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Abstract. In this review the role of fuzzy logic (FL) in 

hybrid intelligent systems is discussed. We first review 
the papers in which fuzzy logic is used in conjunction 
with neural networks, as well as their application areas. 
Then, we review the papers in which fuzzy logic has 
been used in combination with evolutionary algorithms, 
and the corresponding application areas. We also review 
the papers in which fuzzy logic has been used in a hybrid 
way with optimization algorithms, as well as the 
application areas. Regarding FL, we consider the 
evolution that has been undergoing, where initially type-
1 fuzzy logic was proposed and used, later type-2 was 
proposed and now more recently type-3 has been put 
forward. The evolution of FL has occurred due to the 
need of handling the higher uncertainty levels that real-
world problems have. In this regard, we analyze the 
impact of this evolution on different types of hybrid 
intelligent systems.  

Keywords. Type-3 fuzzy logic, neural networks, 

evolutionary algorithms, optimization algorithms. 

1 Introduction 

Hybrid intelligent systems have become a viable 
alternative for solving many real-world problems. 
Recently, the use of Soft Computing (SC) 
techniques in hybrid intelligent systems has 
become very popular due to the many advantages 
of SC techniques. In particular, three of the main 
areas of SC are: fuzzy systems (FSs), neural 
networks (NNs) and evolutionary algorithms (EAs). 
Fuzzy systems deal with the intrinsic uncertainty in 
solving problems with intelligent systems. Neural 
networks provide learning abilities to the intelligent 
systems. Evolutionary algorithms offer evolution 
and search abilities to the intelligent systems. A 

hybrid intelligent system (HIS) can be composed of 
two or more of these techniques, for example 
neuro-fuzzy systems combine the advantages of 
FSs (representing knowledge) with the learning 
abilities of NNs. Another case is evolutionary fuzzy 
systems in which EAs are used to optimize the 
design of a FS for a particular problem. In this 
paper, the goal is to study the role and impact of 
fuzzy logic (FL) when used to enhance the 
performance of neural networks, evolutionary 
algorithms and optimization algorithms (in 
general). For example, one recent trend has been 
to employ FSs for parameter adaptation in 
evolutionary and metaheuristic algorithms. 

The contribution of this paper is providing an 
overview of the utilization of FL in HISs, meaning 
in which way FSs are used to enhance the 
performance of NNs and EAs. In addition, based 
on the review of existing papers in the literature, 
we can infer some relevant conclusions and 
envision future trends for the years to come. We 
can say that, to the moment, there is no similar 
review that has been done. 

The review paper is structured as follows. 
Section 2 briefly reviews the evolution of FSs, 
since the original type-1 FSs were proposed by 
Zadeh [1-2] and later type-2 FSs were developed 
by Mendel [3], to finally Type-3 FSs theory [4-5] 
and applications [6-11]. Section 3 reviews the 
existing papers in which Fuzzy Logic (FL) is 
employed in conjunction with NNs. Section 4 
summarizes the papers in the state of the art of FL 
used with evolutionary algorithms. Section 5 
reviews the published papers in which FL is utilized 
in conjunction with optimization algorithms. Section 
6 outlines a discussion of the results and envisions 
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future trends for these areas. Finally, Section 7 
outlines the conclusions. 

2 Evolution of Fuzzy Logic and 
Systems 

Since the emergence of the Fuzzy Sets, proposed 
by Zadeh [1], this kind of sets had evolved for 
handling more information, starting from 
vagueness to high level of uncertainty. This section 
summarizes the differences among types of 
Fuzzy Sets.  

