
An Optimized Workflow for Odia Handwritten Character Recognition

Pragnya Ranjan Dash∗, Rakesh Chandra Balabantaray

International Institute of Information Technology,
Dept. of CSE,

India

{c122006@, rakesh}@iiit-bh.ac.in

Abstract. Classifying handwritten Odia scripts is
challenging because of the script’s complex character
shapes and the lack of large annotated datasets.
Odia is a low-resource language with only limited
digital materials, making the development of effective
recognition systems important for improving access
and ensuring fair digital representation. The present
study addresses the classification of handwritten Odia
data, including basic characters, digits, and a set
of frequently used compound characters. The
proposed method combines several preprocessing
steps with a lightweight Convolutional Neural Network
(CNN), and data augmentation is applied to enrich
the training samples and reduce overfitting. To
evaluate the approach, four benchmark datasets were
used: NITROHCS V1.0 (basic characters), ISI Kolkata
(digits), IIT Bhubaneswar (digits and characters), and
IIITBOdiaV2 (digits and characters). The model was
trained on one dataset and tested on the others to
assess adaptability. Additional evaluation was performed
on real handwritten data consisting of both characters
and digits. The experimental results demonstrate
the effectiveness of the CNN model, showing an
accuracy that either surpasses or closely matches earlier
proposed systems using the same dataset.

Keywords. Thresholding, gaussian filter, edge detec-
tion, segmentation, preprocessing, CNN, recognition.

1 Introduction

A machine can recognize handwritten text by using
optical character recognition (OCR). There are two
ways to do this: online and offline, as shown in
Figure 1. Online involves using electronic devices
to track writing direction as it occurs [21], such
as in online signature authentication [27]. On

the other hand, offline handwriting identification
involves recognizing text from scanned images [5].
This not only saves space but also time. In offline
OCR, the system doesn’t get details about how the
pen moves, its path, or the direction of the text
line. So offline OCR is considered more crucial
than online OCR [16].

Many languages are spoken in India in a
variety of scripts. However, there is a surprising
scarcity of research in the literature supporting
the identification of handwritten text using optical
character recognition (OCR). Notably, most studies
focus on recognizing Devanagari, Tamil, Telugu,
and Bangla handwritten characters, sidelining
other regional languages [41]. Over 35 million
people speak Odia, an Indo-Aryan language, in
states including Gujarat, West Bengal, Andhra
Pradesh, and Odisha. Odia has its origins in
the Kalinga script, a variation of the Brahmi script
used in ancient India. Odisha’s literature and
history have been preserved over the years on
palm leaves.

Authors like Madhusudan Das, Upendra Bhanja,
Gopabandhu Das, Radhanath Ray, Gangadhar
Meher, and Fakir Mohan Senapati have made
significant contributions to Odia literature. Over
the past few decades, efforts have been made to
safeguard these literary treasures by transforming
them into digital data, following advancements
in digital preservation. To avoid storage issues,
opting for text files over scanned copies makes
practical sense. However, since manually
converting these vast volumes of content is not
feasible, the solution lies in employing offline OCR
for Odia characters [36]. This technology enables

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1133–1151
doi: 10.13053/CyS-29-3-5885

ISSN 2007-9737

Optical Character
Recognition(OCR)

online-OCROffline-OCR

Printed Chracter
Recognition

Handwritten Character
Recognition

Fig. 1. Types of Optical Character Recognition

the automatic conversion of image data into text
files, ensuring a more efficient and sustainable
approach to preserving these cultural gems.

Odia script consists of 10 numerals and 49
basic characters, from which over 100 compound
characters can be constructed. The fundamental
character set comprises 12 vowels and 37
consonants. In the Odia script, writing flows
from left to right, and the conventional concept
of upper and lowercase is absent. The majority
of Odia characters exhibit a roundish nature, and
the similarities between many characters create
challenges for classification tasks [16].Unlike Hindi
and Bangla, Odia lacks horizontal lines, making
segmentation tasks less difficult. Adding to the
complexity, when a vowel follows a consonant, the
character undergoes a modified shape.

