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Abstract. This paper introduces a Hardware Accel-
erator Multi-Platform Benchmark for high performance
heterogeneous computing called HAMP, a multi-platform
tool designed to analyze the performance of hardware
accelerators such as CPUs, GPUs and FPGAs. HAMP
benchmark stands out for its ability to evaluate different
hardware architectures within a unified environment
using a common programming language, C++ with
the OpenCL framework. The multi-platform tool
integrates a selection of state-of-the-art kernels for the
evaluation of hardware characteristics and arithmetic
operations, employing two performance metrics (speed
and bandwidth). Developed in Python, a graphical
user interface (GUI) simplifies interaction with the tool,
allowing users to configure and execute kernels on
the hardware accelerator without needing technical
knowledge. Experiments were performed on three
hardware accelerators with the five kernels comprising
the HAMP benchmark. The results obtained indicate
that HAMP is an efficient and reliable multi-platform
tool, facilitating the comparison of diverse hardware
architectures within a unified design environment, a
capability not previously available in the state-of-the-art.

Keywords. Hardware accelerator, benchmark, hetero-
geneous computing, FPGA, GPU.

1 Introduction

Heterogeneous computing is an emerging
paradigm due to the high demand for faster
and more efficient computer systems [37].
Heterogeneous computing employs a variety
of accelerators, including CPUs, GPUs, DSPs,
APUs (Accelerated Processing Units), TPUs

(Tensor Processing Units), and, more recently,
FPGAs (Field Programmable Gate Arrays)
[6, 16, 36, 37, 38]. However, each accelerator
has a specific architecture, combining them in a
heterogeneous computing system allows them
to leverage their respective strengths, resulting
in more efficient application execution, reduced
processing times, and increased energy efficiency.

This enables the development of more powerful
systems that open new possibilities for innovation
in areas such as artificial intelligence [12, 35,
48], big data analysis [52, 24], machine learning
[19, 39], among others.  Combining different
accelerators presents several challenges and
opportunities.

One key challenge is the difference in program-
ming paradigms. While CPUs and GPUs are
programmed using software languages, FPGAs
are programmed using hardware description lan-
guages (HDLs) such as VHDL (Very High Speed
Integrated Circuit HDL), which require specialized
knowledge of electronic design tools. This disparity
necessitates a programming language capable of
communicating with diverse accelerators.

Another challenge is designing and updating
benchmarks, which are critical for assessing
accelerator performance, especially given the
diverse applications implemented on FPGAs.
Benchmarks must be updated regularly to evaluate
new capabilities and accommodate this applica-
tion diversity.
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Table 1. Taxonomy of Rodinia’s benchmarks

Kernel Area
K-means Linear algebra
Needleman-Wunsch | Dynamic programming
HotSpot Structured grid
Back propagation Unstructured grid
SRAD Structured grid

Leukocyte tracking
Breadth-First Search
Stream cluster
Similarity scores

Structured grid
Graph transversal
Linear algebra
MapReduce

The BenchCouncil defines a benchmark as
a tool for quantitatively measuring solutions
to a defined problem. This can involve
explicitly defining the problem, providing a specific
example, using a current best-practice solution
as a reference, or establishing a measurement
standard [51].

This paper presents HAMP (Hardware Ac-
celerator Multi-Platform), a novel benchmark
that, unlike existing benchmarks, enables direct
performance comparisons between CPUs, GPUs,
and FPGAs in a single environment.  While
previous benchmarks focused on a limited set
of accelerators, HAMP integrates all three into a
single testing enviroment. This is achieved through
OpenCL, providing portability across architectures
and eliminating dependency on vendor-specific
solutions such as CUDA. By providing a common
execution and evaluation structure, HAMP enables
impartial comparisons between different hardware
accelerators. The main contribution of this work is
summarized as follows:

— The development of HAMP, a novel multi-
platform benchmark compatible with three
distinct hardware accelerators: CPUs, GPUs,
and FPGAs.

— The development of the first benchmark in this
domain to feature a user-friendly Graphical
User Interface (GUI).

The paper is organized as follows: Section
2 presents a literature review of benchmarks,
features, and evaluation metrics; in Section 3,
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the HAMP benchmark overview is presented,
while in Section 4 the experimental evaluation,
performance comparison and discussion are
analyzed, finally, conclusions and future work are
presented in Section 5.

2 Benchmarking and State-of-the-Art
in Heterogeneous Computing

This section provides a comprehensive review of
the state-of-the-art in hardware accelerator bench-
marking. The review examines the benchmarks’
characteristics, target devices, application areas,
and the problems they address. This body of
research has been essential for establishing stan-
dardized practices and fostering the development
of new benchmarks in this rapidly evolving field.

