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Abstract. Developing machine translation (MT) sys-
tems for low-resource languages such as Assamese
remains challenging due to limited parallel corpora
and morphological complexity. Recent instruction-tuned
large language models (LLMs) offer few-shot transla-
tion capabilities, but static prompt-based methods of-
ten yield suboptimal performance in real world scenar-
ios. This paper introduces AstraMT, a modular pipeline
for Assamese–English few-shot translation using LLMs.
AstraMT incorporates a context-aware prompt selec-
tor (CAPS), syntactic prompt templates, multi-output
reranking based on BLEU and COMET scores, and a
lightweight post-editing module that corrects named en-
tity errors and auxiliary omissions. The framework was
evaluated on two datasets: the FLORES-200 devtest
set and a manually aligned subset of the Samanantar
corpus. AstraMT achieved BLEU improvements of up
to +3.2 and COMET gains of +0.07 over static few-
shot prompting. The AstraMT-Mixtral variant reached a
BLEU of 23.0 on FLORES-200 and 21.3 on Samanan-
tar, outperforming the supervised IndicTrans2 baseline.
Qualitative and error analyses further highlighted As-
traMT’s ability to generate fluent and semantically ac-
curate translations. These results demonstrate that As-
traMT provides an effective and extensible framework
for LLM based translation in low-resource settings and
can generalize across different LLMs without additional
fine-tuning.

Keywords.Context ware prompt selector, prompt con-
structor, LLM, mixtral.

1 Introduction

Machine Translation (MT) has seen significant advances
in recent years, primarily driven by deep neural archi-
tectures and the availability of large-scale parallel cor-
pora [4, 28]. However, such progress has remained
largely inaccessible to low-resource languages like As-
samese, which lack the volume and quality of bilingual
datasets required to train traditional Neural Machine
Translation (NMT) systems [11]. This presents a sub-
stantial barrier to equitable language technology devel-
opment across the Indian subcontinent.

The recent emergence of instruction-tuned Large Lan-
guage Models (LLMs) such as GPT-4 [22], Mixtral [15],
and LLaMA2-Chat [26] has opened up new possibilities
for MT in low-resource scenarios. These models, trained
on broad multilingual corpora, are capable of zero-shot
and few-shot translation by leveraging in-context learn-
ing. However, prior work using such LLMs has often
relied on static prompt templates with a small, manually
curated set of examples. While effective in high-resource
settings, this approach fails to account for domain shifts,
semantic variability, and stylistic nuances inherent in As-
samese, limiting both translation quality and robustness.

This paper introduces AstraMT—a modular frame-
work for Assamese–English few-shot translation us-
ing instruction-tuned LLMs. Unlike existing prompting
pipelines, AstraMT features a dynamic, multi stage de-
sign that adapts the translation context to each input.

The framework comprises four key components: (1)
a CAPS that retrieves semantically similar examples
using multilingual sentence embeddings, (2) a Prompt

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1167–1178
doi: 10.13053/CyS-29-3-5886

ISSN 2007-9737



Constructor that dynamically formats and assembles in-
struction aligned prompts, (3) a Multi Prompt Rerank-
ing stage that evaluates multiple candidate translations
based on BLEU (Bilingual Evaluation Understudy) and
COMET (Crosslingual Optimized Metric for Evaluation of
Translation) scores, and (4) a lightweight Post Editing
Module that corrects frequent LLM translation errors,
including named entity mismatches, dropped auxiliaries,
and punctuation inconsistencies.

The main contributions of this study are as follows:

— AstraMT is proposed as a modular framework for
few-shot translation between Assamese and En-
glish using instruction-tuned LLMs.

— CAPS is introduced as a context-aware retrieval
mechanism that selects semantically relevant ex-
amples for dynamic prompt construction.

— Multi-prompt reranking and a lightweight post-
editing module are integrated to improve translation
quality without fine-tuning.

— Extensive evaluation is conducted across multiple
LLMs, benchmarks, and metrics, and a new quali-
tative taxonomy of translation errors in low-resource
Indic MT is presented.

The rest of the paper is organized as follows: Sec-
tion 2 reviews related literature. Section 3 details the
AstraMT architecture. Section 4 describes the experi-
mental setup. Section 5 presents results and analysis.
Section 6 concludes the paper and outlines directions
for future work.

2 Literature Review

Recent advances in instruction-tuned LLMs have revi-
talized interest in zero-shot and few-shot approaches
to machine translation (MT), especially for languages
where parallel corpora are scarce. While conven-
tional supervised NMT methods still dominate high-
resource settings, low-resource scenarios demand alter-
native strategies such as in-context learning, retrieval-
augmented prompting, and output reranking.

In this section, we survey key developments in these
areas, with a particular focus on approaches that inform
the design of our proposed AstraMT framework.

2.1 Few-shot and Zero-shot Machine
Translation

Traditional neural machine translation (NMT) systems
rely on large-scale parallel corpora for supervised train-
ing [4, 28], which are often unavailable for low-resource
languages such as Assamese. This limitation has led
to the exploration of zero-shot and few-shot approaches,
particularly with the advent of instruction-tuned large
language models (LLMs) such as GPT-3 [5], GPT-4 [22],
and Mixtral [15].