The definitions of Type-1, Type-2, and Type-3 
Fuzzy Sets are formulated in a succinct way in (1), 
(2) and (3), respectively: 

A(1) =  {(𝑥, 𝜇A(𝑥))|∀𝑥 ∈  [0, 1]}, (1) 

A(2) =  {((𝑥, 𝑢), 𝜇𝐴(𝑥, 𝑢))|∀𝑢 ∈  𝐽𝑥 ⊆ [0, 1]}, (2) 

A(3) =  {((𝑥, 𝑢), 𝜇A(3)(𝑥, 𝑢, 𝑧1))| x ∈  X, u ∈  U

⊆ [0, 1], z1 ∈  Z1 ⊆ [0, 1]}. 
(3) 

As we can note, in the original type-1 fuzzy sets 
only one membership function (MF) is used, but in 
type-2 there is a primary MF and a secondary MF 
[3], while type-3 introduces a tertiary MF [4]. 
Historically, this process has occurred due to the 
need of being able to cope with higher levels of 
uncertainty. These approaches are called 
Generalized Fuzzy Sets, and as can be noted, with 
the evolution of the Fuzzy Sets the definitions are 
more complex, handling vagueness, uncertainty 
and second order uncertainty, respectively. 
Additionally, there exist partial models of these 
Generalized Models called Interval Type-2 Fuzzy 
Sets (for simplifying the uncertainty management 
of Generalized Type-2 Fuzzy Sets) and Interval 
Type-3 (for simplifying the uncertainty 
management of Generalized Type-3 Fuzzy Sets). 
In the practical implementation of the generalized 
models, these interval approximations are used for 
approximating the generalized models by 
approaches, such as α-planes. For better 
understanding can be consulted the following 
reviews of the advances on Fuzzy Logic [12–13]. 

It is noteworthy that the secondary MF in the 
case of the Generalized Type-3 membership 
degree is a Generalized Type-2 membership 

function. On the other hand, the secondary MF of 
the IT3 membership degree is an IT2 
membership function. 

3 Fuzzy Logic in Neural Networks 

In this section we describe and analyze the 
publications that have been done in the 
intersection of FL and NNs. We consider the 
documents in Scopus as the source for the search. 
As FL has evolved from the initial type-1 FL, to later 
type-2 and more recently type-3, we have 
accordingly organized this section into 
three subsections.  

In general, we have noticed that hybrid fuzzy 
neural systems can arise from combining two 
separate modules of FL and neural networks, like 
in staged hybrid combination. Another case in 
when a fuzzy system is embedded in a neural 
system, like in the Adaptive Neuro-Fuzzy Inference 
System (ANFIS) approach. Other approaches are 
also possible, like when neuron activation is 
modeled with a fuzzy system. All these kinds of 
systems are considered in this study, as we are 

 

Fig. 1. A Hybrid fuzzy neural system 

 

Fig. 2. A Hybrid neural fuzzy system 

 

Fig. 3. A Hybrid adaptive neural fuzzy system 
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searching for all documents in Scopus, where the 
keywords “fuzzy neural networks” appear. The 
statistics and analysis for type-1, type-2 and type-
3 are shown in the following subsections, 
respectively. We show in Figure 1 one possible 
hybrid approach in which data enters a fuzzy 
system for processing and later an NN processes 
the information to obtain a final output. Another 
choice (shown in Figure 2) is when first an NN is 
utilized and later a FS summarizes results to find 
the final output. Another option is when a FS is 
embedded into an NN to achieve obtaining a fuzzy 
system with learning abilities (Figure 3). 

This section is divided in three parts that deal 
with type-1, type-2 and type-3 fuzzy neural 
networks, respectively. This order is historical, as 
type-1 was the first to be proposed and later type-
2 and type-3 emerged, as more powerful fuzzy 
models. In this sense, the number of published 
papers is higher for type-1 and lower for type-3. 

This section is divided in three parts that deal 
with type-1, type-2 and type-3 fuzzy NNs, 
respectively. This order is historical, as type-1 was 
the first to be proposed and later type-2 and type-
3 emerged, as more powerful fuzzy models. In this 
sense, the number of published papers is higher 
for type-1 and lower for type-3. 

3.1  Type-1 Fuzzy Logic in Neural Networks  

We did search on the Scopus database for the 
documents with the words “fuzzy neural networks” 
and we did find more than 63303 documents. We 
can mention some interesting and representative 
works in this area that can be found in [14-21]. In 
Figure 4 we notice that the published documents 
per year, where an increasing trend is very clear. 
Figure 5 shows the published papers per year by 
source. Figure 6 shows the papers by authors (only 
top ten). Table 1 lists the top ten authors in 
this area. 

