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Abstract. At present, the Internet of Things and Artificial 

Intelligence are among the most relevant transformative 
technologies for making a smart world a reality. In this 
context, this paper explores the transformative synergy 
between the Internet of Things (IoT) and Artificial 
Intelligence (AI) by integrating AI algorithms into Arduino 
devices. The literature review has demonstrated a 
current need for optimization in implementing AI 
algorithms on Arduino platforms. Through a empirical 
literature review and practical experimentation, this 
paper provides a comprehensive analysis of several 
Arduino boards, including the Portenta H7 Lite, Arduino 
Uno, Wemos D1 ESP8266, and Arduino Nano 33 BLE, 
comparing their performance for AI projects. The 
selection of an IoT board is emphasized based on 
project-specific needs and budget considerations. The 
research presented in this paper reveals the impact of 
combining IoT, AI, and Arduino on reshaping 
interactions with the connected world, paving the way for 
intelligent systems enabled for decision-making and to 
execute complex tasks 

Keywords. Artificial intelligence, Arduino platform, IoT  

1 Introduction 

The convergence of Artificial Intelligence (AI) and 
the Internet of Things (IoT) has emerged as a 
pivotal field that aims to explore the synergy 
between IoT and AI, fundamentally reshaping how 
we interact with our environment. This research 
work focuses on unlocking a realm of possibilities 
for intelligent decision-making and automation [1] 
by seamlessly integrating AI algorithms into 
Arduino devices. As the IoT revolution, redefining 
real-time connectivity between devices, sensors, 
and systems, is complemented by the 
convergence with AI, enhancing the learning and 
adaptive capabilities of these machines. The 
primary challenge lies in the effective 

implementation of AI on Arduino devices, where 
overcoming resource limitations such as memory 
and processing capacity is paramount [2]. This 
research not only conducts an empirical 
examination of existing literature on AI 
implementation in Arduino devices but also 
proposes additional optimizations to address these 
limitations and significantly enhance performance. 
In order to support the theoretical review, a 
comparative experimental study is conducted 
using various Arduino boards, such as the Portenta 
H7 Lite, Arduino Uno, Wemos D1 ESP8266, and 
Arduino Nano 33 BLE [3]. This experimental 
approach aims to evaluate the performance of 
these boards in AI projects, specifically by 
comparing their performance using the MNIST 
dataset. The review emphasizes the importance of 
choosing a suitable IoT board based on project 
needs and budget constraints.  

This work not only sheds light on how the 
combination of IoT, AI, and Arduino is transforming 
interactions with the connected world but also lays 
the groundwork for intelligent systems capable of 
decision-making and executing intricate tasks [4]. 
The paper is structured as follows: Section 2 
presents the literature review of the 
implementation of machine learning algorithms 
into the Arduino infrastructure. Section 3 shows 
experimentation of Arduino as a platform to 
execute machine learning algorithms, and finally, 
Section 4 details the conclusions and future work. 

2 Literature Review  

In this section, an analysis of research works 
exploring the combination of Artificial Intelligence 
and Arduino reveals a wide range of approaches 

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1381–1390
doi: 10.13053/CyS-29-3-5900

ISSN 2007-9737



 

aiming to bring machine learning capabilities to 
these low-power, resource-constrained devices. 
The classic Arduino Uno has served as a popular 
experimentation platform, despite its limited 
memory and computing power. Various 
researchers have implemented everything from 
simple neural networks for pattern recognition [5] 
to handwritten digit classifiers [6] on the Uno. While 
achieving promising accuracies, they are severely 
bottlenecked by the 2KB of RAM and limited CPU 
performance, leading to impractical execution 
times as model complexity increases.  

To push the boundaries, researchers have 
turned to more powerful Arduino boards, such as 
the Due, with its 32-bit microcontroller and higher 
memory capacity. This has enabled the 
implementation of more complex neural network 
architectures for applications like fish quality 
detection from gas sensor data, achieving 80% 
accuracy [7]. However, memory and computing 
resources remain significant constraints.  

The real game-changer has been the advent of 
Tiny Machine Learning (TinyML) and model 
optimization techniques. The Arduino Nano 33 
BLE Sense, for example, is well-suited for TinyML. 
Researchers have successfully deployed voice 
and gesture recognition models on this device by 
aggressively quantizing and pruning neural 
networks [11]. However, these optimizations often 
come at the cost of reduced model precision and 
accuracy.  

