these machines. The
primary challenge lies in the effective

implementation of AI on Arduino devices, where
overcoming resource limitations such as memory
and processing capacity is paramount [2]. This
research not only conducts an empirical
examination of existing literature on AI
implementation in Arduino devices but also
proposes additional optimizations to address these
limitations and significantly enhance performance.
In order to support the theoretical review, a
comparative experimental study is conducted
using various Arduino boards, such as the Portenta
H7 Lite, Arduino Uno, Wemos D1 ESP8266, and
Arduino Nano 33 BLE [3]. This experimental
approach aims to evaluate the performance of
these boards in AI projects, specifically by
comparing their performance using the MNIST
dataset. The review emphasizes the importance of
choosing a suitable IoT board based on project
needs and budget constraints.

This work not only sheds light on how the
combination of IoT, AI, and Arduino is transforming
interactions with the connected world but also lays
the groundwork for intelligent systems capable of
decision-making and executing intricate tasks [4].
The paper is structured as follows: Section 2
presents the literature review of the
implementation of machine learning algorithms
into the Arduino infrastructure. Section 3 shows
experimentation of Arduino as a platform to
execute machine learning algorithms, and finally,
Section 4 details the conclusions and future work.

2 Literature Review

In this section, an analysis of research works
exploring the combination of Artificial Intelligence
and Arduino reveals a wide range of approaches

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1381–1390
doi: 10.13053/CyS-29-3-5900

ISSN 2007-9737

aiming to bring machine learning capabilities to
these low-power, resource-constrained devices.
The classic Arduino Uno has served as a popular
experimentation platform, despite its limited
memory and computing power. Various
researchers have implemented everything from
simple neural networks for pattern recognition [5]
to handwritten digit classifiers [6] on the Uno. While
achieving promising accuracies, they are severely
bottlenecked by the 2KB of RAM and limited CPU
performance, leading to impractical execution
times as model complexity increases.

To push the boundaries, researchers have
turned to more powerful Arduino boards, such as
the Due, with its 32-bit microcontroller and higher
memory capacity. This has enabled the
implementation of more complex neural network
architectures for applications like fish quality
detection from gas sensor data, achieving 80%
accuracy [7]. However, memory and computing
resources remain significant constraints.

The real game-changer has been the advent of
Tiny Machine Learning (TinyML) and model
optimization techniques. The Arduino Nano 33
BLE Sense, for example, is well-suited for TinyML.
Researchers have successfully deployed voice
and gesture recognition models on this device by
aggressively quantizing and pruning neural
networks [11]. However, these optimizations often
come at the cost of reduced model precision and
accuracy.

Work has also been done on using the Nano 33
BLE for ultrasonic signal classification to detect
transducer misalignment [12]. The multilayer
neural network model achieved top accuracy and
was implementable on this low-power edge device,
showing real-world potential. Nevertheless,
running intensive ML workloads can quickly drain
the battery of portable Arduino devices, and energy
efficiency is rarely optimized for.

Beyond just inference, pioneering work has
explored training models directly on IoT devices
through approaches combining federated learning
and transfer learning [13].

This enables on-device training without
compromising privacy or relying on the cloud,
although such capabilities are still limited.

Complementary work has also delved into
hybrid approaches where heavy lifting occurs in
the cloud, and simplified models are deployed on

the Arduino for data capturing, preprocessing, and
communication [14]. However, integrating different
software components and environments can itself
be challenging.

Implementing AI on microcontrollers comes
with its own set of challenges that existing
solutions only partially address - squeezing models
into limited memory, optimizing for inference
speed, managing energy consumption,
maintaining precision, and enabling on-device
training with privacy preservation.

Overall, the research demonstrates the
immense potential of taking AI to the edge,
empowering intelligent sensing and decision-
making capabilities in compact, low-cost IoT
devices. Observations highlight key applications
such as real-time vibration analysis [8],
biofeedback and data acquisition [7], patient health
monitoring [9], environmental sensing [10], and
even face mask detection during COVID-19 [15].