3.2 Type-2 Fuzzy Logic in Neural Networks  

We did search on the Scopus database for the 
documents with the words “type-2 fuzzy neural 
networks” and we did find more than 1264 
documents. We can mention some interesting 
papers in this area, as a sample, which can be 
found in [22-31]. In Figure 7 we notice that the 

published documents per year, where an 
increasing trend is very clear. Figure 8 shows the 
papers by authors (only top ten). Figure 9 
illustrates a dispersion diagram by author in this 
area. Figure 10 depicts a dispersion diagram by 
country in this area. 

Table 1. List of the top Ten authors 

 Author 
Number of 
documents 

1 Melin, P. 318 

2 Pedrycz, W 311 

3 Oh, S.K. 216 

4 Castillo, O. 193 

5 Kisi, O. 145 

6 Lin, F.J. 135 

7 Quek, C. 128 

8 Lin, C.J. 124 

9 Lin, C.T. 123 

10 Lim, C.P. 103 

 

Fig. 4. Papers per year in fuzzy neural networks 

 

Fig. 5. Papers per year by source in fuzzy 
neural networks 
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3.3 Type-3 Fuzzy Logic in Neural Networks  

We did search on the Scopus database for the 
documents with the words “type-3 fuzzy neural 
networks” and we did find only 35 documents due 

to the fact that type-3 is a relatively new concept. 
We can highlight some of the interesting works in 
this area in [32-38]. In Figure 11 we notice that the 
published documents per year, where an 
increasing trend is very clear. Figure 12 shows the 

 

Fig. 6. Papers by author in fuzzy neural networks 

 

 

Fig. 9. Dispersion diagram by author in type-2 

fuzzy NNs 

 

Fig. 7. Papers by author in fuzzy neural networks 

 

 

Fig. 10. Dispersion diagram by country in type-2 

fuzzy NNs 

 

Fig. 8. Papers by author in type-2 fuzzy NNs 

 

 

Fig. 11. Papers per year in type-3 fuzzy 

neural networks 
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papers by authors (only top ten). Table 2 lists the 
top ten authors in this area. Figures 13 and 14 
depict the publications by country and 
affiliation, respectively. 

4 Fuzzy Logic in Evolutionary 
Algorithms 

We describe in this section the role that fuzzy logic 
has in enhancing evolutionary algorithms by 
providing its uncertainty handling capabilities. As 

was previously mentioned FL has evolved from the 
original type-1 to later type-2 and finally type-3 
fuzzy logic. So, in the same way, the involvement 
of fuzzy logic for enhancing evolutionary 
algorithms have followed the same path [39-42]. 
Figure 15 illustrates one of the possible ways in 
which a fuzzy system could be used to enhance an 
evolutionary algorithm, which is by enabling 
parameter adaptation (in this case P1 and P2 are 
the parameters). 

4.1 Type-1 Fuzzy Logic in Neural Networks  

We first discuss the search in Scopus for 
publications with the keywords "Fuzzy 
Evolutionary Algorithms", which produces 7539 
documents. Some examples of these papers are 
very recent [43-52]. Figure 16 illustrates the 
number of publications per year, which exhibit an 
increasing trend. Figure 17 shows the publications 
by author for this area, but only listing the top ten 
authors. Table 3 summarizes the number of 
documents of the top ten authors. Figure 18 
exhibits the number of documents by affiliation. 

Figure 19 illustrates the dispersion diagram of 
authors by documents in fuzzy evolutionary 
algorithms and Figure 20 exhibits the dispersion 
diagram with respect to citations of the papers. 
Both diagrams are similar, but there are some 
differences as in the diagram with respect to 
citations the authors with more citations can be 
distinguished by their bigger circles (as it is the 
case of Francisco Herrera from Spain, who looks 
bigger in the citation diagram). 