2.1 Rodinia

Rodinia is a benchmark suite specializing in
heterogeneous computing for multi-core CPUs and
GPUs [3]. It includes a collection of kernels
from the literature. Rodinia has been used to
evaluate various parallelization approaches, such
as OpenMP [33] for CPUs and CUDA [31] for
GPUs.

Its main application areas include: (1) linear
algebra, where algorithms based on matrix and
vector operations are used (e.g., k-means and
stream clustering); (2) dynamic programming,
such as the Needleman-Wunsch algorithm; (3)
structured grids, where algorithms based on
structured matrices are applied, such as SRAD
and Hotspot; (4) unstructured grid; (5) graph
traversal; and (6) MapReduce [3].

Rodinia offers a diverse set of tools for evaluating
heterogeneous computing, including algorithms,
kernels, and examples of database-driven applica-
tions, which are classified in Table 1.
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Table 2. Complexity classification of SHOC benchmark

Level Kernel
0 Bus speed Download
Bus speed readback
Device memory bandwidth
Kernel compilation

1 Peak flops
Queuing delay
Resource contention
2 Sorting problems

Matrix operations
Fast Fourier Transform

Table 3. Kernels and domains of CHO benchmark

Kernel Domain
Sum Arithmetic
Division
Multiplication
Sine
Adaptive differential pulse code encoder and decoder Media

Prediction coding
JPEG image decoder
Motion vector decoding

Advanced encryption standard Cryptography
Blowfish algorithm
Secure Hash algorithm
Simplified MIPS processor Other

Table 4. Taxonomy of Mirovia’s benchmarks

Level Kernel Area Domain

0 Bus speed download
Bus speed readback Hardware characteristics Engineering

Device memory bandwidth

Peak flops
1 Sorting Arithmetic Sorting
Multiplication Linear algebra Arithmetic
2 Needleman-Wunsh Dynamic programming Bioinformatics
CFDSolver Unstructured grid Fluid dynamics
3 Neural networks Dense algebra linear Deep learning

2.2 SHOC

SHOC is a Scalable Heterogeneous Computing
benchmark for GPUs and CPUs [6]. SHOC was
developed to standardize performance and stability
measurement of heterogeneous computing using
OpenCL. SHOC provides a suite of computational
benchmarks organized by complexity level.

Table 2 lists several of kernels, with level 2
indicating the highest complexity.
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2.3 CHO

CHO is a suite of computational benchmarks [29]
for Altera (Intel) FPGAs, programmed in OpenCL.
Table 3 shows the twelve CHO Kernels, classified
by domain.

2.4 Mirovia

Mirovia is an advanced benchmark suite for
evaluating modern hardware accelerators [16].
Unlike previous benchmarks like Rodinia [3] and
SHOC [6], Mirovia is specifically optimized for
heterogeneous computing on GPUs, prioritizing
workload efficiency, problem size, and the unique
characteristics of each task. Furthermore, Mirovia
leverages new CUDA features, such as unified
memory management and improved parallel kernel
execution. Table 4 presents an analysis of Mirovia’s
complexity levels by kernel, application area, and
problem domain.

2.5 Evaluation Metrics

This section describes evaluation metrics for
modern hardware accelerators. Benchmarking
is essential for comparing hardware accelerators
under standardized conditions. The key metrics
are described below:

Speed: Among the most common metrics is
speed, which refers to task completion time (also
often referred to as execution time or latency). It is
measured in units of time (seconds, milliseconds,
nanoseconds), where lower values signify better
performance [34, 16, 28].

Bandwidth: This metric measures the amount
of data that can be transferred per unit of time
between various components, including memory
and processor, and FPGA and processor. Typical
units are bits per second (bps), bytes per second
(B/s), and gigabytes per second (GB/s). Higher
bandwidth generally means better performance.
Bandwidth is defined as:

bandwidth = (B, 4+ By)/T, (1)

where B, is defined as the number of bytes read
from memory, B,, represents the number of bytes
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written to memory, and T represents the execution
time of the algorithm in seconds [15, 21, 34, 14].

Speedup: This measures the improvement
in performance achieved by using a hardware
accelerator or a parallel processing technique
compared to a baseline (usually a sequential
implementation or a less powerful hardware
configuration). It's calculated as the ratio of the
execution time of the baseline to the execution time
of the accelerated version. A higher speedup value
indicates better performance improvement. The
speedup is calculated as follows:

_ Ty(n,1)
= T @

where T,(n,1) represents the execution time
of the optimal sequential algorithm and T'(n,p)
represents the execution time of the parallel
algorithm for the same input n [14, 42].