These models enable translation through in context
learning, where a small set of examples is included in
the prompt to guide the model. However, as shown
in [12, 16], the quality of few-shot translation heavily
depends on the choice and ordering of examples, which
are often manually fixed and domain-insensitive.

2.2 Context-aware Prompting and Retrieval
Methods

Recent work has highlighted the importance of context-
aware prompting in improving in-context learning per-
formance [16, 25, 2]. Retrieval augmented methods
select semantically similar examples from a database
of candidate prompts based on input similarity, often
using multilingual sentence embeddings such as LASER
(Language-Agnostic Sentence Representations) [3] or
LaBSE (Language-agnostic BERT Sentence Embed-
dings) [7]. In the context of MT, this has been applied to
improve few-shot translation through adaptive example
selection [18, 29], but primarily in high-resource settings
and for European or Chinese language pairs. To the
best of our knowledge, no prior work has explored this
for Assamese–English translation.

2.3 Reranking and Post Editing in LLM based
Translation

In traditional MT, reranking of n-best hypotheses has
been widely used to improve fluency and adequacy,
particularly in statistical MT systems [21]. In LLM based
settings, reranking has reemerged as a way to select
the best output among multiple generations [17], us-
ing reference free metrics like COMET [9] or sentence
level BLEU. Similarly, lightweight post-editing methods
have been proposed to address common errors in LLM
translations such as hallucination, named entity dis-
tortion, or inconsistent verb inflections [6]. This work
builds on these ideas by incorporating both reranking
and post editing directly into the inference pipeline for
low-resource translation.
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2.4 Low-resource Indic Language Translation

Despite increased interest in multilingual NLP, most
prior work has focused on major Indic languages like
Hindi, Bengali, and Tamil [11, 24]. Assamese remains
underrepresented in public MT benchmarks, with lim-
ited availability of high-quality corpora and pretrained
models. FLORES-200 [20] and the Samanantar cor-
pus [24] have improved access to parallel data, while
Laskar et al. [13] introduced a domain-specific En-
glish–Assamese corpus spanning agriculture, news, and
COVID-19, which proved effective for domain-adapted
NMT. Back-translation has recently shown strong re-
sults: Ahmed etal. (ICON 2023) report improvements
of over +6 BLEU for English→Assamese via iterative
methods [1]. Concurrently, Nath et al. (2024) demon-
strate that integrating transliteration modules into NMT
pipelines yields significant gains in translation accuracy,
particularly for named entities [19]. Nevertheless, these
methods involve additional training and pipelined compo-
nents. AstraMT offers a fully inference driven alternative,
relying entirely on instruction tuned LLMs enhanced by
dynamic example retrieval, reranking, and post editing.

While previous works have explored context-aware
prompting or reranking individually, few have unified
these into an end to end pipeline for low-resource MT.
To our knowledge, AstraMT is the first framework that
combines adaptive prompt selection, multi output rerank-
ing, and post-editing specifically for Assamese–English
translation using instruction-tuned LLMs.

3 Methodology

This section describes the design of AstraMT, the pro-
posed modular framework for few-shot Assamese to En-
glish translation using instruction-tuned LLMs. AstraMT
eliminates the need for model fine-tuning by leverag-
ing in-context learning with dynamically selected and
reranked examples. The system is designed to ad-
dress challenges such as vocabulary sparsity, semantic
drift, and inconsistent translation style common in low-
resource setups.

AstraMT is composed of four main components that
operate in sequence: (i) a CAPS, (ii) a Prompt Construc-
tor, (iii) Multi-Prompt LLM Inference with scoring based
reranking, and (iv) a lightweight Postprocessing module.
These components together transform a raw Assamese
sentence into a high-quality English translation through
a fully inference-time pipeline.

Figure 1 shows how AstraMT processes this sentence
using each module.

3.1 Framework Overview

AstraMT is a modular, fully inference-time pipeline de-
signed to translate Assamese sentences into English us-
ing few-shot prompting with instruction-tuned LLMs. The
system comprises five sequential components: CAPS,
a Prompt Constructor, a multi-prompt LLM Inference
engine, a Scoring and Reranking module, and a final
Postprocessing stage. Each component addresses key
challenges in low-resource translation ranging from vo-
cabulary sparsity to inconsistent fluency without requir-
ing fine tuning.

The pipeline begins with the CAPS, which retrieves
a small number (k = 3 or 4) of semantically similar
Assamese–English translation pairs for few-shot prompt-
ing. CAPS uses LaBSE [7] embeddings to encode both
the input sentence and a pool of held-out exemplars
(from FLORES-200 and Samanantar), and ranks them
using cosine similarity. The most relevant examples are
routed to the next module. Figure 2 shows this retrieval
process.

Next, the Prompt Constructor assembles the se-
lected examples into a structured in-context prompt us-
ing a fixed instruction template. Each example pair is
formatted with consistent tags, and the final input sen-
tence is appended at the end with its English counterpart
left blank. This structured prompt guides the LLM to
perform the translation in-context. Figure 3 illustrates this
formatting process.

The constructed prompt is then passed to an
instruction-tuned LLM Inference engine. Mixtral-8×7B-
Instruct [10] was primarily used as the backbone, ac-
tivating 2 of 8 expert subnetworks per token for effi-
cient inference. Additional evaluations were conducted
using GPT-4 [22] and Zephyr-7B-β [27]. Each prompt
generated multiple outputs (n=3) using top-p sampling
(temperature=0.9, top-p=0.95), increasing lexical di-
versity. These outputs were routed to the scoring mod-
ule.