This modified form can appear on the left,
right, both sides, bottom, or top of the character,
giving rise to what is known as ”matras.” These
matras contribute to the distinctive appearance
of characters based on the accompanying vowel.
Furthermore, the script introduces an additional
layer of complexity with compound characters,
known as ”juktakshara.” These compound charac-
ters emerge when a consonant or vowel follows
another consonant. The merging of these
characters results in a compound shape, adding
more complication to the script’s visual dynamics
of the character. Although only limited work
has been carried out on offline recognition of
Odia characters, most existing studies concentrate
on printed text. Reported results for printed

character recognition are generally satisfactory. In
contrast, research on handwritten Odia characters
is relatively scarce [12]. The majority of
available work addresses handwritten numerals,
while relatively few studies investigate handwritten
characters [37]. Recognition performance is
particularly poor in the case of handwritten
compound characters. Several factors contribute to
this difficulty, such as the complexity of allographs,
the scarcity of suitable datasets, and minimal
engagement from commercial initiatives.

Odia, as a low-resource language, encounters
major obstacles in the development of Optical
Character Recognition (OCR) system. The
limited availability of large annotated datasets,
combined with minimal investment in dedicated
OCR systems, restricts the creation of accurate
recognition models. Progress is further slowed by
the absence of strong commercial and academic
initiatives focusing specifically on Odia. Such
challenges are not exclusive to Odia; many other
low-resource languages face similar issues arising
from insufficient data and limited research activity,
which in turn affects advances in natural language
processing (NLP) and machine learning. At the
same time, the increasing use of smartphones
in India and the rising demand for digital content
in regional languages highlight the urgency of
building OCR systems for Odia. Automatic
recognition of handwritten characters has the
potential to reduce the digital gap and improve
language accessibility, thereby supporting greater
linguistic equity.

To address these challenges, a specialized
OCR model using a Convolutional Neural Network
(CNN) was developed for recognizing handwritten
Odia characters. The model was trained and eval-
uated on several benchmark datasets, including
those from NIT Rourkela, IIT Bhubaneswar, ISI
Kolkata, and IIIT Bhubaneswar, which contain both
numeral and character data. The IIT Bhubaneswar
and IIIT Bhubaneswar datasets also include
frequently used compound characters, along with a
subset of simple characters carrying matras. This
broader coverage enables the system to recognize
not only basic characters but also common
compound forms. For robustness assessment,
training was performed on one benchmark dataset,

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1133–1151
doi: 10.13053/CyS-29-3-5885

Pragnya Ranjan Dash, Rakesh Chandra Balabantaray1134

ISSN 2007-9737

while testing was carried out on others to examine
adaptability. Further evaluation was conducted
using real handwritten samples collected from
multiple individuals, demonstrating the model’s
potential for real-world application.

The proposed approach can be outlined as fol-
lows:
– A set of optimized preprocessing techniques was

applied to reduce noise in the dataset samples
and to standardize them into a common format
across different datasets.

– A custom lightweight Convolutional Neural Net-
work (CNN) module was developed specifically
for character recognition.

– The use of CNN eliminates the need for
manual feature extraction, thereby improving
efficiency and enabling a more automated
recognition process.

– To demonstrate the model’s robustness, it was
tested on a different dataset than the one used
for training and validation.

– The proposed approach is data-efficient and
adaptable, making it particularly well-suited for
applications in low-resource languages, such
as Odia.

2 Related Work

In the field of offline Odia character recognition,
approximately 45 papers have been published
in conferences and journals over the last two
decades. This amount of research is relatively
small compared to other Indian languages, such
as Gurumukhi, Hindi, Telugu, Bangla, and Tamil.
Interestingly, many authors in these papers have
had to create their synthetic datasets because
there’s a lack of publicly available benchmark
datasets. Unfortunately, only four datasets have
been shared with the research community, and
they only cover digits, basic characters and
some compound characters. Our literature review
paid special attention to papers that evaluate
their methods using benchmark datasets. This
is important because using such standardized
datasets is considered the best way to test how well
a recognition system works.