Floating Point Operations Per Second (FLOPS):
This measures the number of floating-point
operations that a system can perform per second
[27]. I's a common metric for evaluating the
performance of hardware accelerators that heavily
rely on floating-point arithmetic. Higher FLOPS
generally indicate better performance for these
types of workloads.

2.6 Principal Kernels in the State-of-the-Art
Benchmarks

In this section, we present some of the most
widely used kernels for evaluating CPU, GPUs
and FPGAs. These core kernels provide
standardized datasets and evaluation metrics,
enabling researchers to compare the performance
of different accelerators in terms of speed and
power efficiency across a variety of workloads.

— Bus speed download and bus speed readback
kernels measure the speed at which data
is transferred between the computer and the
hardware accelerator, essential for evaluating
PCI bus efficiency [16, 6, 27, 15].
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— The sum kernel measures the speed and
bandwidth of the hardware accelerator. This
benchmark assesses performance during
vector sum [16, 6, 27, 50, 21, 22, 20, 41, 9,
4, 48].

— The multiplication measures the speed and
bandwidth of hardware accelerators when
performing matrix multiplication on matrices
of different sizes, offering insights into their
performance [16, 6, 27, 15, 21, 22, 20, 9, 4,
46, 30, 5, 44, 42, 49, 43, 26, 2, 40, 1, 34, 47,
10, 18, 28].

— The sorting kernel evaluates the performance
of the hardware accelerator during character
vector sorting, measuring both speed and
bandwidth [16, 6, 15, 42, 26, 1, 47,10, 13].

2.7 Discusion

A review of the state-of-the-art reveals that
kernels in benchmarks are executed on one or
two hardware accelerators, with CPUs, GPUs,
and occasionally FPGAs either individually or
in combination.

Another relevant aspect is that commonly
evaluated kernels include vector operations, matrix
multiplication, and sorting problems.

It is important to note that the benchmarks
discussed in the state-of-the-art are typically
executed through the command line, potentially
limiting their accessibility to users unfamiliar with
command-line interfaces. Furthermore, the most
commonly used metrics in these studies include
speed, bandwidth, speedup, and FLOPS.

Table 5 presents a comparison between the
HAMP benchmark (our proposal) and benchmarks
from the state-of-the-art. Typical benchmarks in-
clude hardware characteristics, vector operations,
matrix problems, and sorting problems. Further-
more, speed and bandwidth are the most common
performance metrics. A key distinction of HAMP
compared to existing benchmarks is its ability to
evaluate CPUs, GPUs, and FPGAs under a unified
execution environment, eliminating the need for
separate benchmarking tools for each architecture.
Current benchmarks, such as Rodinia, SHOC, and
Mirovia, typically focus on one or two accelerators



ISSN 2007-9737

HAMP: A Hardware Accelerator Multi-Platform Benchmark for High Performance ... 1347

Table 5. Features of state-of-the-art benchmarks
versus HAMP

[ Benchmark suite | Rodinia [ SHOC [ CHO [ Mirovia [ HAMP |

Hardware v v v v
characteristics
Vector
operations
Matrix
operations
Sorting
problems
Image
compression
Audio de
encoding
Encryption
algorithms
Computer
vision
Data
science

Speed v
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and rely on vendor specific frameworks like
CUDA for GPUs. In contrast, HAMP uses
OpenCL to establish a standardized benchmarking
methodology across multiple accelerator types,
enabling direct performance comparisons under
the same execution conditions.  Furthermore,
HAMP integrates a GUI that simplifies the
benchmarking process, making it more accessible
for researchers and developers while ensuring
consistency in experimental evaluation.

Figure 1 shows the relational graph illustrates
the relationships between hardware accelerators
(hexagonal nodes), kernels (circular nodes), and
scientific publications (Che et al. [3])(Coronado
et al. [5])(Danalis et al. [6])(Dinelli G. et al.
[7])(Dongarra et al. [8])(Hu B. et al. [16])(Jiang
et al. [21])(Khoould et al. [22])(Meyer et al.
[27])(Navarro [42])(Ndu et al. [29])(Taylor Lloyd et
al. [41])(Verman et al. [45])(Wei et al. [49])(Zeke et
al. [50)).

Each hexagonal node represents a specific
accelerator (CPU, GPU, FPGA), while each circular

node represents a benchmark used to evaluate
its performance. The rectangular nodes represent
scientific papers where these benchmarks have
been used or designed for the accelerators.

To highlight the proposed HAMP, its kernels
are shown in red, along with the three hardware
accelerators it supports. Unlike other benchmarks,
HAMP not only encompasses a diverse set
of kernels but also offers compatibility with
three specific hardware accelerators, enabling
more comprehensive and accurate performance
evaluations.