The Scoring and Reranking module evaluates
all candidate translations using both BLEU [23] and
COMET [9] scores. BLEU captures n-gram overlap with
a reference, while COMET estimates adequacy and flu-
ency using reference free contextual embeddings. The
top scoring translation is selected for final refinement.
Table 2 illustrates how reranking improves selection qual-
ity.

Finally, the selected output is passed to the Postpro-
cessing Module, which performs surface level correc-
tions to enhance fluency and accuracy. This includes
(i) detokenization and spacing fixes, (ii) transliteration
of named entities (e.g., “Silchar” → iSlqar), and (iii)
light grammatical edits. Table 3 showcases examples
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Table 1. Summary of prior work on Assamese–English machine translation

Study / Method Language Pair Key Technique Limitation / Gap
Ahmed et al. [1] English ↔ Assamese Iterative back-translation using syn-

thetic data
Requires model retraining; sensitive

to noisy pseudo-labels
Laskar et al. [13] English ↔ Assamese Domain-specific corpus with super-

vised NMT
Limited domain coverage; does not

generalize across domains
Nath et al. [19] English ↔ Assamese Transliteration-enhanced NMT

pipeline
Needs external transliteration mod-

ule; no in-context learning
AstraMT (Ours) English ↔ Assamese Few-shot prompting with CAPS,

multi-prompt reranking, post-editing
Fully inference-time system; avoids

any training; adaptable and modular

Note: This table summarizes selected representative works with methodological relevance to our approach. While other studies exist
in Assamese–English MT, we focus here on those that introduce novel techniques beyond standard transformer baselines.

Fig. 1. Overview of the proposed AstraMT framework. The pipeline includes dynamic prompt selection, instruction-tuned
LLM inference, reranking, and postprocessing to enhance Assamese–English translation

Table 2. Candidate translations for the sentence “Aaim
Aaij iclqar �giqlu� (We went to Silchar today)

Candidate Translation COMET Score
We had gone to Silchar today. 0.71
Today we went to Silchar. 0.74
We went to Silchar today. 0.78

where postprocessing improves the output’s readability
and fidelity.

AstraMT-Mixtral is defined as the primary system, in-
tegrating all four modular components—CAPS, Prompt
Constructor, Scoring and Reranking, and Postpro-
cessing—with the Mixtral LLM. To assess model ag-

nostic effectiveness, variants such as AstraMT-GPT
and AstraMT-Zephyr are instantiated AstraMT-GPT and
AstraMT-Zephyr, where Mixtral is replaced by GPT-4 and
Zephyr-7B respectively.

Unlike static few-shot prompting, AstraMT dynamically
retrieves, structures, evaluates, and refines translations
at inference time without requiring additional model fine-
tuning. Experiments demonstrate that AstraMT consis-
tently improves translation accuracy across backbones
that AstraMT consistently improves translation accuracy
across backbones, particularly in low-resource settings
such as Assamese to English translation.

To better illustrate how AstraMT operates, an example
input sentence is presented an example input sentence:
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Fig. 2. CAPS uses LaBSE embeddings to retrieve the
top-k most semantically similar Assamese–English ex-
ample pairs based on cosine similarity

Fig. 3. Prompt Constructor module in AstraMT. The
retrieved examples are formatted into an instruction-
aligned prompt, which is passed to the LLM to generate
translation candidates

Aaim Aaij iclqar �giqlu (We went to Silchar
today.)

Step 1: Semantic Retrieval
Given an input sentence for translation, the CAPS

computes its dense representation using LaBSE embed-
dings. In parallel, each Assamese sentence in a curated
bank of Assamese–English sentence pairs—sourced
from held out portions of FLORES-200 and Samanantar
is pre-encoded into the same embedding space. CAPS
then compares the input embedding with these stored
embeddings using cosine similarity and retrieves the
top-k most contextually relevant examples. For this travel
related sentence, CAPS may select examples such as:
“etO kail idilL gol” (He went to Delhi yesterday) or “Aaim
GuBon�ya çomonot Aaiqlu” (We were on a round trip) are se-
lected based on cosine similarity in embedding space.

Table 3. Examples illustrating postprocessing correc-
tions in AstraMT

Raw LLM
Output

Issue Postprocessed
Output

We went to
Silchar today

Named entity
in Latin script

Aaij idna
Aaim iclqar
�giqlu

He has went to
market

Verb
agreement error

He has gone
to the market

She is reading a
book .

Tokenization
and punctuation
spacing

She is reading
a book.

We had gone to
Silchar today .

Mixed tense /
unnatural phras-
ing

We went to
iclqar today.

Step 2: Prompt Construction: These examples are
formatted into a few-shot prompt following a fixed instruc-
tion template:

Translate the following Assamese

sentences into English:

Assamese: ‘‘etO kail idilL gol"
English: He went to Delhi yesterday.

Assamese: ‘‘Aaim Aaij iSlqar �giqlu"
English:

Step 3: LLM Inference: This prompt is then fed to an
instruction-tuned model such as Mixtral, which produces
a candidate translation such as “We went to Silchar to-
day.” Multiple prompt variants are used to obtain diverse
outputs, enabling better coverage of syntactic and lexical
options.