In the early stages of exploring Odia handwritten
character recognition in the literature, a focus

was on the ISI Kolkata digit dataset. Tripathy
et al. in 2003 [42] proposed a method for
numeral recognition, employing threshold-based
binarization as a key preprocessing step. The
authors derived features from various aspects,
including reservoir area, location, water flow path,
loop count, center of gravity, the ratio between
reservoir and loop, profile-based features, and
jump discontinuity. Conclusively, employing a
binary tree classification approach yielded an
accuracy of approximately 97.74%. Roy et al. [34]
proposed a method that first identified the region of
interest (ROI) using bounding box parameters and
then segmented characters into blocks. Features
were extracted through a chain code histogram
with a dimensionality of 400. For classification,
neural networks and quadratic classifiers were
employed, and the reported accuracy reached
94.81%. In another study, Bhowmik et al. [3]
used binarization, thresholding, and normalization
during preprocessing of digit images. The
extracted features, based on horizontal and
vertical strokes, were modeled using a Hidden
Markov Model (HMM), which achieved an accuracy
of 90.50%.

Jindal T. [23] applied only two preprocessing
steps: Gaussian filtering and image resizing.
After preprocessing, Zernike moment features
were extracted and classified using an ensemble
of Multilayer Perceptrons (MLPs) combined with
Multiclass AdaBoost.Perceptrons (MLPs) based on
Multiclass AdaBoost. Ultimately, this approach
yielded a recognition rate of 97.10%. In the study
described in [35], the authors Sarangi PK. et al.
combined a numeral dataset they created with the
established ISI Kolkata dataset. Subsequently,
features were extracted through LU factorization,
and a Naı̈ve Bayes classifier was employed for
classification, yielding an accuracy of 92.75%. In
study [28], Majhi et al. applied preprocessing
methodologies, including the utilization of a median
filter and Canny edge detection. Subsequently,
all samples were resized to a dimension of
64 × 64. Features were extracted through
diverse transformations—namely, discrete Fourier,
short-time Fourier, discrete cosine, discrete
wavelet, S-transform, and curvelet of digits.
Employing PCA, the dimensionality of features was

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1133–1151
doi: 10.13053/CyS-29-3-5885

An Optimized Workflow for Odia Handwritten Character Recognition 1135

ISSN 2007-9737

condensed to 32. Various classifiers, such as
MLP, artificial neural networks, radial basis function
networks, and probabilistic neural networks, were
enlisted. Ultimately, the study reported an
impressive recognition rate of 98.70%.

Dash KS et al.[13], proposed an approach where
the sole preprocessing step applied to both the
ISI Kolkata and IIT Bhubaneswar datasets was
segmentation. The features, founded on sparse
concept-coded tetrolets, were subjected to various
classifiers, including Random Forest (RF), Support
Vector Machine (SVM), k-Nearest Neighbors
(kNN), and a modified quadratic discriminant
function (MQDF). Consequently, remarkable ac-
curacies were achieved, with IIT Bhubaneswar
digits and characters attaining 98.72% and
93.24%, respectively. Similarly, the ISI Kolkata
dataset demonstrated high accuracy, particularly
in digit classification, with an accuracy of 99.22%.
Likewise, in this study by Sethy et al.[40], exclusive
preprocessing was employed for the identical
datasets, involving size normalization. Following
this, the images were fed into a Convolutional
Neural Network (CNN) model. The outcomes
demonstrated notable accuracy rates, reaching up
to 98.4% on the ISI Kolkata dataset and 97.71% on
the IIT Bhubaneswar digit dataset.