Table 1 focuses on studies conducted using the
Arduino Uno board, which has limited memory
(2KB RAM) and computing power. The studies
cover applications like pattern recognition using

Table 1. Literature review comparison on Arduino uno

devices

Referenc
e

Aplications Results Limitation
s

[5] C-Mantec
neural
network for
pattern
recognition

Exponential
execution
time,
reduces
precision

Memory
restrictions

[7] Real-time
biosignal
acquisition
with MATLAB

Real-time
visualizatio
n

Sampling
rate 10Hz

[8] Vibration
analysis with
wavelet and
LabVIEW

Real-time
processing

Requires
multiple
software,
sampling
rate
limitation.

[9] Vital signs
telemetry

Functional
and low
cost

Potential
temporary
fluctuations

[10] Environmenta
l monitor and
Android
application

Remote
viewing
working

Limited
sensors,
limited
sampling
rate

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1381–1390
doi: 10.13053/CyS-29-3-5900

Juan José Flores Sedano, Hugo Estrada-Esquivel, et al.1382

ISSN 2007-9737

neural networks [5], handwritten digit recognition
[6], biosignal acquisition [7], vibration analysis [8],
vital signs telemetry [9], and environmental
monitoring [10]. While some promising results
were achieved, such as 82% accuracy for digit
recognition, the key limitations were exponential
execution times, reduced precision, memory
restrictions, low sampling rates, and the need for
multiple software tools.

Table 2 summarizes research using the more
capable Arduino Nano 33 BLE board, which is
better suited for tiny machine learning (TinyML)
applications. The studies cover gesture and voice
recognition [11] and classifying transducer

misalignment [12] using ML algorithms. Though
functional models were developed, limitations
included restricted sampling rates, memory
constraints, and limited sensor capabilities.

Table 3 includes studies conducted on various
other Arduino boards or setups. It covers
applications like fish quality recognition using
neural networks [13], real-time face detection [14],
and on-board training of ML algorithms on IoT
devices [15]. While high accuracies were achieved
(up to 97.8% for face detection), the studies either
had limited applicability or did not mention any
specific limitations.

Analyzing existing works reveals a trend
where Arduino devices are primarily utilized for
data collection, with subsequent processing and
analysis occurring on external devices. While a few
studies showcase the direct implementation of
neural networks on Arduino infrastructure, the
predominant approach involves utilizing Arduino
as a data collector. However, important limitations
still exist- memory constraints, compute power
bottlenecks, trade-offs in model optimization,
energy efficiency issues, lack of scalable on-device
training, systems integration challenges, and the
need for more general, easily extensible solutions
across different AI problems and hardware.
Comprehensively addressing these challenges will
be crucial for AI to become truly ubiquitous on
Arduino and embedded devices. This insight
prompts the exploration of whether Arduino
devices alone can execute AI techniques in real-
time without relying on external servers or PCs.

Arduino boards, while versatile, face significant
limitations when implementing ML algorithms.
Their constrained RAM (often below 1MB), limited
processing power, and lack of dedicated AI
accelerators make them unsuitable for complex
deep learning tasks. Additionally, power
consumption and real-time execution challenges
limit their deployment in continuous AI-
driven applications.

3 Experimentation: Arduino as a
Platform for Implementing Machine
Learning Algorithms

The experimentation approach proposed in this
research work has the objective of comparing the

Table 2. Literature review comparison on Arduino nano

33 BLE devices

Reference Aplications Results Limitations

[11] Gesture and
voice
recognition
with TinyML

Functional
models of
keywords
and
gestures

Restricted
sampling
rate

[12] ML
algorithms
for
classifying
transducer
misalignment

Achieving
superior
classification
performance
metrics,
including
accuracy,
precision,
recall, and
confusion
matrices

Memory
restrictions,
Limited
sensors,

Table 3. Literature review comparison of other devices

Reference Applications Results Limitations

[13] neural
network for
fish quality
recognition

An 80%
success rate
was
achieved in
recognizing
the quality of
fish

Limited
applicability

[14] real-time face
detection
system

accuracy,
with a rate of
correctness
of up to
97.80%

No
limitations
are
mentioned

[15]

on-board
training of ML
algorithms on
IoT devices.

an accuracy
rate of
86.48% in
classification
and 0.0201
in
regression.