3 HAMP Benchmark Overview

HAMP benchmark is a multi-platform tool, multi-
platform refers to the capability of HAMP to execute
across diverse hardware accelerator architectures,
specifically CPUs, GPUs, and FPGAs, regardless
of the underlying operating system. Designed in
C++, OpenCL, and Python to evaluate the perfor-
mance of a wide range of hardware accelerators,
including CPUs, GPUs, and FPGAs. Developed
using C++, OpenCL, and Python, HAMP leverages
the strengths of each language to provide a
powerful and flexible benchmarking solution. C++
delivers the necessary performance for evaluation,
OpenCL enables parallel programming on different
accelerators including Intel FPGAs, and Python
facilitates interaction with the tool and analysis of
results. HAMP not only allows for performance
evaluation but also offers additional features
such as an intuitive graphical user interface
that simplifies experiment configuration, results
visualization, and comparative analysis. The ability
to load or randomly generate data for experiments
adds flexibility and allows users to tailor HAMP to
their specific needs.

The required libraries, drivers, and compilers
are essential for HAMP to effectively utilize the
heterogeneous hardware. For instance, OpenCL
libraries are necessary for multi-platform execution
of kernels, while specific drivers ensure optimal
communication with each hardware accelerator.
The following is a list of the specific libraries and
drivers required for each hardware accelerator:
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)
HAMP
benchmark
Matrix
multiplication
Zeke Wang et al.
2017 Marius Meyer et al.
2020
Anshuman
Verman et al.
2016
FPGA vs
Khoould et al. GPU

2019

Geoffrey Ndu et al.
2015

FPGA
Chao Jinang

2020 Gianmarco Dinelli et al.

2020

Obtimizat Liu Wei et al.
Taylor Lloyd et al. ptimization 2021

2017 techniques

Hardware
characteristics

CPU
Alber Navarro
2018
CPU vs

Jack J. Dongarra et al. FPGA
2018

Bodun Hu et al. Anthony Danalis et al.
2019 2010

GPU

Vector
operations

Shuai Che et al.
2009

Neural
networks

Edoardo Coronado et al| GPU vs
2015 J CPU

Fig. 1. Relational graph of state-of-the-art benchmarks, including HAMP

— CPUs: Requires the installation of OpenCL
drivers, such as the Intel OpenCL CPU
runtime, which enables CPU-based execution
of OpenCL kernels.

— GPUs (Nvidia & Intel): The system must
have the appropriate vendor-specific OpenCL
runtime installed, such as, the Nvidia CUDA
Toolkit with OpenCL support for Nvidia GPUs,
and the Intel Compute Runtime (ICD) for Intel
GPUs.

— FPGAs (Intel/Terasic): The Intel FPGA
SDK for OpenCL (AOCL) is required, which
provides the necessary Board Support Pack-
age (BSP) and compilation tools to gen-
erate bitstreams compatible with the target
FPGA device.

While HAMP requires standard C++ compilers
such as GCC or G++. For FPGA execution, the
AOCL compiler is used to compile OpenCL kernels
into FPGA-optimized hardware descriptions. The
above requirements are necessary to ensure that
each hardware accelerator operates under optimal
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conditions, avoiding performance inconsistencies
caused by missing drivers or incorrect runtime
configurations.

HAMP incorporates five widely used and
recognized kernels from the state-of-the-art bench-
marks: Bus speed download, bus speed readback,
vector sum, matrix multiplication, and sorting
problem. These kernels were selected for
their relevance in evaluating the performance
of hardware accelerators and their ability to
represent a variety of workloads and memory
access patterns. To evaluate performance, HAMP
uses two key metrics: bandwidth (Eq. 1) and
speed (Section 2.5). These metrics measure the
efficiency of data transfer and the execution speed
of the kernels, respectively, providing a complete
view of the performance of the accelerators.
The combination of these kernels and metrics
ensures the relevance and validity of the HAMP
proposal, and allows for comparable results with
state-of-the-art. Figure 2 shows the HAMP
benchmark data flow.

OpenCL programming for HAMP consists of six
main steps: (1) Kernel loading, (2) Data input, (3)
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Programming
C++/OpenCL
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BusSpeedDownload
BusSpeedReadBack

Vector sum

Matrix multiplication

Sorting problem

Fig. 2. Overview of HAMP benchmark

HAMP
benchmark
Hardware(3
Kernel loading Data input accelerator
selection
4 5 i
Kernel Data reading

Fig. 3. Flowchart of OpenCL programming for HAMP
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a Select device: | cru
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Number of executions D—@ |
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Fig. 4. HAMP GUI configuration options

Hardware accelerator selection, (4) Data transfer,
(5) Kernel execution, and (6) Data reading and
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analysis. Figure 3 shows a flowchart representing
these six main steps.