4.2 Type-2 Fuzzy Logic in Evolutionary 
Algorithms  

We now discuss the search in Scopus for 
publications with the keywords "Type-2 Fuzzy 
Evolutionary Algorithms", which produces only 203 
documents, and some examples can be found in 
[53-68]. Figure 21 illustrates the number of 
publications per year, which exhibit an increasing 
trend. Figure 22 shows the publications by author 
for this area, but only listing the top ten authors. 
Figure 23 exhibits the number of documents by 
type of publication. Figure 24 illustrates the 
dispersion diagram of authors by documents in 
fuzzy evolutionary algorithms and Figure 25 

Table 2. List of the top Ten authors 

 Author Papers 

1 Castillo, O 12 

2 Melin, P 10 

3 
Mohammadzadeh, 

A. 
8 

4 Castro, J.R. 4 

5 Pulido, M. 3 

6 Arifin, M.S. 3 

7 Elhaki, O. 2 

8 Rathinasamy, S. 2 

9 Shojaei, K. 2 

10 Taghavifar, H. 2 

 

Fig. 12. Papers by author in type-3 fuzzy 

neural networks 

 

Fig. 13. Papers by country in type-3 fuzzy 
neural networks 
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exhibits the dispersion diagram with respect to 
citations of the papers. 

4.3 Type-3 Fuzzy Logic in Evolutionary 
Algorithms 

We now discuss the search in Scopus for 
publications with the keywords "Type-3 Fuzzy 
Evolutionary Algorithms", which produces only 3 
documents, as type-3 is a very recent area of 
research [69-70]. Figure 26 shows the publications 
by author for this area, but only listing the top ten 
authors. Figure 27 exhibits the number of 
documents by type of publication. Other figures 
could not be drawn due to very low number of 
papers in this area (at the moment).  

5 Fuzzy Logic in Optimization 
Algorithms 

We describe in this section the role that fuzzy logic 
has in enhancing optimization algorithms by 
providing its uncertainty handling capabilities.  

As was previously mentioned FL has evolved 
from the original type-1 to later type-2 and finally 
type-3 fuzzy logic. So, in the same way, the 
involvement of fuzzy logic for enhancing 
optimization algorithms have followed the same 
path [71-76]. Figure 28 illustrates one of the 
possible ways in which a fuzzy system could be 
used to enhance an optimization algorithm, which 
is by enabling parameter adaptation (in this case 
P1 and P2 are the parameters). 

5.1 Type-1 Fuzzy Logic in Optimization 
Algorithms 

We first discuss the search in Scopus for 
publications with the keywords "Fuzzy 
Optimization Algorithms", which produces 36323 
documents. Some relevant papers in this area can 
be found in [77-88]. Figure 29 illustrates the 
number of publications per year, which exhibit an 
increasing trend. Figure 30 shows the publications 
by author for this area, but only listing the top ten 
authors. Table 4 summarizes the number of 
documents of the top ten authors. Figure 31 
exhibits the number of documents per year by 
source. Figure 32 illustrates the dispersion 
diagram of authors by documents in fuzzy 
evolutionary algorithms and Figure 33 exhibits the 
dispersion diagram with respect to citations of 
the papers. 

5.2 Type-2 Fuzzy Logic in Optimization 
Algorithms 

We now discuss the search in Scopus for 
publications with the keywords "Type-2 Fuzzy 
Optimization Algorithms", which produces 1050 
documents. A sample of this paper can be found in 
[89-100]. Figure 34 illustrates the number of 
publications per year, which exhibit an increasing 
trend. Figure 35 shows the publications by author 
for this area, but only listing the top ten authors. 
Figure 36 exhibits the number of documents by 
country. Figure 37 illustrates the dispersion 
diagram of authors by documents in fuzzy 
evolutionary algorithms and Figure 38 exhibits the 
dispersion diagram with respect to citations of 
the  papers. 

 

Fig. 16. Publications per year in fuzzy 

evolutionary algorithms 

 

Fig. 17. Publications by author in fuzzy 
evolutionary algorithms 
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5.3 Type-3 Fuzzy Logic in Optimization 
Algorithms 

We first discuss the search in Scopus for 
publications with the keywords "Type-3 Fuzzy 
Optimization Algorithms", which produces only 14 
documents. Some of these papers can be found in 
[101-110]. Figure 39 illustrates the number of 
publications per year, which exhibit an increasing 

trend. Figure 40 shows the publications by author 
for this area, but only listing the top ten authors.  