No
limitations
are
mentioned

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1381–1390
doi: 10.13053/CyS-29-3-5900

Arduino Devices as a Platform to Perform Machine Learning Algorithms: A Brief Review and Experimentation 1383

ISSN 2007-9737

performance of some of the most popular IoT
development boards available on the market. In
the experimentation it is tried to explain how these
boards, such as the Arduino Nano 33 BLE,
Portenta H7 Lite, Arduino Uno R3 and Wemos D1
ESP8266, address the challenge of classifying
handwritten digits using machine learning
techniques. To accomplish this task, the MNIST
dataset was used, which consists of thousands of
images of handwritten digits and their
respective labels.

In the experimentation, the behavior of each of
the Arduino boards was analyzed to execute
artificial intelligence tasks using the same
reference dataset. Each board has its own
strengths and limitations, and understanding how
they compare in the context of AI can be
instrumental in making informed decisions when
selecting the right platform for each project. The
Arduino Nano 33 BLE, the Portenta H7 Lite, the
Arduino Uno R3 and the Wemos D1 ESP8266 are
analyzed below.

In order to evaluate the performance of
classification models and each Arduino board, the
following techniques were implemented in the
Arduino boards: Convolutional Neural Networks
(CNN), Decision Trees, and Clustering with K-
Means. The chosen dataset for this analysis was
the well-known MNIST dataset, comprising 28x28
pixel black and white images, each labeled with a
corresponding digit. The researchers allocated
80% of the dataset for training purposes, reserving
the remaining 20% for testing and assessing model
accuracy [16].The selection of models and
hyperparameters was based on computational
constraints. CNNs were chosen for their
effectiveness in image recognition, while Decision
Trees and K-Means were included due to their
lower resource requirements. Parameters such as
the number of convolutional layers, tree depth, and
cluster numbers were adjusted to balance
performance and efficiency on each board.

Before running the machine learning algorithms
and comparing their performance on different
Arduino boards, it is essential to perform a
thorough exploration of the MNIST dataset that will
be used for experimentation. This data exploration
plays a critical role for several reasons: Deep
understanding of the data set: Exploration permits
to obtain a solid understanding of the

characteristics, structure, distributions and
patterns that can be found in the data. This is
essential to formulate realistic assumptions and
expectations about the performance of the models
and algorithms that will be applied later.

 Early problem detection: During exploration,
potential problems such as outliers, missing
data, biases, noise, or data inconsistencies
can be identified. Addressing these issues
early prevents them from propagating and
negatively affecting model performance.

 Informed selection of techniques and
preprocessing: Understanding the nature of
the data permits the selection of the most
appropriate machine learning techniques and
algorithms, as well as determine the
transformations or preprocessing necessary to
optimize performance.

 Establishing baselines: The results of data
exploration, such as summary statistics,
distributions, and visualizations, establish
important baselines for later evaluating and
comparing model performance.

 Analyzing existing works reveals a trend where
Arduino devices are primarily utilized for data
collection, with subsequent processing and
analysis occurring on external devices. While a few
studies showcase the direct implementation of
neural networks on Arduino infrastructure, the
predominant approach involves utilizing Arduino
as a data collector. However, important limitations
still exist- memory constraints, compute power
bottlenecks, trade-offs in model optimization,
energy efficiency issues, lack of scalable on-device
training, systems integration challenges, and the
need for more general, easily extensible solutions
across different AI problems and hardware.
Comprehensively addressing these challenges will
be crucial for AI to become truly ubiquitous on
Arduino and embedded devices. This insight
prompts the exploration of whether Arduino
devices alone can execute AI techniques in real-
time without relying on external servers or PCs

Identification of valuable insights: Visual and
quantitative exploration of data can reveal non-
obvious patterns, trends or relationships that could
be valuable to the modeling process and
interpretation of results. In the specific context of
this study, exhaustive exploration of the MNIST

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1381–1390
doi: 10.13053/CyS-29-3-5900

Juan José Flores Sedano, Hugo Estrada-Esquivel, et al.1384

ISSN 2007-9737

data set prior to experimentation on Arduino
boards is crucial for several reasons:

 Understand the statistical properties of
handwritten digit images and their labels,
which will inform the configuration and
expectations of classification models.