In the first step, the OpenCL kernel code is
loaded from a file or string into the host program.
Next, the input data to be processed on the
accelerator is prepared. Subsequently, the specific
accelerator (CPU, GPU, or FPGA) on which the
kernel will be executed is chosen. The input data
is then transferred from the host memory to the
accelerator memory. Once the data resides on
the accelerator, the OpenCL kernel is executed,
processing the input data. Finally, the results are
transferred from the accelerator memory back to
the host memory, where they are analyzed and
presented to the user.

Unlike other benchmarking tools, the GUI
provides a wide range of options for adjusting input
data, allowing users to customize experiments.
Figure 4 shows the HAMP GUI configuration
options.

This GUI allows users to configure six key
aspects for running experiments. In (1), the user
selects the available hardware accelerator on their
computer (CPU, GPU, or FPGA); (2) allows for
the selection of one of the five available kernels:
Bus speed download, bus speed readback, vector
sum, matrix multiplication, and sorting algorithms;
(3) specifies the size of the input data to be
processed by the selected kernel, for example, if
the kernel is selected for Matrix multiplication, a
value of 500 would indicate that the kernel will
multiply two matrices of 500x500 or if the selected
kernel performs Vector sum, a value of 500 would
indicate that the kernel will add two vectors of 500
elements each. This parameter allows adjusting
the workload and execution time of the experiment,
as well as evaluating the performance of the kernel
under different input sizes; Option (4) defines
the number of times the experiment will be run,
this allows obtaining statistically significant results
and evaluating performance variability; In option
(5), the user initiates the experiment execution,
HAMP proceeds to load the data, transfer it to
the accelerator, execute the kernel, and collect the
data; Option (6) allows the user to load pre-existing
data from a file instead of generating random data,
this is useful for experiments requiring specific data
or for replicating results from previous studies.
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Table 6. Specifications of the hardware accelerators for
the experiments.

Devi Manufacturer Clock Memory
evice speed
CPU i7 9750H Intel 2.60GHz | 24GB
GPU UHD
Graphics 630 Intel 1.15GHz | 24 GB
GPU .
GeForce GTX 1650 Nvidia 930 MHz 4GB
Cyclone V FPGA .
OpenVINO™ Toolkit Intel/Terasic 50 MHz 1GB

BusSpeedDownload|.........., FPGA
_ntel/Terasic

el

HAMP
Benchmark

Fig. 5. Experimental evaluation methodology for HAMP
benchmark.

4 Experimental Evaluation

To assess the effectiveness of HAMP benchmark
in heterogeneous computing, this section presents
an evaluation of its performance on three hardware
accelerators, focusing on the measurement of
bandwidth and kernel speed. Experiments were
conducted using five representative parallel ker-
nels - bus speed download, bus speed readback,
matrix multiplication, vector sum, and sorting
problem- executed on three hardware accelerators
(CPU, GPU, and FPGA). Performance was
evaluated in terms of bandwidth and kernel speed.
The following subsections detail the experimental
methodology, present the performance results for
each accelerator and kernel combination, and
analyze the observed improvements.
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4.1 Experimental Setup

Each of the five benchmark kernels (bus speed
download, bus speed readback, matrix mul-
tiplication, vector sum, and sorting problem)
was executed on four devices (an Intel i7
CPU, an Intel Graphics 630 GPU, an Nnvidia
GeForce GTX GPU, and an Intel/Terasic FPGA),
these devices represent three distinct hardware
accelerators: CPU, GPU, and FPGA. For each
kernel-accelerator combination, 30 independent
runs were performed to obtain robust performance
measurements of bandwidth and speed.

Figure 5 shows the experimental evaluation
methodology for the HAMP benchmark, and Table
6 presents the specifications of the hardware
accelerators used in this study.

4.2 Benchmark Performance

Performance is evaluated in terms of bandwidth
and speed, two key metrics for assessing the
efficiency of heterogeneous computing.  The
results, presented by kernel, compare the
performance achieved on each of the four devices.

To evaluate the Vector sum kernel, the size
of the input vectors was systematically varied
from 16 elements up to a maximum of 8,388,608
elements, using 20 logarithmically spaced vector
sizes. Performance measurements for vector sizes
smaller than 16 elements were omitted due to their
negligible impact on the results. The overhead
of kernel launch and data transfer dominated
the execution time for small vectors, making the
performance variations negligible.