In the investigation documented in [10] the
Sparse Concept Coding-based Image Represen-
tation (SCCST) efficiently extracts low-dimensional
features using an octave sampling-based non-
redundant S-transform, with sparsity reducing
feature dimensions and preserving geometric
structure. The method uses k-NN and SVM classi-
fiers, achieving 95.48% (SVM) and 96.35% (k-NN)
accuracy for IIT BBS handwritten characters,
97.80% (SVM) and 99.2% (k-NN) for numerals.
Das et al. [7] employed preprocessing techniques
such as binarization, pruning, and dilation on
the IIT Bhubaneswar digit dataset, normalizing
samples to 40×40 pixels. Features were
extracted through convolutional layers, optimized
using the JAYA algorithm, and classified with a
Random Forest model, yielding an accuracy of
98.25%. Similarly, in [11], regions of interest
were localized using bounding boxes and binarized
with Otsu’s thresholding. The digit samples
were partitioned into nine zones, from which

Stockwell transforms and Slantlet coefficients were
extracted. Optimization was performed with GA,
PSO, and Differential Evolution, and classification
with kNN achieved 99.1% accuracy on the ISI
Kolkata dataset and 98.6% on the IIT Bhubaneswar
dataset.

Solely relying on size normalization in [9],
the OHCSv1.0 (NIT Rourkela) and ISI Kolkata
datasets underwent preprocessing. Subsequently,
convolution layers with a multi-objective Jaya-
based optimized network were employed to extract
features. These features were then utilized in
conjunction with Support Vector Machine (SVM)
and Random Forest classifiers. Remarkably,
this approach achieved an accuracy of 98.9%
in character recognition for the NIT Rourkela
dataset using Random Forest and 97.70% on
the ISI Kolkata numeral dataset using the SVM
classifier. Detailed in [39], the preprocessing steps
included size normalization, median filtering, and
skeletonization applied to both the ISI Kolkata and
OHCSv1.0 (NIT Rourkela) datasets. A subset
of the data was used, with only 200 samples
from each character class and 300 samples
from each digit class. Features were extracted
based on row symmetry and column symmetry
chords. These features were subsequently applied
to a decision Tree classifier, resulting in a
commendable recognition rate of 96.2% on ISI
Kolkata numerals and 95.6% on the OHCSv1.0
Character dataset.

In the 2018 study documented in [38], the
authors Sethy A. et al employed normalization
and dilation as preprocessing techniques for the
NIT Rourkela dataset. A selective approach
was taken, with only 150 specimens taken from
each of the 47 classes. The feature extraction
process involved the discrete wavelet transform,
and the dimensionality of these features was
subsequently reduced using Principal Component
Analysis (PCA). The resulting feature set was
then input into a Backpropagation Neural Network
(BPNN), achieving an accuracy of 94.8%. In the
year 2019, as described in [37], the researchers
implemented noise reduction, skew correction, and
normalization as preprocessing steps for the NIT
Rourkela dataset. A comprehensive set of 350
samples was selected from each of the 47 classes.

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1133–1151
doi: 10.13053/CyS-29-3-5885

Pragnya Ranjan Dash, Rakesh Chandra Balabantaray1136

ISSN 2007-9737

Feature extraction was carried out based on
symmetric axis chords, incorporating mathematical
features such as Euclidean distance and Hamilton
distance. The dimensionality of these features was
subsequently reduced using Principal Component
Analysis (PCA). This refined feature set was then
applied to a Gaussian kernel with a radial basis
function neural network, resulting in an impressive
recognition rate of 98.8%.

In 2022, Raghunath Dey et al.[16] conducted ex-
periments utilizing six traditional machine learning
algorithms and two neural network models. The
machine learning classifiers encompass Logistic
Regression (LR), Gaussian Naive Bayes (GNB),
Decision Tree (DT), K-Nearest Neighbors (kNN),
Random Forest (RF), Support Vector Machine
(SVM), Modified RNN, and CNN. Three distinct
feature sets, namely AMS, CTD, and FoG, were
employed to compute and assess the accuracies
achieved by these classifiers. Notably, the results
indicated an accuracy of 98.22% on the ISI
Kolkata dataset, 97.34% and 88.23% on the IIT
Bhubaneswar numeral and character datasets,
and an accuracy of 93.35% on the NIT Rourkela
dataset. The study also highlighted a newly
created dataset IIITBOdiaV2 at IIIT Bhubaneswar.