Step 4: Scoring and Reranking Each candidate trans-
lation is scored using the COMET metric, which esti-
mates translation adequacy without requiring references.
When reference translations are available, sentence-
level BLEU is also computed. The reranker selects the
top candidate with the highest predicted quality based
on these scores. For example, among candidates such
as “Today we went to Silchar,” and “We had gone to
Silchar today,” the system selects the one with the high-
est COMET score.

Step 5: Postprocessing: The final output undergoes
cleanup ensuring named entities (e.g., “Silchar”) are
transliterated properly, punctuation is restored, and tok-
enization artifacts are removed. The polished translation
is: “We went to Silchar today.”

This end to end process, executed without model fine-
tuning, enables AstraMT to produce reliable translations
in a fully modular, inference only setting.
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4 Experimental Setup

This section describes the datasets, evaluation metrics,
and model configuration details used to assess the per-
formance of AstraMT and its baseline counterparts. The
experiments were conducted in a fully inference time
setup, without any parameter updates or fine-tuning.

4.1 Datasets

AstraMT was evaluate on two Assamese–English par-
allel datasets representing both clean benchmarks and
real world scenarios. The first is the FLORES-200 de-
vtest set [20], containing 1,012 high quality sentence
pairs. As a standardized benchmark, it supports con-
sistent evaluation using BLEU and COMET.

The second is a 1,000-sentence subset of the
Samanantar corpus [24], sampled to include 4–25 token
sentences and manually verified for alignment. Un-
like FLORES, Samanantar includes noisier web and
newswire content, offering a more realistic evalua-
tion setting.

4.2 Model Configuration

Four model backends were evaluated in this study, en-
compassing both traditional supervised Neural Machine
Translation (NMT) systems and instruction tuned LLMs.
All LLMs were used in few-shot settings without any addi-
tional fine-tuning, leveraging in-context learning for trans-
lation. a small number of example Assamese–English
sentence pairs (typically 3–4) are included within the
prompt to demonstrate the translation task. These ex-
amples, retrieved from a curated bank using the CAPS
module, precede the actual input sentence, whose En-
glish translation is left blank. The LLM is then expected
to complete the output based on the demonstrated pat-
terns, allowing it to generalize without modifying model
weights.

AstraMT-Mixtral, the primary system, uses Mixtral-
8×7B-Instruct as its backbone. Mixtral is a sparse
Mixture-of-Experts (MoE) Transformer model developed
by Mistral AI, where two of eight expert subnetworks are
activated per layer during inference. The HuggingFace
Transformers interface was used with nucleus sampling
(temperature=0.9, top-p=0.95) and generated three
completions per prompt (num return sequences=3). In-
ference was performed on an NVIDIA RTX A6000 GPU
with 47GB VRAM. The vanilla Mixtral model without
AstraMT components was also evaluated using a static
4-shot prompt configuration as a baseline.

GPT-4 was accessed via the OpenAI API using a
similar 4-shot prompt structure, with temperature=0.7
and three completions per input. Zephyr-7B-β, a smaller
instruction aligned open source model, was tested with
the same settings but limited to 3-shot prompts due to its
shorter context window.

Each AstraMT variant: Mixtral, GPT-4, and Zephyr
was evaluated within our complete modular pipeline,
which includes CAPS based prompt selection, struc-
tured prompt construction, reranking via COMET and
BLEU, and a final postprocessing step. For ablation
purposes, all LLMs were also tested under vanilla few-
shot prompting using static exemplars without any As-
traMT enhancements. Table 4 provides a summary of
the configurations, prompting strategies, and inference
environments used in the experiments.

5 Results and Analysis

This section presents both quantitative and qualitative
evaluations of AstraMT and its baselines. BLEU and
COMET scores are reported on two test sets: FLORES-
200 and Samanantar and the impact of key components
such as CAPS and prompt size is analyzed. Finally, As-
traMT is compared against existing Assamese–English
NMT systems.

5.1 Main Results: FLORES-200 and
Samanantar

Table 5 and Table 6 present BLEU and COMET scores
for baseline LLMs and AstraMT variants on the FLORES-
200 devtest set and a curated subset of the Samanantar
corpus. AstraMT variants represent the full pipeline,
incorporating context-aware prompt selection, multi-
prompt reranking with COMET and BLEU, and final
postprocessing to enhance fluency and named entity
consistency.

AstraMT-Mixtral achieved the highest performance on
both datasets, with BLEU 23.0 and COMET 0.71 on
FLORES-200, and BLEU 21.3 and COMET 0.67 on
Samanantar.