6 Discussion of Future Trends 

n this section we describe the analysis of the data 
that was found from Scopus and also, we envision 
viable future trends for the role of FL in HISs. 

 

Fig. 18. Publications by affiliation in fuzzy 

evolutionary algorithms 

 

 

Fig. 21. Publications by author in fuzzy 

evolutionary algorithms 

 

 

Fig. 19. Dispersion diagram of authors by documents 

in fuzzy evolutionary algorithms 

 

 

Fig. 22. Publications by author in fuzzy 

evolutionary algorithms 

 

Fig. 20. Dispersion diagram of authors by citations in 

fuzzy evolutionary algorithms 

 

 

Fig. 23. Documents by publication type in type-2 fuzzy 

evolutionary algorithms 

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1723–1740
doi: 10.13053/CyS-29-3-5897

A Review on the Role of Fuzzy Logic in Hybrid Intelligent Systems 1729

ISSN 2007-9737



Based on the publications that have been 
produced over the years, we can state that most of 
the type-3 hybrid papers have been applied in 
control area, prediction and decision making.  

We are convinced that other areas will be 
undertaken in the near future, such as pattern 
recognition, clustering and intelligent agents. In 
addition, on the theoretical part, at the moment 
mostly the papers deal with interval type-3 FL 

 

Fig. 24. Dispersion diagram by documents in type-2 

fuzzy evolutionary algorithms 

 

 

Fig. 27. Documents by publication type in type-3 fuzzy 

evolutionary algorithms 

  

Fig. 25. Dispersion diagram by citations in type-2 fuzzy 

evolutionary algorithms 

 

 

Fig. 28 Fuzzy parameter adaptation in an 

optimization algorithm 

 

Fig. 26. Publications by author in type-3 fuzzy 

evolutionary algorithms 

 

 

Fig. 29. Publications per year in fuzzy 

optimization algorithms 
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(meaning the tertiary membership function is fixed 
to a value of one), but we envision that generalized 
type-3 would be achieved in the near future, 
allowing obtaining even better results for many 
complex real-world problems.  

Finally, there is also possible theoretical work 
on type-n FL, which could also enable even more 
remarkable results in the future. 

7 Conclusions 

In this review the role of fuzzy logic in HISs has 
been analyzed and discussed. We first reviewed 
the papers in which FL is used in conjunction with 
NNs, as well as their application areas. Then, we 
reviewed the papers in which FL has been used in 

Table 4. Top ten authors by number of documents 

Author Documents 

Castillo, O. 366 

Pedrycz, W. 226 

Melin, P. 217 

Oh, S.K. 156 

Valdez, F. 134 

Soria, J. 83 

Niknam, T. 75 

Abraham, A. 67 

Panda, S. 66 

Gen, M. 61 

 

Fig. 30. Top ten authors in fuzzy optimization algorithms 

 

Fig. 31. Number of documents per year by source 
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combination with evolutionary algorithms, and the 
corresponding application areas.  

We also reviewed the papers in which FL has 
been used in a hybrid way with optimization 

algorithms, as well as the application areas. 
Regarding FL, we consider the evolution that has 
been undergoing, where initially type-1 fuzzy logic 
was proposed and used, later type-2 was proposed 

 

Fig. 32. Dispersion diagram by documents in fuzzy 

optimization algorithms 

 

 

Fig. 35. Top ten authors in type-2 fuzzy 

optimization algorithms 

 

Fig. 33. Dispersion diagram by citations in fuzzy 

optimization algorithms 

 

 
Fig. 36. Number of publications by country in type-2 

fuzzy optimization algorithms 

 

Fig. 34. Publications per year in fuzzy 

optimization algorithms 

 

 

Fig. 37. Dispersion diagram by documents in type-2 

fuzzy optimization algorithms 
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and now more recently type-3 has been put 
forward. The evolution of fuzzy logic has occurred 
do to need of handling the higher uncertainty levels 
that real-world problems required. In this regard, 
we analyze the impact of this evolution on different 
types of hybrid intelligent systems.  
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