Work has also been done on using the Nano 33 
BLE for ultrasonic signal classification to detect 
transducer misalignment [12]. The multilayer 
neural network model achieved top accuracy and 
was implementable on this low-power edge device, 
showing real-world potential. Nevertheless, 
running intensive ML workloads can quickly drain 
the battery of portable Arduino devices, and energy 
efficiency is rarely optimized for.  

Beyond just inference, pioneering work has 
explored training models directly on IoT devices 
through approaches combining federated learning 
and transfer learning [13].  

This enables on-device training without 
compromising privacy or relying on the cloud, 
although such capabilities are still limited.  

Complementary work has also delved into 
hybrid approaches where heavy lifting occurs in 
the cloud, and simplified models are deployed on 

the Arduino for data capturing, preprocessing, and 
communication [14]. However, integrating different 
software components and environments can itself 
be challenging.  

Implementing AI on microcontrollers comes 
with its own set of challenges that existing 
solutions only partially address - squeezing models 
into limited memory, optimizing for inference 
speed, managing energy consumption, 
maintaining precision, and enabling on-device 
training with privacy preservation.  

Overall, the research demonstrates the 
immense potential of taking AI to the edge, 
empowering intelligent sensing and decision-
making capabilities in compact, low-cost IoT 
devices. Observations highlight key applications 
such as real-time vibration analysis [8], 
biofeedback and data acquisition [7], patient health 
monitoring [9], environmental sensing [10], and 
even face mask detection during COVID-19 [15].  

Table 1 focuses on studies conducted using the 
Arduino Uno board, which has limited memory 
(2KB RAM) and computing power. The studies 
cover applications like pattern recognition using 

Table 1. Literature review comparison on Arduino uno 

devices 

Referenc
e 

Aplications Results Limitation
s 

[5] C-Mantec 
neural 
network for 
pattern 
recognition 

Exponential 
execution 
time, 
reduces 
precision 

Memory 
restrictions 

[7] Real-time 
biosignal 
acquisition 
with MATLAB 

Real-time 
visualizatio
n 

Sampling 
rate 10Hz 

[8] Vibration 
analysis with 
wavelet and 
LabVIEW 

Real-time 
processing 

Requires 
multiple 
software, 
sampling 
rate 
limitation. 

[9] Vital signs 
telemetry 

Functional 
and low 
cost 

Potential 
temporary 
fluctuations 

[10] Environmenta
l monitor and 
Android 
application 

Remote 
viewing 
working 

Limited 
sensors, 
limited 
sampling 
rate 
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neural networks [5], handwritten digit recognition 
[6], biosignal acquisition [7], vibration analysis [8], 
vital signs telemetry [9], and environmental 
monitoring [10]. While some promising results 
were achieved, such as 82% accuracy for digit 
recognition, the key limitations were exponential 
execution times, reduced precision, memory 
restrictions, low sampling rates, and the need for 
multiple software tools. 

Table 2 summarizes research using the more 
capable Arduino Nano 33 BLE board, which is 
better suited for tiny machine learning (TinyML) 
applications. The studies cover gesture and voice 
recognition [11] and classifying transducer 

misalignment [12] using ML algorithms. Though 
functional models were developed, limitations 
included restricted sampling rates, memory 
constraints, and limited sensor capabilities.  

Table 3 includes studies conducted on various 
other Arduino boards or setups. It covers 
applications like fish quality recognition using 
neural networks [13], real-time face detection [14], 
and on-board training of ML algorithms on IoT 
devices [15]. While high accuracies were achieved 
(up to 97.8% for face detection), the studies either 
had limited applicability or did not mention any 
specific limitations. 

Analyzing existing works reveals a trend 
where Arduino devices are primarily utilized for 
data collection, with subsequent processing and 
analysis occurring on external devices. While a few 
studies showcase the direct implementation of 
neural networks on Arduino infrastructure, the 
predominant approach involves utilizing Arduino 
as a data collector. However, important limitations 
still exist- memory constraints, compute power 
bottlenecks, trade-offs in model optimization, 
energy efficiency issues, lack of scalable on-device 
training, systems integration challenges, and the 
need for more general, easily extensible solutions 
across different AI problems and hardware. 
Comprehensively addressing these challenges will 
be crucial for AI to become truly ubiquitous on 
Arduino and embedded devices. This insight 
prompts the exploration of whether Arduino 
devices alone can execute AI techniques in real-
time without relying on external servers or PCs. 