AstraMT-GPT and AstraMT-Zephyr also showed
strong performance, consistently outperforming their
static prompting counterparts. Notably, even the smaller
Zephyr-7B-β benefited significantly from the modular
pipeline.
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Table 4. Model configurations and inference settings. Mixtral is the default backbone used in AstraMT unless otherwise
specified. AstraMT variants apply the full pipeline: CAPS, reranking, and postprocessing

Model Model Type Few-Shot Strategy Inference Settings
Hardware
Mixtral-8×7B-Instruct (vanilla) LLM (MoE, instruct) Static 4-shot temperature=0.9,

top-p=0.95, n=3
NVIDIA RTX A6000
AstraMT-Mixtral AstraMT (LLM + modules) Dynamic via CAPS Mixtral + CAPS + rerank +

postprocess
NVIDIA RTX A6000
GPT-4 LLM (instruction-tuned) Static 4-shot temperature=0.7, n=3
OpenAI API
Zephyr-7B-β LLM (lightweight, instruct) Static 3-shot Same as Mixtral
NVIDIA RTX A6000
AstraMT-Mixtral AstraMT (LLM + modules) Dynamic via CAPS Mixtral + CAPS + rerank +

postprocess
NVIDIA RTX A6000
AstraMT-GPT AstraMT (LLM + modules) Dynamic via CAPS GPT-4 + CAPS + rerank +

postprocess
OpenAI API
AstraMT-Zephyr AstraMT (LLM + modules) Dynamic via CAPS Zephyr + CAPS + rerank +

postprocess
NVIDIA RTX A6000

Table 5. Performance on the FLORES-200 Assamese–English devtest set. All AstraMT variants use CAPS, reranking,
and postprocessing

System LLM Type CAPS Rerank Postproc BLEU COMET
GPT-4 API ✗ ✗ ✗ 17.2 0.61
Mixtral-8x7B Open-source ✗ ✗ ✗ 19.8 0.64
Zephyr-7B-β Open-source ✗ ✗ ✗ 18.4 0.62
AstraMT-GPT API ✓ ✓ ✓ 22.5 0.69
AstraMT-Mixtral Open-source ✓ ✓ ✓ 23.0 0.71
AstraMT-
Zephyr

Open-source ✓ ✓ ✓ 21.7 0.68

5.2 Ablation: CAPS and Prompt Size

To assess the contribution of the CAPS module, it was
replaced with static prompts in AstraMT-Mixtral. As
shown in Table 7, removing CAPS led to a 2.4 BLEU
and 0.06 COMET drop on FLORES-200, underscoring
the value of context-aware prompt selection.

The effect of prompt size (i.e., number of few-shot
examples) on BLEU and COMET was also analyzed.
Table 8 shows that performance improved with more
shots, peaking around 4-shot settings. However, longer
prompts increased input token length and latency, sug-
gesting a trade-off between accuracy and efficiency.

5.3 Qualitative Examples

Table 9 provides representative translations from the
FLORES-200 set, comparing baseline Mixtral with
AstraMT-Mixtral. The latter produced more fluent, con-
textually accurate translations, demonstrating the value
of dynamic prompting and reranking.

5.4 Comparison with Prior Assamese–English
NMT Systems

AstraMT was compared with prior Assamese–English
NMT systems (Table 11). Laskar et al. explored multiple
Transformer-based approaches: their alignment aware
model [14] integrated prior alignment and pre-trained
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Table 6. Performance on the Samanantar Assamese–English subset. All AstraMT variants use CAPS, reranking,
and postprocessing

System LLM Type CAPS Rerank Postproc BLEU COMET
GPT-4 API ✗ ✗ ✗ 16.8 0.58
Mixtral-8x7B Open-source ✗ ✗ ✗ 18.9 0.61
Zephyr-7B-β Open-source ✗ ✗ ✗ 17.5 0.59
AstraMT-GPT API ✓ ✓ ✓ 21.0 0.66
AstraMT-Mixtral Open-source ✓ ✓ ✓ 21.3 0.67
AstraMT-
Zephyr

Open-source ✓ ✓ ✓ 20.1 0.64

Table 7. Ablation study of the CAPS module using
AstraMT-Mixtral

Configuration BLEU COMET
AstraMT-Mixtral (no CAPS) 20.6 0.65
AstraMT-Mixtral (full) 23.0 0.71

Table 8. Effect of prompt size on AstraMT-Mixtral
(FLORES-200)

Shots BLEU COMET Tokens/Input Latency (s)
1 20.1 0.65 120 1.5
2 21.4 0.67 190 2.2
3 22.8 0.70 260 3.0
4 23.0 0.71 320 3.6

Table 9. Qualitative translations comparing baseline
Mixtral and AstraMT-Mixtral

Input
(Assamese)

Mixtral AstraMT-Mixtral

Aaim Aaij
iSlqar �giqlu

Today went
Silchar.

We went to
Silchar today.

itin bojat
bojarTu ekenkuya
Aaisl?

Three market
how was?

How was the
market at three
o’clock?

MoI kail tumak
log paIiqlu.

I met you
tomorrow.

I met you
yesterday.

MoI �iSlqar�
palu

I found ” Silchar ”. I found “Silchar.”

language models, achieving a BLEU of 18.44, while a
domain-adapted version [13] combined curated corpora
with monolingual augmentation, reaching 20.04. In-
dicTrans2 [8], trained on the Samanantar corpus [24],
served as a multilingual baseline with BLEU scores be-
tween 12 and 20. In contrast, AstraMT-Mixtral, without
any supervised fine-tuning, achieved a BLEU of 23.0,

demonstrating the efficacy of LLM based few-shot trans-
lation augmented with CAPS and reranking.