Thirty independent runs were conducted for
each kernel-accelerator combination to ensure
statistically significant measurements of bandwidth
and speed. The speed results are presented
in Table 7.

Figure 6 presents the speed performance results
for the Vector sum kernel across the four devices,
plotted against vector size.  The Intel GPU
exhibits significantly higher speed than the other
devices, particularly for larger vector sizes, this
is due to its architecture, which is optimized for
parallel operations. The Nvidia GPU demonstrates
lower performance, suggesting lower performance
for this specific kernel. Notably, the Intel
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Table 7. Speed performance of the Vector sum on
four devices

Table 8. Speed performance of the Sorting kernel on
four devices

Vector CPU Intel | GPU Nvidia | GPU Intel | FPGA Intel/Terasic Vector | CPU Intel | GPU Nvidia | GPU Intel | FPGA Intel/Terasic
size (ms) (ms) (ms) (ms) size (ms) (ms) (ms) (ms)
16 0.012 0.015 0.003 0.094 4 0.074 0.004 0.005 0.056
32 0.033 0.016 0.003 0.094 ) 0.096 0.004 0.006 0.062
64 0.035 0.016 0.004 0.099 16 0.105 0.005 0.009 0.066
128 0.036 0.016 0.004 0.104 - - - -
256 0.039 0.017 0.004 0.098 32 0.115 0.005 0.011 0.076
64 0.130 0.006 0.019 0.080
512 0.039 0.017 0.004 0.095 158 0.207 0.047 0.027 0.086
1,024 0.040 0.017 0.004 0.101 . . . .
2,048 0.042 0.018 0.004 0.103 256 0.620 0.097 0.098 0.098
4,096 0.044 0.021 0.006 0.113 512 2119 0291 0.400 0.141
8,192 0.051 0.025 0.008 0.149 1024 | 8212 1.028 1.271 0.431
16,384 0.057 0.039 0.012 0.200 2,048 | 32.324 3.950 4.963 1.133
35768 0.074 0.074 0.020 0.348 4,096 | 129.078 15.390 16.312 10.630
65,536 0.096 0.136 0.037 0581 8,192 512.248 60.959 61.814 17.251
131,072 0172 0.264 0.072 7701 16,384 | 2,072.590 | 255620 | 253.887 54.191
262,144 0.257 0.516 0.133 2117 32,768 | 8,255.089 1,027.264 1,043.079 132.394
524,288 0.471 1.020 0.283 4.152
1,048,576 0.795 2.027 0.570 8.249
2,097,152 1.650 3.997 1.261 16.418 ,
4194304 | 3.686 8.008 2.420 32.716 To evaluate the Vector sum kernel's perfor-
8,388,608 | 6.736 16.017 5.247 65339 mance, bandwidth was measured on four different
devices. The results are shown in Figure 7.
102 The trend observed in Figure 6 is confirmed, the
—— FPGA Intel GPU exhibits significantly higher bandwidth
- 100 GPU Nvidia than the other devices, suggesting a greater
€ 100 g:ﬁ ||:tt:|| capacity for efficient data transfer. While the other
§ . devices demonstrate adequate performance, they
atf do not achieve the same level of bandwidth. This
1072 difference may be attributed to variations in their
architecture, memory, or processing capabilities.
10T 102 103 10* 105 10° 107 ’ y.orp g cap
N° data To evaluate the performance of the Sorting
. kernel, a Python script was implemented to
Fig. 6. Speed performance of the Vector sum on ’ y P P

four devices

CPU outperforms the Nvidia GPU, especially for
larger vector sizes, suggests that for certain
configurations, the CPU’s processing capacity can
be more effective than the Nvidia GPU. The
Intel/Terasic FPGA achieves consistent, but lower,
performance compared to the other three devices.
This may indicate a bottleneck in data transfer
or limitations in leveraging the hardware’s full
potential when using a framework like OpenCL, as
opposed to a HDL. These results suggest that the
Intel GPU is the most efficient device for the Vector
sum kernel when high performance is required,
although further analysis is necessary to fully
understand the observed performance differences
and to determine if this trend holds for other
kernels.

generate sets of randomly data for each execution,
creating files with vector sizes between 4 and
32,768 elements. Each execution of the kernel on
each device used a unique, randomly generated
dataset. This approach allowed for more
representative performance measurements and
avoided the bias that could be introduced by
repeatedly using the same, potentially pre-sorted,
dataset. Table 8 shows the speed performance of
the Sorting kernel on four devices.