Arduino boards, while versatile, face significant 
limitations when implementing ML algorithms. 
Their constrained RAM (often below 1MB), limited 
processing power, and lack of dedicated AI 
accelerators make them unsuitable for complex 
deep learning tasks. Additionally, power 
consumption and real-time execution challenges 
limit their deployment in continuous AI-
driven applications. 

3 Experimentation: Arduino as a 
Platform for Implementing Machine 
Learning Algorithms 

The experimentation approach proposed in this 
research work has the objective of comparing the 

Table 2. Literature review comparison on Arduino nano 

33 BLE devices 

Reference Aplications Results Limitations 

[11] Gesture and 
voice 
recognition 
with TinyML 

Functional 
models of 
keywords 
and 
gestures 

Restricted 
sampling 
rate 

[12] ML 
algorithms 
for 
classifying 
transducer 
misalignment  

Achieving 
superior 
classification 
performance 
metrics, 
including 
accuracy, 
precision, 
recall, and 
confusion 
matrices 

Memory 
restrictions, 
Limited 
sensors, 

Table 3. Literature review comparison of other devices 

Reference Applications Results Limitations 

[13] neural 
network for 
fish quality 
recognition 

An 80% 
success rate 
was 
achieved in 
recognizing 
the quality of 
fish 

Limited 
applicability 

[14] real-time face 
detection 
system 

accuracy, 
with a rate of 
correctness 
of up to 
97.80% 

No 
limitations 
are 
mentioned 

[15] 
 

on-board 
training of ML 
algorithms on 
IoT devices. 
 

an accuracy 
rate of 
86.48% in 
classification 
and 0.0201 
in 
regression. 
 

No 
limitations 
are 
mentioned 
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performance of some of the most popular IoT 
development boards available on the market. In 
the experimentation it is tried to explain how these 
boards, such as the Arduino Nano 33 BLE, 
Portenta H7 Lite, Arduino Uno R3 and Wemos D1 
ESP8266, address the challenge of classifying 
handwritten digits using machine learning 
techniques. To accomplish this task, the MNIST 
dataset was used, which consists of thousands of 
images of handwritten digits and their 
respective labels.  

In the experimentation, the behavior of each of 
the Arduino boards was analyzed to execute 
artificial intelligence tasks using the same 
reference dataset. Each board has its own 
strengths and limitations, and understanding how 
they compare in the context of AI can be 
instrumental in making informed decisions when 
selecting the right platform for each project. The 
Arduino Nano 33 BLE, the Portenta H7 Lite, the 
Arduino Uno R3 and the Wemos D1 ESP8266 are 
analyzed below.  

In order to evaluate the performance of 
classification models and each Arduino board, the 
following techniques were implemented in the 
Arduino boards: Convolutional Neural Networks 
(CNN), Decision Trees, and Clustering with K-
Means. The chosen dataset for this analysis was 
the well-known MNIST dataset, comprising 28x28 
pixel black and white images, each labeled with a 
corresponding digit. The researchers allocated 
80% of the dataset for training purposes, reserving 
the remaining 20% for testing and assessing model 
accuracy [16].The selection of models and 
hyperparameters was based on computational 
constraints. CNNs were chosen for their 
effectiveness in image recognition, while Decision 
Trees and K-Means were included due to their 
lower resource requirements. Parameters such as 
the number of convolutional layers, tree depth, and 
cluster numbers were adjusted to balance 
performance and efficiency on each board. 

Before running the machine learning algorithms 
and comparing their performance on different 
Arduino boards, it is essential to perform a 
thorough exploration of the MNIST dataset that will 
be used for experimentation. This data exploration 
plays a critical role for several reasons: Deep 
understanding of the data set: Exploration permits 
to obtain a solid understanding of the 

characteristics, structure, distributions and 
patterns that can be found in the data. This is 
essential to formulate realistic assumptions and 
expectations about the performance of the models 
and algorithms that will be applied later.  

 Early problem detection: During exploration, 
potential problems such as outliers, missing 
data, biases, noise, or data inconsistencies 
can be identified. Addressing these issues 
early prevents them from propagating and 
negatively affecting model performance.  