5.5 Human Evaluation

A human evaluation was conducted on 100 randomly
selected Assamese–English sentence pairs from the
FLORES-200 devtest set to assess translation quality.
Three bilingual annotators independently rated the out-
puts of AstraMT variants (Mixtral, GPT, Zephyr), static
few-shot prompting, and IndicTrans2 across three di-
mensions adapted from Laskar et al. [13]: adequacy
(faithfulness to source meaning), fluency (grammatical
and natural expression in English), and overall quality
(a composite judgment of adequacy and fluency). Each
criterion was rated on a 1–5 Likert scale. Table 12 re-
ports the average scores across systems. It is observed
that AstraMT-Mixtral obtained the highest human ratings
across all dimensions.

5.6 Translation Error Analysis

Finally, 50 outputs from AstraMT-Mixtral were manually
annotated to identify common translation errors. As
shown in Figure 4, the most frequent issues involved
tense mismatches and literal phrasing. AstraMT occa-
sionally produced incorrect verb tense, such as translat-
ing past events using the present form for example, “MoI
kail Aaihlu� was rendered as “I come yesterday” instead
of the correct “I came yesterday.” Named entity han-
dling errors were also prevalent, where certain locations
or names were over-transliterated or left untranslated,
leading to awkward expressions. Literal phrasing was
another common issue, with the model sometimes repro-
ducing Assamese sentence structure too closely, as in
the case of itin bojat bojarTu ekenkuya Aaisl? becoming
“Three market how was?” rather than the more fluent
“How was the market at three o’clock?” Additionally,
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Table 10. Qualitative translations from other models for reference

Input (Assamese) GPT-4 Zephyr IndicTrans2

Aaim Aaij iSlqar �giqlu Today we went Silchar. We are go to Silchar. I have gone to Silchar.

itin bojat bojarTu ekenkuya
Aaisl?

How was the market at three? What was market in 3
o’clock?

How was the market in the
afternoon?

MoI kail tumak log paIiqlu. I met you tomorrow. Yesterday I meet you. I met you yesterday.

MoI �iSlqar� palu I found ” Silchar ”. I get Silchar. I discovered Silchar.

Table 11. Comparison with prior Assamese–English NMT systems. BLEU reported for En→As

Model Methodology Highlights Corpus Size BLEU
AstraMT-Mixtral (Ours) Few-shot LLM + CAPS +

Reranking + Postprocessing
∼387k + prompts 23.0

Laskar et al. (2022) [13] Transformer + Data
Augmentation +
Postprocessing

387k + 1.3M aug. 20.04

Laskar et al. (2023) [14] Transformer + Prior
Alignment + Pretrained LM

210k 18.44

IndicTrans2 (AI4Bharat) [8] Supervised Transformer +
Samanantar + PMIndia

141k + 12.5

Samanantar Baseline [24] Transformer + Bilingual
Dictionary + Filtered Corpora

141k 10.2

Table 12. Average human evaluation scores (1–5 scale)
across systems

System Adequacy Fluency Overall
Quality

AstraMT-Mixtral 4.5 4.6 4.5
AstraMT-GPT 4.3 4.4 4.3
AstraMT-Zephyr 4.1 4.2 4.1
IndicTrans2 3.7 3.8 3.7
Few-shot Mixtral (no
CAPS)

3.9 4.0 3.9

dropped auxiliaries such as “has,” “is,” or “was” occasion-
ally resulted in grammatically incomplete translations.
Finally, minor punctuation and tokenization artifacts par-
ticularly around commas, periods, and spacing were
observed, especially in outputs from open source LLMs
like Mixtral. These findings highlight specific linguistic
challenges in low-resource Assamese–English transla-
tion and provide actionable insights for improving the
reranking and postprocessing modules.

6 Conclusion

This paper presentedAstraMT, a modular, inference-time
pipeline for few-shot translation of low-resource lan-

Fig. 4. Distribution of common translation errors ob-
served in AstraMT-Mixtral outputs on FLORES-200

guages using instruction-tuned LLMs . Designed specif-
ically for Assamese–English translation, AstraMT inte-
grates four key components: a CAPS, dynamic prompt
construction, multiprompt reranking with COMET/BLEU
scoring, and post processing. This architecture en-
ables significant improvements without requiring model
fine-tuning. Experiments on the FLORES-200 and
Samanantar datasets showed that AstraMT consistently
performed better than both the baseline few-shot LLMs
and the supervised IndicTrans2 model. Interestingly,
AstraMT-Mixtral scored a BLEU of 23.0 on FLORES-200
and outperformed GPT-4 and other open-source sys-
tems. The significance of the CAPS module and the op-
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Table 13. Examples of common translation errors made by AstraMT-Mixtral. Each row shows the original Assamese
input (with transliteration), the AstraMT output, and a corrected reference.

Error Type Input (Assamese) AstraMT Output Corrected Output

Tense Mismatch MoI kail AaiHlu
moi kali ahilu

I come yesterday. I came yesterday.

Named Entity Error MoI iSlqarIo golu
moi silcharloi golu

I went to Silchar city. I went to Silchar.

Literal Phrasing itin bojat bojarTu ekenkuya
Aaisl?

tini bojat bojartu ki asil ?

Three market how was? How was the market at
three o’clock?

Dropped Auxiliaries etO bojarlIo ig�sl
teo bojarloi goisil

He to market gone. He had gone to the market.