 Identify potential challenges or limitations that
could arise when implementing these models
on the restricted resources of Arduino boards,
such as image resolutions, pixel value ranges,
etc.

 Establish initial benchmarks and metrics to
evaluate the performance of algorithms in
terms of accuracy, memory usage, and other
relevant aspects.

 Achieve a visual understanding of the
variations, styles and patterns present in digit
images, which could influence the
performance of the models.

Data exploration is a critical step before
conducting experimentation, as it provides a solid
understanding of the data set, helps identify
potential problems, facilitates the selection of
appropriate techniques, and establishes crucial
benchmarks for subsequent evaluation of the
models. in a resource-constrained environment
like Arduino boards. The experimental approach
was consistent with the data exploration
methodology detailed in the referenced literature
[17]. The goal is to thoroughly understand a
dataset first through a mix of quantitative analysis
and visual inspection techniques before
developing models. This builds intuition, sets
modeling expectations, and allows detecting data
issues early. The data exploration process
provided a comprehensive understanding of the
MIST dataset. With no missing values and a
balanced digit distribution, the dataset appears
well-suited for training robust digit recognition
models. Insights gained from visualizing sample
images will inform subsequent analyses and
model development.

The following steps can be used to perform
data exploration:

 Loading the Dataset: The first step is to load
the image dataset and any associated labels
or outputs. For MNIST, this consists of 70,000
small 28x28 grayscale digit images, each with

a corresponding digit label from 0-9 indicating
which number it shows.

 Understanding Structure: Investigate general
metadata like the number of images, resolution
per image, data formats, and how labels are
encoded. This orients to key structural
aspects.

 Summarizing Statistics: Calculate summary
statistics per image and per class label when
available. These include basics like mean or
average pixel intensity, standard deviations
from the means, min and max values,
quantiles showing value distributions, etc. The
summarizing statistics of the MNIST dataset
can be seen in figures 1 and 2. 1 and 2. Figure
1 shows various statistics calculated for the full
set of 70,000 handwritten digit images from the
MNIST dataset. The first row with all values set
to zero corresponds to the statistical
summaries for missing data or null values.
Since there is no missing data in this set, all of
these cells are zeros. The following rows show
multiple summaries per variable or
characteristic:

○ The "count" row indicates the total count
of non-null values per column, in this case
70,000 for all columns.

○ "mean" shows the average intensity of
pixels per column over all images.

○ "std" is the standard deviation of pixel
intensities, a measure of how much the
values vary from the mean.

○ "min" and "max" show the minimum and
maximum intensity values in the entire
data set.

○ Rows like "25%", "50%", etc. are the
quantiles of the distribution, indicating that
25% of the values are below
that threshold.

○ The last row with only the total count
serves to verify that there is no
missing data.

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1381–1390
doi: 10.13053/CyS-29-3-5900

Arduino Devices as a Platform to Perform Machine Learning Algorithms: A Brief Review and Experimentation 1385

ISSN 2007-9737

Figure 2 complements the previous table by
showing additional columns with more statistics,
such as skewness, kurtosis for each variable, and

limits such as "range" which gives the interval
between minimum and maximum values.

Visualizing Samples: Plot a sample of original
images to get a visual sense of variability in styles,
rotations, scales, deformations and noise in the
data. This could expose limitations or challenges.
See figure 3.

Analyzing Distributions: Visualize the
distribution of pixel intensities across images via
plots like histograms and box plots, to see the full
range and typical values. Break this analysis down
by class label too. Look for imbalanced data or odd
distributions. See figure 4.

Detecting Outliers: Based on the distributions,
quantitative metrics to detect and flag outlier
images that are anomalous or especially noisy.
This could affect model training.