 Informed selection of techniques and 
preprocessing: Understanding the nature of 
the data permits the selection of the most 
appropriate machine learning techniques and 
algorithms, as well as determine the 
transformations or preprocessing necessary to 
optimize performance.  

 Establishing baselines: The results of data 
exploration, such as summary statistics, 
distributions, and visualizations, establish 
important baselines for later evaluating and 
comparing model performance.  

 Analyzing existing works reveals a trend where 
Arduino devices are primarily utilized for data 
collection, with subsequent processing and 
analysis occurring on external devices. While a few 
studies showcase the direct implementation of 
neural networks on Arduino infrastructure, the 
predominant approach involves utilizing Arduino 
as a data collector. However, important limitations 
still exist- memory constraints, compute power 
bottlenecks, trade-offs in model optimization, 
energy efficiency issues, lack of scalable on-device 
training, systems integration challenges, and the 
need for more general, easily extensible solutions 
across different AI problems and hardware. 
Comprehensively addressing these challenges will 
be crucial for AI to become truly ubiquitous on 
Arduino and embedded devices. This insight 
prompts the exploration of whether Arduino 
devices alone can execute AI techniques in real-
time without relying on external servers or PCs 

Identification of valuable insights: Visual and 
quantitative exploration of data can reveal non-
obvious patterns, trends or relationships that could 
be valuable to the modeling process and 
interpretation of results. In the specific context of 
this study, exhaustive exploration of the MNIST 
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data set prior to experimentation on Arduino 
boards is crucial for several reasons:  

 Understand the statistical properties of 
handwritten digit images and their labels, 
which will inform the configuration and 
expectations of classification models.  

 Identify potential challenges or limitations that 
could arise when implementing these models 
on the restricted resources of Arduino boards, 
such as image resolutions, pixel value ranges, 
etc.  

 Establish initial benchmarks and metrics to 
evaluate the performance of algorithms in 
terms of accuracy, memory usage, and other 
relevant aspects.  

 Achieve a visual understanding of the 
variations, styles and patterns present in digit 
images, which could influence the 
performance of the models.  

Data exploration is a critical step before 
conducting experimentation, as it provides a solid 
understanding of the data set, helps identify 
potential problems, facilitates the selection of 
appropriate techniques, and establishes crucial 
benchmarks for subsequent evaluation of the 
models. in a resource-constrained environment 
like Arduino boards. The experimental approach 
was consistent with the data exploration 
methodology detailed in the referenced literature 
[17]. The goal is to thoroughly understand a 
dataset first through a mix of quantitative analysis 
and visual inspection techniques before 
developing models. This builds intuition, sets 
modeling expectations, and allows detecting data 
issues early. The data exploration process 
provided a comprehensive understanding of the 
MIST dataset. With no missing values and a 
balanced digit distribution, the dataset appears 
well-suited for training robust digit recognition 
models. Insights gained from visualizing sample 
images will inform subsequent analyses and 
model development.  

The following steps can be used to perform 
data exploration:  

 Loading the Dataset: The first step is to load 
the image dataset and any associated labels 
or outputs. For MNIST, this consists of 70,000 
small 28x28 grayscale digit images, each with 

a corresponding digit label from 0-9 indicating 
which number it shows. 

 Understanding Structure: Investigate general 
metadata like the number of images, resolution 
per image, data formats, and how labels are 
encoded. This orients to key structural 
aspects. 

 Summarizing Statistics: Calculate summary 
statistics per image and per class label when 
available. These include basics like mean or 
average pixel intensity, standard deviations 
from the means, min and max values, 
quantiles showing value distributions, etc. The 
summarizing statistics of the MNIST dataset 
can be seen in figures 1 and 2. 1 and 2. Figure 
1 shows various statistics calculated for the full 
set of 70,000 handwritten digit images from the 
MNIST dataset. The first row with all values set 
to zero corresponds to the statistical 
summaries for missing data or null values. 
Since there is no missing data in this set, all of 
these cells are zeros. The following rows show 
multiple summaries per variable or 
characteristic: 

○ The "count" row indicates the total count 
of non-null values per column, in this case 
70,000 for all columns.  

○ "mean" shows the average intensity of 
pixels per column over all images. 

○ "std" is the standard deviation of pixel 
intensities, a measure of how much the 
values vary from the mean. 

○ "min" and "max" show the minimum and 
maximum intensity values in the entire 
data set. 