The analysis of related work indicates that
most existing methods rely on manual feature
extraction, followed by classification on specific
datasets, which leads to good performance on
certain benchmark datasets. However, their
performance has not been thoroughly tested on
other benchmark datasets in the Odia language,
meaning these approaches may struggle to
generalize. Another significant gap is the lack
of focus on compound handwritten character
recognition, which is a challenging and tedious
task. Therefore, there is a need for a
recognition model that eliminates the manual
feature extraction process, provides consistent
and accurate results across a broader range of
benchmark datasets, and can effectively handle
compound character recognition.

3 Dataset Description

Experiments were conducted using four estab-
lished benchmark datasets that are currently avail-

able for the Odia language. The datasets are ISI
Kolkata Digit, NIT Rourkela’s NITROHCSV1.0, IIT
Bhubaneswar, and IIIT Bhubaneswar IIITBOdiaV2.
Real data from students of IIIT Bhubaneswar was
collected for testing purposes. Detailed information
about each dataset is provided in Table 1.

3.1 NITROHCSV1.0

The dataset referred to as ”NITROHCSv1.0”
originates from the National Institute of Technology
Rourkela (NIT Rourkela) and serves as a
valuable resource for handwritten Odia character
recognition research [29]. Each of the forty-seven
folders within the dataset represents a distinct
character from the Odia alphabet, encompassing
the entire Odia script. Comprising a total of
forty-seven folders. Within each of these folders, a
collection of 320 handwritten samples representing
a specific character class of the Odia language
is located. These images possess dimensions
of 81x81 pixels. Notably, this dataset exhibits a
remarkable diversity in its composition, originating
from 160 different individuals across various age
groups, with each contributor submitting samples
on two separate occasions.

3.2 IIT Bhubaneswar

The IITBBS Odia Numeral and Character database
has been developed to support research on Odia
script recognition [12]. The numeral subset
consists of 10 classes with about 500–600 samples
each, while the character subset includes 105
classes covering both basic and compound Odia
characters, with 120–155 samples per class. A
key challenge is the presence of border lines in
many character images, which adds complexity
to recognition and necessitates preprocessing for
border removal.

3.3 ISI Kolkata Digit

The ISI Kolkata dataset [2] was created for Odia
digit recognition. It contains 10 folders, with each
folder corresponding to a single digit. On average,
every folder includes about 500 to 600 handwritten
samples of the respective numeral.

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1133–1151
doi: 10.13053/CyS-29-3-5885

An Optimized Workflow for Odia Handwritten Character Recognition 1137

ISSN 2007-9737

3.4 IIITBOdiaV2

The IIIT Bhubaneswar IIITBOdiaV2 dataset [16]
comprises numerals, basic characters, and fre-
quently used compound characters, developed
by distributing grid-based A4 sheets to 150
volunteers aged 5–70, which were scanned at
300 dpi and preprocessed through filtering and
thresholding. The dataset contains 112 classes,
each stored in a separate folder; for the present
work, only numerals and basic characters (the IIIT
OdiaV1 subset [16]) were considered. To improve
robustness, preprocessing steps such as blurring,
thresholding, binarization, and skeletonization
were applied, along with data augmentation
involving rotations [22] and brightness/contrast
adjustments [8] to capture variations in writing
style and imaging conditions. In addition, a
real-life extension, the IIITBOdia dataset, was
collected from 30 students, where handwritten
Odia digits and basic characters were extracted
from A4 sheets and organized into class-specific
folders. These samples underwent Gaussian
blurring, binarization, morphological filtering, and
contour-based edge detection to reduce noise and
enhance stroke clarity. Representative examples of
Odia numerals, simple characters, and compound
characters are shown in Figure 2.

4 Preprocessing

Preprocessing plays a vital role in handwritten
character recognition, as it directly influences
both accuracy and efficiency. In building such
a system, it is important to carefully handle
the challenges that arise from variations in
handwriting and image quality. Many challenges
can be observed in handwritten character samples,
including noise, deterioration of paper quality after
use, poor handwriting, and more. Preprocessing
is required in multiple steps to eliminate these
impediments. The preprocessing stage in this
method includes several operations such as image
resizing, edge detection, dilation, thresholding,
binarization, thinning, and Gaussian blurring. The
main goal of these steps is to convert the raw
text image into a cleaner and standardized format,
making it easier for the recognition model to

process the data accurately and efficiently. The
steps of character recognition are shown in Fig.(3).