In the pursuit of comprehensively evaluating the
performance of classification models on diverse
Arduino boards, a systematic methodology was
diligently crafted, aligning with principles of data
exploration [18-19]. Each step of the
experimentation carried specific significance,
contributing to the robustness and depth of the
assessment. The following steps were carried out
to perform the experimentation on each Arduino
board and each of the machine
learning algorithms.

 Dataset Partitioning: The initial step involved
the meticulous partitioning of the MNIST
dataset, dedicating 80% for training and
reserving 20% for testing. This partitioning
strategy was pivotal to furnish a robust
evaluation of model performance, ensuring an
effective gauge of their generalization
capabilities.

 Model selection: the chosen models,
Convolutional Neural Networks (CNN),
Decision Trees, and K-Means Clustering
Algorithm, were selected due to their
relevance in classification tasks and distinct
approaches to pattern recognition within the
MNIST dataset. This step aimed at deploying
models representing diverse methodologies to
garner a comprehensive understanding of their
effectiveness.

 Arduino Board Implementation: Tailoring the
selected models for execution on specific
Arduino boards, including Arduino Uno R3,
Wemos D1 ESP8266, Arduino Nano 33 BLE,

Fig. 1. Summary statistics Dataset MNIST

Fig. 2.Continue Summary statistics Dataset MNIST

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1381–1390
doi: 10.13053/CyS-29-3-5900

Juan José Flores Sedano, Hugo Estrada-Esquivel, et al.1386

ISSN 2007-9737

and Portenta H7 Lite, was imperative.
Adapting the models to the unique constraints
and capabilities of each hardware
configuration allowed for a nuanced
assessment in real-world embedded systems
scenarios.

 Model Execution: The execution of models,
including Convolutional Neural Networks
(CNN), Decision Trees, and K-Means
Clustering Algorithm, was executed
meticulously on the designated Arduino
boards. This step provided practical insights
into the models' behavior, strengths, and
potential limitations when applied to
embedded systems.

 Accuracy Assessment: The accuracy
assessment, performed using the 20%
reserved test dataset, offered critical insights
into the models' ability to generalize and make
accurate predictions on previously unseen

data. This step was fundamental in
understanding the practical utility of the
models in real-world applications.

 Resource Utilization Analysis: Beyond
accuracy metrics, a detailed analysis of
resource utilization, encompassing RAM and
flash memory usage percentages on each
Arduino board, was conducted. This granular
examination aimed to ascertain how efficiently
each model harnessed available resources,
crucial for practical considerations in
embedded systems.

 Result Compilation and Analysis: The results,
consolidating accuracy metrics and resource
utilization percentages, were meticulously
compiled and analyzed. This final step
facilitated a comparative evaluation of the
models' effectiveness across different Arduino
boards, providing nuanced insights for
deploying AI applications in
embedded systems.

This structured and systematic approach
ensured not only a thorough exploration of the
models' performance but also provided valuable
context for their applicability in resource-
constrained environments.

4 Results of the Experimentation

This section aims to present and analyze the key
findings obtained from the comprehensive
experimental evaluation performed on various
Arduino boards. This section systematically
examines the performance metrics and resource
utilization characteristics exhibited by the machine
learning models (Convolutional Neural Networks,
Decision Trees, and K-Means Clustering) across
different Arduino platforms.

Model accuracy: The accuracy metric quantifies
the capability of a machine learning model to
correctly classify or predict instances within a
dataset. In this study, model accuracy serves as a
critical measure to assess the reliability and
effectiveness of the implemented algorithms on the
constrained Arduino environments.

The results indicate that the Portenta H7 Lite
board consistently outperforms other boards in
terms of model accuracy, making it a robust choice

Fig. 3.Continue Summary statistics Dataset MNIST

Fig. 4 .Distribution of digits MNIST dataset.