○ Rows like "25%", "50%", etc. are the 
quantiles of the distribution, indicating that 
25% of the values are below 
that threshold. 

○ The last row with only the total count 
serves to verify that there is no 
missing data.  
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Figure 2 complements the previous table by 
showing additional columns with more statistics, 
such as skewness, kurtosis for each variable, and 

limits such as "range" which gives the interval 
between minimum and maximum values. 

Visualizing Samples: Plot a sample of original 
images to get a visual sense of variability in styles, 
rotations, scales, deformations and noise in the 
data. This could expose limitations or challenges. 
See figure 3.  

Analyzing Distributions: Visualize the 
distribution of pixel intensities across images via 
plots like histograms and box plots, to see the full 
range and typical values. Break this analysis down 
by class label too. Look for imbalanced data or odd 
distributions. See figure 4.  

Detecting Outliers: Based on the distributions, 
quantitative metrics to detect and flag outlier 
images that are anomalous or especially noisy. 
This could affect model training.  

In the pursuit of comprehensively evaluating the 
performance of classification models on diverse 
Arduino boards, a systematic methodology was 
diligently crafted, aligning with principles of data 
exploration [18-19]. Each step of the 
experimentation carried specific significance, 
contributing to the robustness and depth of the 
assessment. The following steps were carried out 
to perform the experimentation on each Arduino 
board and each of the machine 
learning algorithms. 

 Dataset Partitioning: The initial step involved 
the meticulous partitioning of the MNIST 
dataset, dedicating 80% for training and 
reserving 20% for testing. This partitioning 
strategy was pivotal to furnish a robust 
evaluation of model performance, ensuring an 
effective gauge of their generalization 
capabilities. 

 Model selection: the chosen models, 
Convolutional Neural Networks (CNN), 
Decision Trees, and K-Means Clustering 
Algorithm, were selected due to their 
relevance in classification tasks and distinct 
approaches to pattern recognition within the 
MNIST dataset. This step aimed at deploying 
models representing diverse methodologies to 
garner a comprehensive understanding of their 
effectiveness.  

 Arduino Board Implementation: Tailoring the 
selected models for execution on specific 
Arduino boards, including Arduino Uno R3, 
Wemos D1 ESP8266, Arduino Nano 33 BLE, 

 

Fig. 1. Summary statistics Dataset MNIST 

 

Fig. 2.Continue Summary statistics Dataset MNIST  
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and Portenta H7 Lite, was imperative. 
Adapting the models to the unique constraints 
and capabilities of each hardware 
configuration allowed for a nuanced 
assessment in real-world embedded systems 
scenarios. 

 Model Execution: The execution of models, 
including Convolutional Neural Networks 
(CNN), Decision Trees, and K-Means 
Clustering Algorithm, was executed 
meticulously on the designated Arduino 
boards. This step provided practical insights 
into the models' behavior, strengths, and 
potential limitations when applied to 
embedded systems. 

 Accuracy Assessment: The accuracy 
assessment, performed using the 20% 
reserved test dataset, offered critical insights 
into the models' ability to generalize and make 
accurate predictions on previously unseen 

data. This step was fundamental in 
understanding the practical utility of the 
models in real-world applications.  

 Resource Utilization Analysis: Beyond 
accuracy metrics, a detailed analysis of 
resource utilization, encompassing RAM and 
flash memory usage percentages on each 
Arduino board, was conducted. This granular 
examination aimed to ascertain how efficiently 
each model harnessed available resources, 
crucial for practical considerations in 
embedded systems. 

 Result Compilation and Analysis: The results, 
consolidating accuracy metrics and resource 
utilization percentages, were meticulously 
compiled and analyzed. This final step 
facilitated a comparative evaluation of the 
models' effectiveness across different Arduino 
boards, providing nuanced insights for 
deploying AI applications in 
embedded systems.  

This structured and systematic approach 
ensured not only a thorough exploration of the 
models' performance but also provided valuable 
context for their applicability in resource-
constrained environments.  

4 Results of the Experimentation  

This section aims to present and analyze the key 
findings obtained from the comprehensive 
experimental evaluation performed on various 
Arduino boards. This section systematically 
examines the performance metrics and resource 
utilization characteristics exhibited by the machine 
learning models (Convolutional Neural Networks, 
Decision Trees, and K-Means Clustering) across 
different Arduino platforms.  