Punctuation Error MoI �iSlqar� palu
moi “Silchar” palu

I found “Silchar ” I found “Silchar.”

timal prompt size was demonstrated in ablation studies,
whereas the assessment of changes in fluency, named
entity handling, and grammaticality was also performed
through qualitative analyses. Beyond accuracy, AstraMT
is adaptable to multiple LLM backends and offers prac-
tical trade-offs between translation quality, latency, and
token usage. These findings suggest AstraMT is well
suited for low-resource, real world deployments where
labeled data is scarce, and compute constraints exist.
Future work will explore extending AstraMT to multilin-
gual settings, refining reranking criteria, and integrating
explainability features such as attention visualization and
attribution methods to better interpret model predictions.

Data Availability

The code generated and the datasets used and/or an-
alyzed in the present work are with the corresponding
author and may be supplied upon a reasonable request.

References

1. Ahmed, M. A., Kashyap, K., Talukdar, K., Boruah,
P. A. (2023). Iterative back translation revisited: An
experimental investigation for low-resource English–
Assamese neural machine translation. Proceedings
of the 20th International Conference on Natural Lan-
guage Processing (ICON), NLP Association of India
(NLPAI), Goa University, Goa, India, pp. 172–179.

2. An, S., Zhou, B., Lin, Z., Fu, Q., Chen, B., Zheng,
N., Chen, W., Lou, J.-G. (2023). Skill-based few-
shot selection for in-context learning. Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, Association for Com-
putational Linguistics, Singapore, pp. 13472–13492.

3. Artetxe, M., Schwenk, H. (2019). Massively mul-
tilingual sentence embeddings for zero-shot cross-
lingual transfer and beyond. Transactions of the
Association for Computational Linguistics, Vol. 7,
pp. 597–610.

4. Bahdanau, D., Cho, K., Bengio, Y. (2014). Neural
machine translation by jointly learning to align and
translate. arXiv preprint arXiv:1409.0473.

5. Brown, T. B., Mann, B., Ryder, N., Subbiah, M.,
Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., Agarwal, S., Herbert-
Voss, A., Krueger, G., Henighan, T., Child, R.,
Ramesh, A., Ziegler, D. M., Wu, J., Winter, C.,
Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray,
S., Chess, B., Clark, J., Berner, C., McCan-
dlish, S., Radford, A., Sutskever, I., Amodei,
D. (2020). Language models are few-shot learners.
Proceedings of the 34th International Conference on
Neural Information Processing Systems (NeurIPS
2020), Curran Associates Inc., Red Hook, NY, USA,
pp. 159:1–159:25.

6. do Carmo, F., Shterionov, D., Moorkens, J., Wag-
ner, J., Hossari, M., Paquin, E., Schmidtke, D.,
Groves, D., Way, A. (2021). A review of the state-
of-the-art in automatic post-editing. Machine Trans-
lation, Vol. 35, No. 2, pp. 101–143. DOI: 10.1007/
s10590-020-09252-y.

7. Feng, F., Yang, Y., Cer, D., Arivazhagan, N.,
Wang, W. (2022). Language-agnostic bert sentence
embedding. Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), Association for Computa-
tional Linguistics, Dublin, Ireland, pp. 878–891.

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1167–1178
doi: 10.13053/CyS-29-3-5886

Lauro Reyes-Cocoletzi1176

ISSN 2007-9737



8. Gala, J., Chitale, P. A., K., R. A., Gumma, V., Dod-
dapaneni, S., Kumar, A., Nawale, J., Sujatha, A.,
Puduppully, R., Raghavan, V., Kumar, P., Khapra,
M. M., Dabre, R., Kunchukuttan, A. (2023). In-
dicTrans2: Towards high-quality and accessible ma-
chine translation models for all 22 scheduled Indian
languages.

9. Guerreiro, N. M., Rei, R., van Stigt, D., Coheur,
L., Colombo, P., Martins, A. F. T. (2024). xcomet:
Transparent machine translation evaluation through
fine-grained error detection. Transactions of the As-
sociation for Computational Linguistics, Vol. 12,
pp. 979–995. DOI: 10.1162/tacl\_a\_00683.

10. Jiang, A. Q., Sablayrolles, A., Roux, A., Men-
sch, A., Savary, B., Bamford, C., Chaplot, D. S.,
de las Casas, D., Bou Hanna, E., Bressand, F.,
Lengyel, G., Bour, G., Lample, G., Lavaud, L. R.,
Saulnier, L., Lachaux, M.-A., Stock, P., Subra-
manian, S., Yang, S., Antoniak, S., Le Scao,
T., Gervet, T., Lavril, T., Wang, T., Lacroix,
T., El Sayed, W. (2024). Mixtral of experts. arXiv
preprint arXiv:2401.04088.

11. Joshi, P., Santy, S., Budhiraja, A., Bali, K.,
Choudhury, M. (2020). The state and fate of linguis-
tic diversity and inclusion in the nlp world. ACL.

12. Kumar, A., Puduppully, R., Dabre, R., Kunchukut-
tan, A. (2023). Ctqscorer: Combining multiple fea-
tures for in-context example selection for machine
translation. Findings of the Association for Com-
putational Linguistics: EMNLP 2023, Association
for Computational Linguistics, Singapore, pp. 7736–
7752.

13. Laskar, S. R., Manna, R., Pakray, P., Bandyopad-
hyay, S. (2022). A domain specific parallel corpus
and enhanced English–Assamese neural machine
translation. Computación y Sistemas, Vol. 26, No. 4,
pp. 1669–1687. DOI: 10.13053/cys-26-4-4423.