Figure 9 presents the speed performance results
for the Sorting kernel across the four devices,
plotted against input data size (N). For smaller
dataset sizes (N < 10?), the Nvidia GPU achieves
the highest speed, suggesting greater parallel
processing efficiency for smaller data volumes.
However, with increasing dataset size (N > 10?),
the Intel CPU emerges as the fastest device,
suggesting a greater capacity for handling larger
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Fig. 7. Bandwidth performance of the Vector sum on
four devices

Table 9. Speed performance of the Matrix multiplication
on four devices

Matrix | CPU Intel | GPU Nvidia | GPU Intel | FPGA Intel/Terasic
‘ size (ms) (ms) (ms) (ms)

2 0.120 0.005 0.050 0.033

4 0.116 0.005 0.050 0.037

8 0.109 0.006 0.060 0.052

16 0.135 0.010 0.017 0.058

32 0.350 0.028 0.089 0.072

64 2171 0.118 0.627 0.174

128 16.529 1.022 4.900 3.800

256 230 11.981 39.200 9.900

512 2,865 114.766 314 59

1,024 27,877 1,215 2,584 617

2,048 288,863 9,524 22,043 7,304

4,096 2,985,782 76,932 - 216,102

_10°

g

Y104

<

5 —— FPGA

£10 GPU Nvidia

= —— GPU Intel

©

o 10° —— CPU Intel

102 103 104 10°
N° data

Fig. 8. Bandwidth performance of the Sorting kernel on
four devices.

datasets. The Intel GPU and Nvidia GPU exhibit
comparable performance, indicating their suitability
for sorting tasks, although their speed is slightly
lower than the Intel CPU for larger datasets. The
Intel/Terasic FPGA initially performs on par with
the Intel CPU, but its performance deteriorates
with increasing dataset size, possibly due to
a bottleneck in data transfer or limitations in
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Fig. 9. Speed performance of the Sorting kernel on
four devices

maximizing hardware utilization when employing
OpenCL instead of HDL.

The trend observed in Figure 9 is confirmed
by the bandwidth analysis presented in Figure
8. For smaller datasets (N < 102), the Nvidia
GPU exhibits the highest bandwidth, suggesting
greater efficiency in data transfer for smaller data
volumes. However, as the dataset size increases
(N > 102), the Intel CPU outperforms other devices
and achieves the highest bandwidth. This may
indicate a greater capacity of the Intel CPU to
handle larger data volumes or a greater efficiency
of its architecture for this type of operation.

For the Matrix multiplication kernel, random
integer values were generated for the elements
of each square matrix. The dimensions of the
matrices varied from 2x2 up to 4,096x4,096,
incremented logarithmically by powers of two. The
speed results obtained on the four devices are
presented in Table 9.

To evaluate the speed performance of the
Matrix multiplication kernel, measurements were
conducted on four different devices, Figure 10
illustrates the speed performance achieved, the
Nvidia GPU achieves the highest speed across
all tested data sizes, suggesting greater parallel
processing efficiency. The Intel CPU follows in
terms of speed, potentially indicating a greater
capacity for handling large datasets. The Intel GPU
performs very similarly to the Intel CPU, indicating
their suitability for Matrix multiplication operations.
The Intel/Terasic FPGA consistently exhibits low
performance, which, as discussed earlier, may be
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Table 10. Comparison of Mirovia and HAMP
compatibility with hardware accelerators for Bus speed
download and Bus speed readback kernels

GPU | GPU | CPU
‘ Benchmark Kernel ‘ intéiifhsic ‘ Nvidia ‘ Intel ‘ Intel ‘
L Bus speed download v
Mirovia Bus speed readback v
HAMP Bus speed download v v v v
Bus speed readback v v v v

10°| —— FPGA
— GPU Nvidia
€ 103 —— GPU Intel
S —— CPU Intel

1

9 10
&

1071

10! 102 103
N° data

Fig. 10. Speed performance of the Matrix multiplication
on four devices

attributed to limitations in maximizing hardware
utilization with OpenCL compared to HDL.

Figure 11 complements the results presented
in Figure 10, showing the bandwidth achieved by
the Matrix multiplication kernel on the four devices.
Figure 11 confirms the trend from Figure 10, the
Intel/Terasic FPGA exhibits the lowest bandwidth,
while the Nvidia GPU is the best option for Matrix
multiplication, regardless of matrix size. This
reinforces the hypothesis that the Nvidia GPU is
particularly well-suited for Matrix multiplication and
intensive data transfer operations.