Model accuracy: The accuracy metric quantifies 
the capability of a machine learning model to 
correctly classify or predict instances within a 
dataset. In this study, model accuracy serves as a 
critical measure to assess the reliability and 
effectiveness of the implemented algorithms on the 
constrained Arduino environments.  

The results indicate that the Portenta H7 Lite 
board consistently outperforms other boards in 
terms of model accuracy, making it a robust choice 

 

Fig. 3.Continue Summary statistics Dataset MNIST 

 

Fig. 4 .Distribution of digits MNIST dataset. 
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for deploying machine learning applications. 
Among the evaluated models, the Convolutional 
Neural Network (CNN) exhibits promising 
accuracy, ranging from 87.3% on the Arduino Uno 
R3 to an impressive 94.2% on the Portenta H7 Lite. 
This trend underscores the efficacy of CNN models 
in image classification tasks, even on resource-
constrained devices.  

Resource utilization: Efficient resource 
utilization is paramount when deploying machine 
learning models on embedded systems with limited 
computational capabilities and memory 
constraints. This study meticulously analyses the 
RAM and flash memory usage percentages 
incurred by each model across the evaluated 
Arduino boards. The results reveal varying 
degrees of resource consumption among the 
models and boards. For instance, the CNN model 
exhibits higher RAM usage, ranging from 79.6% on 
the Arduino Uno R3 to 71.8% on the Portenta H7 
Lite. Conversely, the Decision Tree model 
demonstrates relatively lower RAM requirements, 
spanning from 38.9% to 51.4% across the boards.  

Furthermore, an analysis of flash memory 
usage uncovers the efficiency with which models 
can be deployed on these embedded platforms. 
The CNN model, while utilizing 72.4% of flash 
memory on the Arduino Nano 33 BLE, showcases 
optimal efficiency on the Portenta H7 Lite, 
consuming only 82.1% of the available flash 
storage. Table 4 provides a comprehensive 
overview. Running ML models on low-power 
devices like Arduino introduces significant energy 
challenges. AI inference tasks increase power 
draw, which can be a critical factor in battery-

operated IoT applications. Optimizations such as 
quantization and model pruning can help reduce 
power consumption but often come at the cost 
of accuracy. 

One notable observation is the trade-off 
between model complexity and resource 
utilization. While the Convolutional Neural Network 
(CNN) model demonstrates superior accuracy, it 
comes at the cost of higher RAM and flash memory 
consumption across all Arduino boards. This trade-
off becomes particularly evident when comparing 
the CNN model's resource demands to the more 
lightweight Decision Tree and K-Means 
Clustering models.  

Interestingly, the Arduino Uno R3, despite 
being one of the more budget-friendly and 
resource-constrained boards, exhibited relatively 
efficient resource utilization for specific models. 
For instance, the Decision Tree model consumed 
only 38.9% of RAM and 48.7% of flash memory on 
this board, highlighting its potential for deploying 
less computationally intensive algorithms in 
resource-limited scenarios.  

Another noteworthy observation is the 
discrepancy in resource utilization patterns 
between the Arduino Nano 33 BLE and the more 
powerful Portenta H7 Lite board. While the Nano 
33 BLE showcased respectable accuracy levels, 
its resource consumption, particularly for the CNN 
model, was significantly higher compared to the 
Portenta H7 Lite. This discrepancy underscores 
the impact of hardware specifications on model 
performance and resource efficiency.  

Furthermore, it is essential to consider the 
specific application requirements and resource 

Table 4. Results 

Metric Model Arduino Uno Wemos d1 nano 33 ble H7 lite 

Accuracy (%) CNN 87.3 89.8 92.5 94.2 

K-means 65.5 68.4 72.2 78 

Decision tree 86.5 88.7 91 92.3 

Ram usage (%) CNN 79.6 65.3 58.2 71.8 

K-means 85.6 69.8 63.5 78.2 

Decision tree 38.9 42.3 45.8 51.4 

Flash usage (%) CNN 92.3 68.9 72.4 82.1 

K-means 73.8 52.1 57.2 64.5 

Decision tree 48.7 54.8 58.6 61.2 
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constraints when selecting an Arduino board and 
machine learning model combination. For 
example, in scenarios where memory footprint is a 
critical concern, the Decision Tree or K-Means 
Clustering models may be more suitable choices, 
even if they sacrifice some accuracy compared to 
the CNN model.  