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1381–1390
doi: 10.13053/CyS-29-3-5900

Arduino Devices as a Platform to Perform Machine Learning Algorithms: A Brief Review and Experimentation 1387

ISSN 2007-9737

for deploying machine learning applications.
Among the evaluated models, the Convolutional
Neural Network (CNN) exhibits promising
accuracy, ranging from 87.3% on the Arduino Uno
R3 to an impressive 94.2% on the Portenta H7 Lite.
This trend underscores the efficacy of CNN models
in image classification tasks, even on resource-
constrained devices.

Resource utilization: Efficient resource
utilization is paramount when deploying machine
learning models on embedded systems with limited
computational capabilities and memory
constraints. This study meticulously analyses the
RAM and flash memory usage percentages
incurred by each model across the evaluated
Arduino boards. The results reveal varying
degrees of resource consumption among the
models and boards. For instance, the CNN model
exhibits higher RAM usage, ranging from 79.6% on
the Arduino Uno R3 to 71.8% on the Portenta H7
Lite. Conversely, the Decision Tree model
demonstrates relatively lower RAM requirements,
spanning from 38.9% to 51.4% across the boards.

Furthermore, an analysis of flash memory
usage uncovers the efficiency with which models
can be deployed on these embedded platforms.
The CNN model, while utilizing 72.4% of flash
memory on the Arduino Nano 33 BLE, showcases
optimal efficiency on the Portenta H7 Lite,
consuming only 82.1% of the available flash
storage. Table 4 provides a comprehensive
overview. Running ML models on low-power
devices like Arduino introduces significant energy
challenges. AI inference tasks increase power
draw, which can be a critical factor in battery-

operated IoT applications. Optimizations such as
quantization and model pruning can help reduce
power consumption but often come at the cost
of accuracy.

One notable observation is the trade-off
between model complexity and resource
utilization. While the Convolutional Neural Network
(CNN) model demonstrates superior accuracy, it
comes at the cost of higher RAM and flash memory
consumption across all Arduino boards. This trade-
off becomes particularly evident when comparing
the CNN model's resource demands to the more
lightweight Decision Tree and K-Means
Clustering models.

Interestingly, the Arduino Uno R3, despite
being one of the more budget-friendly and
resource-constrained boards, exhibited relatively
efficient resource utilization for specific models.
For instance, the Decision Tree model consumed
only 38.9% of RAM and 48.7% of flash memory on
this board, highlighting its potential for deploying
less computationally intensive algorithms in
resource-limited scenarios.

Another noteworthy observation is the
discrepancy in resource utilization patterns
between the Arduino Nano 33 BLE and the more
powerful Portenta H7 Lite board. While the Nano
33 BLE showcased respectable accuracy levels,
its resource consumption, particularly for the CNN
model, was significantly higher compared to the
Portenta H7 Lite. This discrepancy underscores
the impact of hardware specifications on model
performance and resource efficiency.

Furthermore, it is essential to consider the
specific application requirements and resource

Table 4. Results

Metric Model Arduino Uno Wemos d1 nano 33 ble H7 lite

Accuracy (%) CNN 87.3 89.8 92.5 94.2

K-means 65.5 68.4 72.2 78

Decision tree 86.5 88.7 91 92.3

Ram usage (%) CNN 79.6 65.3 58.2 71.8

K-means 85.6 69.8 63.5 78.2

Decision tree 38.9 42.3 45.8 51.4

Flash usage (%) CNN 92.3 68.9 72.4 82.1

K-means 73.8 52.1 57.2 64.5

Decision tree 48.7 54.8 58.6 61.2

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1381–1390
doi: 10.13053/CyS-29-3-5900

Juan José Flores Sedano, Hugo Estrada-Esquivel, et al.1388

ISSN 2007-9737

constraints when selecting an Arduino board and
machine learning model combination. For
example, in scenarios where memory footprint is a
critical concern, the Decision Tree or K-Means
Clustering models may be more suitable choices,
even if they sacrifice some accuracy compared to
the CNN model.

Interestingly, the results also revealed potential
optimization opportunities. For instance, the K-
Means Clustering model exhibited relatively low
resource utilization across all boards, suggesting
that there might be room for further optimization or
model compression techniques to reduce its
memory footprint further.