4.3 Performance Comparison and Discussion

For performance comparison, Mirovia was se-
lected as a benchmark due to its recent
updates and focus on GPU architectures, this
benchmark is widely used in the literature for
evaluating GPU performance [16]. The hardware
characteristics kernels Bus speed download and
Bus speed readback were chosen for comparison.
These kernels were successfully executed with
HAMP on four devices of three hardware
accelerators (CPU, GPU, and FPGA). The bus
speed download and readback measurements for

104
103

102
—— FPGA
10t

Bandwidth (Gb/s)

GPU Nvidia
10°] —— GPU Intel
10-1 —— CPU Intel
107 102 103 10
N° data
Fig. 11. Bandwidth performance of the Matrix

multiplication on four devices

HAMP were performed using OpenCLs cl_event
objects. A clevent was created for each
transfer, and c/WaitForEvents was used to ensure
the transfer's completion before measuring the
elapsed time. The elapsed time was then
obtained using clGetEventProfilinginfo with the
cl_Profiling.Command_End query. The time taken
to transfer a 1 GB data buffer in each direction
(download and readback) was measured. Each
measurement was repeated 30 times, and the
average time was recorded. Mirovia execution
was limited to the Nvidia GPU as the benchmark’s
reliance on CUDA prevents its direct execution
on FPGA and CPU architectures. Table 10
presents a comparison of the bus speed download
and readback bandwidth achieved by HAMP and
Mirovia on the specified hardware.

In summary, HAMP demonstrates its effective-
ness as a multi-platform benchmark, leveraging
the strengths of diverse hardware architectures.
Results show significant improvements in compat-
ibility, supporting four devices of three hardware
accelerators, compared to existing benchmarks
that are primarily limited to one or two hardware
accelerator. Specifically, the Nvidia GPU delivers
the highest performance for Matrix multiplication
and Sorting problem, while the Intel GPU is ideally
suited for Vector sum. The Intel CPU offers
competitive performance across all evaluated
operations.  Although the Intel/Terasic FPGAs
performance is lower than expected for a dedicated
hardware device, this is attributed to the limitations
of OpenCL for hardware description.
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5 Conclusion and Future Work

This paper introduces HAMP, a multi-platform
benchmark for evaluating application performance
across diverse hardware accelerators, including
CPUs, GPUs, and FPGAs. HAMP comprises a
suite of five kernels (Bus speed download, Bus
speed readback, Vector sum, Matrix multiplication,
and Sorting problem) and employs two evaluation
metrics (speed and bandwidth).

The results demonstrate HAMP’s significant
improvements in compatibility, supporting four
devices (Intel CPU, Intel GPU, Nvidia GPU,
and Intel/Terasic FPGA) of three accelerators
(CPU, GPU, and FPGA), compared to existing
benchmarks that are typically limited to one or two
accelerator. Specifically, the Nvidia GPU achieves
the highest performance for Matrix multiplication
and Sorting problem, while the Intel GPU is ideally
suited for Vector sum. The Intel CPU also delivers
competitive performance across all five evaluated
kernels.

Although the Intel/Terasic FPGA did not achieve
the expected performance, this is attributed to
the limitations of OpenCL for hardware description
compared to HDLs. This suggests the need to
explore alternatives such as high-level synthesis
tools or optimization techniques to fully realize
the potential of these dedicated hardware devices.
Collectively, these findings suggest that HAMP can
serve as a valuable tool for comparative application
benchmarking across a wide range of hardware
accelerators, paving the way for the development
of high-performance heterogeneous computing.

To extend the HAMP benchmark, future work
will focus on several key areas. The plan is
to incorporate a wider range of kernels and
applications, including, for example, neural net-
works for machine learning, and image processing
algorithms such as Sobel filters.  Integration
of additional performance metrics relevant to
application performance is also planned, including
FLOPs, speedup, and energy efficiency. These
metrics will provide a more holistic view of
performance characteristics.

An investigation of alternative programming
frameworks, such as CUDA, and high-level
synthesis languages for FPGAs, is also planned to
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broaden HAMP’s applicability and explore different
programming paradigms. Furthermore, various
software and hardware optimization techniques
will be incorporated, including unrolling, pipelining,
and floating-point optimization (both single and
double precision), to maximize the performance
and energy efficiency of the target hardware
accelerators.

To facilitate performance analysis and opti-
mization, integration of HAMP with performance
analysis and profiling tools like Intel VTune profiler
[17] and Nvidia Nsight systems [32] will be
explored. This integration will enable developers
to easily identify performance bottlenecks and
guide the optimization process, providing deeper
insights into application behavior and informing
optimization decisions.

Finally, validation of HAMP across an even
wider range of hardware architectures is a key
goal, extending support to diverse heterogeneous
and specialized architectures.  This includes
emerging platforms like quantum accelerators
[23, 11] and neuromorphic devices [25]. This
broader validation effort aims to ensure HAMP’s
effectiveness and relevance across the evolving
landscape of high-performance computing.
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