Interestingly, the results also revealed potential 
optimization opportunities. For instance, the K-
Means Clustering model exhibited relatively low 
resource utilization across all boards, suggesting 
that there might be room for further optimization or 
model compression techniques to reduce its 
memory footprint further.  

These observations highlight the intricate 
interplay between model complexity, hardware 
capabilities, and resource constraints in the 
context of embedded machine learning systems. 
Striking the right balance between performance, 
accuracy, and resource efficiency requires careful 
consideration of these trade-offs and a thorough 
understanding of the application requirements and 
hardware limitations. 

The observed results can be attributed to the 
hardware capabilities of each Arduino board. The 
Portenta H7 Lite, featuring a more powerful 
processor and greater memory, was able to 
efficiently execute AI models with higher accuracy 
and lower resource constraints. Meanwhile, the 
Arduino Uno R3, with its limited computational 
power, struggled to support complex models, 
leading to reduced performance. The Nano 33 BLE 
and Wemos D1 ESP8266 positioned themselves 
as balanced alternatives, providing decent 
accuracy with moderate resource usage. These 
findings emphasize the importance of selecting 
hardware that aligns with the computational 
demands of AI applications in embedded systems. 

5 Conclusions and Future Work 

In conclusion, this work underscores the pivotal 
role of integrating AI with IoT using Arduino 
devices. Through a comprehensive survey and 
experimentation, we have provided valuable 
insights into the performance of different Arduino 
boards in executing AI tasks. The comparative 
analysis reveals a spectrum of options, from high-
performance but expensive boards like the 

Portenta H7 Lite to budget-friendly alternatives like 
the Arduino Uno. The Arduino Nano 33 BLE, with 
its balance of affordability and features, emerges 
as an ideal choice for AI enthusiasts. Future work 
includes settling whether or not the Arduino 
foundation is adequate to execute computer-based 
intelligence procedures without the need to utilize 
a PC or server, simply turning to the restricted 
assets that the Arduino boards have. The aim is to 
use AI techniques that allow the behavior of an 
Arduino device to be analyzed in real time and 
make decisions based on that behavior, such as 
determining what data it is collecting, 
encapsulating it and sending it to an IoT platform 
such as FIWARE or Amazon Web Services, 
facilitating the integration of Arduino devices to the 
IoT. Also, as future work, we plan to add more 
devices to the study, such as other Arduino 
devices, ESP boards, or even Raspberry Pi, to 
broaden the perspective and obtain a better 
comparison. 

 Acknowledgments  

This work was supported by TecNM (México) 
project 21640.25-P. The first author received a 
CONACYT scholarship (1086749) for this 
research. 

References 

1. Kasera, R. K., Gour, S., Acharjee, T. (2024). 
A comprehensive survey on IoT and AI based 
applications in different pre-harvest, during-
harvest and post-harvest activities of smart 
agriculture. Computers and Electronics in 
Agriculture, 216, 
108522.https://doi.org/10.1016/j.compag.2023
.108 522. 

2. Mansoor, S., Wani, O. A., Kumar, S. S., 
Popescu, S., Sharma, V., Sharma, A., ...  
Chung, Y. S. (2024). Artificial intelligence and 
IoT driven technologies for environmental 
pollution monitoring and management. 
Frontiers in Environmental Science, 12, 
1336088.https://doi.org/10.3389/fenvs.2024.1
3360 88. 

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1381–1390
doi: 10.13053/CyS-29-3-5900

Arduino Devices as a Platform to Perform Machine Learning Algorithms: A Brief Review and Experimentation 1389

ISSN 2007-9737



 

3. Grzesik, P., Mrozek, D. (2024). Combining 
Machine Learning and Edge Computing: 
Opportunities,Challenges,Platforms,Framewo
rks, andUseCases.Electronics,13(3),640. 

4. Ortega-Zamorano, F., Subirats, J. L., Jerez, 
J. M., Molina, I., Franco, L. (2013). 
Implementation of theC-Mantec neural 
network constructive algorithm in an arduino 
UNO microcontroller. In Advances in 
Computational Intelligence: 12th International 
WorkConference onArtificialNeuralNetworks, 
IWANN2013, Puerto de la Cruz, Tenerife, 
Spain, June 12-14, 2013, Proceedings,Part 
I12(pp.80-87).SpringerBerlin Heidelberg. 