These observations highlight the intricate
interplay between model complexity, hardware
capabilities, and resource constraints in the
context of embedded machine learning systems.
Striking the right balance between performance,
accuracy, and resource efficiency requires careful
consideration of these trade-offs and a thorough
understanding of the application requirements and
hardware limitations.

The observed results can be attributed to the
hardware capabilities of each Arduino board. The
Portenta H7 Lite, featuring a more powerful
processor and greater memory, was able to
efficiently execute AI models with higher accuracy
and lower resource constraints. Meanwhile, the
Arduino Uno R3, with its limited computational
power, struggled to support complex models,
leading to reduced performance. The Nano 33 BLE
and Wemos D1 ESP8266 positioned themselves
as balanced alternatives, providing decent
accuracy with moderate resource usage. These
findings emphasize the importance of selecting
hardware that aligns with the computational
demands of AI applications in embedded systems.

5 Conclusions and Future Work

In conclusion, this work underscores the pivotal
role of integrating AI with IoT using Arduino
devices. Through a comprehensive survey and
experimentation, we have provided valuable
insights into the performance of different Arduino
boards in executing AI tasks. The comparative
analysis reveals a spectrum of options, from high-
performance but expensive boards like the

Portenta H7 Lite to budget-friendly alternatives like
the Arduino Uno. The Arduino Nano 33 BLE, with
its balance of affordability and features, emerges
as an ideal choice for AI enthusiasts. Future work
includes settling whether or not the Arduino
foundation is adequate to execute computer-based
intelligence procedures without the need to utilize
a PC or server, simply turning to the restricted
assets that the Arduino boards have. The aim is to
use AI techniques that allow the behavior of an
Arduino device to be analyzed in real time and
make decisions based on that behavior, such as
determining what data it is collecting,
encapsulating it and sending it to an IoT platform
such as FIWARE or Amazon Web Services,
facilitating the integration of Arduino devices to the
IoT. Also, as future work, we plan to add more
devices to the study, such as other Arduino
devices, ESP boards, or even Raspberry Pi, to
broaden the perspective and obtain a better
comparison.

 Acknowledgments

This work was supported by TecNM (México)
project 21640.25-P. The first author received a
CONACYT scholarship (1086749) for this
research.

References

1. Kasera, R. K., Gour, S., Acharjee, T. (2024).
A comprehensive survey on IoT and AI based
applications in different pre-harvest, during-
harvest and post-harvest activities of smart
agriculture. Computers and Electronics in
Agriculture, 216,
108522.https://doi.org/10.1016/j.compag.2023
.108 522.

2. Mansoor, S., Wani, O. A., Kumar, S. S.,
Popescu, S., Sharma, V., Sharma, A., ...
Chung, Y. S. (2024). Artificial intelligence and
IoT driven technologies for environmental
pollution monitoring and management.
Frontiers in Environmental Science, 12,
1336088.https://doi.org/10.3389/fenvs.2024.1
3360 88.

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1381–1390
doi: 10.13053/CyS-29-3-5900

Arduino Devices as a Platform to Perform Machine Learning Algorithms: A Brief Review and Experimentation 1389

ISSN 2007-9737

3. Grzesik, P., Mrozek, D. (2024). Combining
Machine Learning and Edge Computing:
Opportunities,Challenges,Platforms,Framewo
rks, andUseCases.Electronics,13(3),640.

4. Ortega-Zamorano, F., Subirats, J. L., Jerez,
J. M., Molina, I., Franco, L. (2013).
Implementation of theC-Mantec neural
network constructive algorithm in an arduino
UNO microcontroller. In Advances in
Computational Intelligence: 12th International
WorkConference onArtificialNeuralNetworks,
IWANN2013, Puerto de la Cruz, Tenerife,
Spain, June 12-14, 2013, Proceedings,Part
I12(pp.80-87).SpringerBerlin Heidelberg.