14. Laskar, S. R., Paul, B., Dadure, P., Manna, R.,
Pakray, P., Bandyopadhyay, S. (2023). English–
Assamese neural machine translation using prior
alignment and pre-trained language model. Com-
puter Speech & Language, Vol. 82, pp. 101524. DOI:
10.1016/j.csl.2023.101524.

15. Le, T. D. e. a. (2023). Mixtral of experts: Sparse mix-
ture of experts with 8x7b llms. https://mistral.
ai/news/mixtral-of-experts/.

16. Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin,
L., Chen, W. (2022). What makes good in-context
examples for GPT-3? Proceedings of Deep Learn-
ing Inside Out (DeeLIO 2022): The 3rd Work-

shop on Knowledge Extraction and Integration for
Deep Learning Architectures, Association for Com-
putational Linguistics, Dublin, Ireland and Online,
pp. 100–114.

17. Manevich, A., Tsarfaty, R. (2024). Mitigating hal-
lucinations in large vision-language models (lvlms)
via language-contrastive decoding (lcd). Findings
of the Association for Computational Linguistics:
ACL 2024, Association for Computational Linguis-
tics, Bangkok, Thailand, pp. 6008–6022.

18. Merx, R., Mahmudi, A., Langford, K., de Araujo,
L. A., Vylomova, E. (2024). Low-resource ma-
chine translation through retrieval-augmented llm
prompting: A study on the mambai language.
Proceedings of the 2nd Workshop on Resources
and Technologies for Indigenous, Endangered and
Lesser-resourced Languages in Eurasia (EURALI)
@ LREC-COLING 2024, ELRA and ICCL, Torino,
Italia, pp. 1–11.

19. Nath, B., Sarkar, S., Mukhopadhyay, S., Roy,
A. (2024). Improving neural machine translation by
integrating transliteration for low-resource English–
Assamese language. Natural Language Processing,
Vol. 31, No. 2, pp. 306–327. DOI: 10.1017/nlp.

2024.20.

20. NLLB, T., Fan, A., Bhosale, S., Schwenk, H.,
Wenzek, G., Chaudhary, V., Goyal, N., Birch, T.,
Liptchinsky, V., Gelly, S., Grave, E., Auli, M.,
Joulin, A. (2022). No Language Left Behind: Scal-
ing Human-Centered Machine Translation. arXiv
preprint, Vol. arXiv:2207.04672.

21. Och, F. J. (2003). Minimum error rate training in
statistical machine translation. Proceedings of the
41st Annual Meeting of the Association for Com-
putational Linguistics, Association for Computational
Linguistics, Sapporo, Japan, pp. 160–167.

22. OpenAI (2023). Gpt-4 technical report. https://

openai.com/research/gpt-4.

23. Papineni, K., Roukos, S., Ward, T., Zhu, W.-J.
(2002). BLEU: a method for automatic evaluation
of machine translation. Proceedings of the 40th An-
nual Meeting of the Association for Computational
Linguistics (ACL), Association for Computational
Linguistics, pp. 311–318. DOI: 10.3115/1073083.

1073135.

24. Ramesh, G., Doddapaneni, S., Bheemaraj, A.,
Jobanputra, M., AK, R., Sharma, A., Sahoo,
S., Diddee, H., J, M., Kakwani, D., Kumar, N.,
Pradeep, A., Nagaraj, S., Deepak, K., Raghavan,
V., Kunchukuttan, A., Kumar, P., Khapra, M. S.

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1167–1178
doi: 10.13053/CyS-29-3-5886

Detection of Tendency to Depression Through Text Analysis 1177

ISSN 2007-9737



(2022). Samanantar: The largest publicly available
parallel corpora collection for 11 indic languages.
Transactions of the Association for Computational
Linguistics, Vol. 10, pp. 145–162. DOI: 10.1162/

tacl\_a\_00449.

25. Rubin, O., Herzig, J., Berant, J. (2022). Learning
to retrieve prompts for in-context learning. Proceed-
ings of the 2022 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Associ-
ation for Computational Linguistics, Seattle, United
States, pp. 2655–2671.

26. Touvron, H. e. a. (2023). Llama 2: Open founda-
tion and fine-tuned chat models. https://ai.meta.
com/llama/.

27. Tunstall, L., Beeching, E., Lambert, N., Rajani,
N., Rasul, K., Belkada, Y., Huang, S., von Werra,

L., Fourrier, C., Habib, N., Sarrazin, N., Sanse-
viero, O., Rush, A. M., Wolf, T. (2023). Zephyr:
Direct distillation of LM alignment. arXiv preprint
arXiv:2310.16944.

28. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit,
J., Jones, L., Gomez, A. N., Kaiser, L., Polo-
sukhin, I. (2017). Attention is all you need. NeurIPS.

29. Voita, E., Serdyukov, P., Sennrich, R., Titov, I.
(2018). Context-aware neural machine translation
learns anaphora resolution. Proceedings of the 56th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), Associa-
tion for Computational Linguistics, Melbourne, Aus-
tralia, pp. 1264–1274.

Article received on 07/08/2025; accepted on 02/09/2025.
*Corresponding author is Basab Nath.

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1167–1178
doi: 10.13053/CyS-29-3-5886

Lauro Reyes-Cocoletzi1178

ISSN 2007-9737