5. Izotov, Y. A., Velichko, A. A., Ivshin, A. A., 
Novitskiy, R. E. (2021). Recognition of 
handwrittenMNIST digits on low-memory 2 Kb 
RAMArduino board using LogNNet reservoir 
neural network. In IOP Conference Series: 
MaterialsScienceandEngineering 
(Vol.1155,No. 1,p.012056). IOPPublishing. 

6. Kasera, R. K., Gour, S., Acharjee, T. (2024). 
A comprehensive survey on IoT and AI based 
applications indifferentpre-harvest,during-
harvest and post-harvest activities of smart 
agriculture. Computers and Electronics in 
Agriculture, 216, 108522. 

7. Rivai, M. ,Attamimi, M., Firdaus, M. H. (2019, 
November). Fish quality recognition using 
electrochemical gas sensor array and neural 
network. 2019 International Conference on 
Computer Engineering, Network, and 
Intelligent Multimedia (CENIM) pp. 1-5. IEEE. 

8. Jaber, A. A., Bicker, R. (2015). Real-time 
wavelet analysis of vibration signals based on 
Arduino-UNO and LabVIEW. International 
Journal of Materials Science and Engineering, 
3(1), 66-70. 

9. Parihar, V. R., Tonge, A.Y. ,Ganorkar, P.D. 
(2017). Heartbeat and temperature monitoring 
system for remote patients using Arduino. 
International Journal of Advanced Engineering 
Research and Science, 4(5), 55-58. 

10. Zafar, S., Miraj, G. ,Baloch ,R. ,Murtaza, D., 
Arshad, K. (2018). An IoT based real-time 
environmental monitoring system using 
Arduino and cloud service. Engineering, 
Technology & Applied Science Research, 8(4), 
3238-3242. 

11. Prasanna, R., Kakarla, P. … Mohan, N. 
(2022). Implementation of Tiny Machine 
Learning Models  On Arduino 33BLE For 
Gesture And Speech Recognition. arXiv 
preprint arXiv:2207.12866. 

12. Brennan, D., Galvin, P. (2024). Evaluationofa 
MachineLearningAlgorithmtoClassifyUltrasoni
c TransducerMisalignment andDeployment 
Using TinyML.Sensors,24(2),560. 

13. Simanjuntak, J. E. S., Khodra, M. L., 
Manullang, M. C. T. (2020, July). Design 
Methods of detecting atrial fibrillation using the 
recurrent neural network algorithm the Arduino 
AD8232 ECGmodule. Iop conference 
series:Earth And environmental science (Vol. 
537, No. 1, p. 012022). IOPPublishing. 

14. .Ficco, M. ,Guerriero ,A., Milite, E., 
Palmieri,F., Pietrantuono, R., Russo, S. 
(2024). Federated learning for IoTdevices: 
EnhancingTinyMLwith on-board training. 
Information Fusion, 104, 102189. 

15. Parker, G., Khan, M. (2016, July).Distributed 
neural network: Dynamic learning via 
backpropagation with hardware neurons using 
arduino chips. In 2016 International Joint 
Conference on Neural Networks (IJCNN) (pp. 
206-212). IEEE. 

16. Almufti, S.M.,Marqas, R. B., Nayef, Z.A., 
Mohamed, T. S. (2021). Real TimeFacemask 
Detection with Arduino to Prevent COVID-19 
Spreading. Qubahan Academic Journal, 1(2), 
39-46. 

17. Bruce, P., Bruce, A., Gedeck, P. (2022). 
Estadística práctica para la ciencia de datos 
con R y Python. Marcombo. 

18. Sánchez, C. C., Sepúlveda, F. H. (2015). 
Estadística descriptiva: exploración de datos 
con R.  

19. Tauzin, G., Lupo,U., Tunstall, L.,Pérez, J.B., 
Caorsi,M., Medina-Mardones,A.M., ... Hess, 
K. (2021). Giotto-Tda: A topological data 
analysis toolkit for machine learning data 
exploration. The Journal of Machine Learning 
Research, 22(1), 1834-1839. 

Article received on 31/01/2025; accepted on 16/06/2025. 
*Corresponding author is Hugo Estrada-Esquivel. 

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1381–1390
doi: 10.13053/CyS-29-3-5900

Juan José Flores Sedano, Hugo Estrada-Esquivel, et al.1390

ISSN 2007-9737