5. Izotov, Y. A., Velichko, A. A., Ivshin, A. A.,
Novitskiy, R. E. (2021). Recognition of
handwrittenMNIST digits on low-memory 2 Kb
RAMArduino board using LogNNet reservoir
neural network. In IOP Conference Series:
MaterialsScienceandEngineering
(Vol.1155,No. 1,p.012056). IOPPublishing.

6. Kasera, R. K., Gour, S., Acharjee, T. (2024).
A comprehensive survey on IoT and AI based
applications indifferentpre-harvest,during-
harvest and post-harvest activities of smart
agriculture. Computers and Electronics in
Agriculture, 216, 108522.

7. Rivai, M. ,Attamimi, M., Firdaus, M. H. (2019,
November). Fish quality recognition using
electrochemical gas sensor array and neural
network. 2019 International Conference on
Computer Engineering, Network, and
Intelligent Multimedia (CENIM) pp. 1-5. IEEE.

8. Jaber, A. A., Bicker, R. (2015). Real-time
wavelet analysis of vibration signals based on
Arduino-UNO and LabVIEW. International
Journal of Materials Science and Engineering,
3(1), 66-70.

9. Parihar, V. R., Tonge, A.Y. ,Ganorkar, P.D.
(2017). Heartbeat and temperature monitoring
system for remote patients using Arduino.
International Journal of Advanced Engineering
Research and Science, 4(5), 55-58.

10. Zafar, S., Miraj, G. ,Baloch ,R. ,Murtaza, D.,
Arshad, K. (2018). An IoT based real-time
environmental monitoring system using
Arduino and cloud service. Engineering,
Technology & Applied Science Research, 8(4),
3238-3242.

11. Prasanna, R., Kakarla, P. … Mohan, N.
(2022). Implementation of Tiny Machine
Learning Models On Arduino 33BLE For
Gesture And Speech Recognition. arXiv
preprint arXiv:2207.12866.

12. Brennan, D., Galvin, P. (2024). Evaluationofa
MachineLearningAlgorithmtoClassifyUltrasoni
c TransducerMisalignment andDeployment
Using TinyML.Sensors,24(2),560.

13. Simanjuntak, J. E. S., Khodra, M. L.,
Manullang, M. C. T. (2020, July). Design
Methods of detecting atrial fibrillation using the
recurrent neural network algorithm the Arduino
AD8232 ECGmodule. Iop conference
series:Earth And environmental science (Vol.
537, No. 1, p. 012022). IOPPublishing.

14. .Ficco, M. ,Guerriero ,A., Milite, E.,
Palmieri,F., Pietrantuono, R., Russo, S.
(2024). Federated learning for IoTdevices:
EnhancingTinyMLwith on-board training.
Information Fusion, 104, 102189.

15. Parker, G., Khan, M. (2016, July).Distributed
neural network: Dynamic learning via
backpropagation with hardware neurons using
arduino chips. In 2016 International Joint
Conference on Neural Networks (IJCNN) (pp.
206-212). IEEE.

16. Almufti, S.M.,Marqas, R. B., Nayef, Z.A.,
Mohamed, T. S. (2021). Real TimeFacemask
Detection with Arduino to Prevent COVID-19
Spreading. Qubahan Academic Journal, 1(2),
39-46.

17. Bruce, P., Bruce, A., Gedeck, P. (2022).
Estadística práctica para la ciencia de datos
con R y Python. Marcombo.

18. Sánchez, C. C., Sepúlveda, F. H. (2015).
Estadística descriptiva: exploración de datos
con R.

19. Tauzin, G., Lupo,U., Tunstall, L.,Pérez, J.B.,
Caorsi,M., Medina-Mardones,A.M., ... Hess,
K. (2021). Giotto-Tda: A topological data
analysis toolkit for machine learning data
exploration. The Journal of Machine Learning
Research, 22(1), 1834-1839.

Article received on 31/01/2025; accepted on 16/06/2025.
*Corresponding author is Hugo Estrada-Esquivel.

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1381–1390
doi: 10.13053/CyS-29-3-5900

Juan José Flores Sedano, Hugo Estrada-Esquivel, et al.1390

ISSN 2007-9737