4.1 Gaussian Blur Filter

Gaussian filters are used in noise reduction due
to their distinctive feature of assigning varying
weights to pixels based on their proximity to the
center of the filter. By following the Gaussian
function, these filters prioritize nearby pixels,
gradually diminishing the impact of those farther
away. Gaussian blurring produces a smooth
effect while retaining important image features,
which makes it a widely used technique in image
processing. It works by convolving the image
with a two-dimensional Gaussian function, where
each pixel value is replaced by a weighted average
of its neighbors. Standard deviation controls the
extent of smoothing for noise reduction. The
two-dimensional Gaussian function, which is used
in image processing, is the product of two
one-dimensional Gaussians along the x and y axes
as given in equation (1):

(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (1)

x, y: Represent the spatial coordinates in the
two-dimensional Gaussian function.

σ: Standard deviation of the Gaussian distribution.

e: Base of the natural logarithm.

The first step involved converting the image
into grayscale format. Subsequently, the image
undergoes a Gaussian blurring process using
OpenCV’s Gaussian blur function, employing a 3x3
Gaussian kernel.

The size of the kernel plays a crucial role
in determining the extent of the blurring effect
on the image. The standard deviation of the
Gaussian kernel is denoted by the ‘0‘ parameter,
and its calculation is automatically determined by
the specified kernel size. The formula is shown in
equation (2):

D(m,n) = GaussianBlur{S(p, q),σ}, (p, q) ∈ Kpq, (2)

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1133–1151
doi: 10.13053/CyS-29-3-5885

Pragnya Ranjan Dash, Rakesh Chandra Balabantaray1138

ISSN 2007-9737

Table 1. Details of the publicly available benchmark Odia handwritten datasets

Datasets Contents Labels Total samples Dimension No. of writers
ISI Kolkata Numericals 10 5970 variable 356
IIT Bhubaneswar Numericals 10 5000 variable 500
IIITBOdiaV2 Numericals 10 2962 64×64 150
NITROHCS V1.0 Characters 47 15040 81×81 150
IIT Bhubaneswar Characters 105 47000 variable 500
IIITBOdiaV2 Characters 102 13236 64×64 150

 (a) ISI Kolkata Digit

 (c) IIT Bhubaneswar Digit

 (f) IIIT Bhubaneswar Digit

Digit (b) NIT Rourkela Basic Character

 (d) Basic Character (e) Compound

 (g) Basic Character

Basic Character

Compound Character

Fig. 2. Selected samples from benchmark datasets

Kpq : The set of coordinates in a rectangular
sub-image window with (m,n) as the center.

D(m,n) : The restored destination image.

S(p, q) : The source image, representing the
calculated area under the dimension of Kpq.

σ : The standard deviation used in the
Gaussian blur.

4.2 Thresholding, Binarization and Dilation

To improve accuracy in character recognition tasks,
preprocessing of grayscale character images,
where pixel intensities range from 0 to 255,
is essential. In these images, ’255’ signifies
brightness, while ’0’ indicates darkness, with

intermediate values representing various shades
of gray. Employing a high-dimensional storage
technique is necessary for such images. On
the contrary, text images, characterized by only
two values—text lines and background—require
a simpler binary representation. The Otsu
thresholding [30] is applied in this approach to
binarize character images [20].

In the Otsu thresholding method, the process
begins by calculating the histogram of pixel
intensities in a grayscale image. This histogram is
then normalized to create a probability distribution
function representing the likelihood of encountering
a pixel with a specific intensity. The cumulative
distribution function is derived by summing up

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1133–1151
doi: 10.13053/CyS-29-3-5885

An Optimized Workflow for Odia Handwritten Character Recognition 1139

ISSN 2007-9737

the probabilities from the probability distribution
function.

The mean intensity and global mean are cal-
culated as weighted averages, where the weights
are given by the probability distribution function.
Subsequently, the between-class variance is
computed, measuring the separation between
foreground and background pixel intensities using
the cumulative distribution and means. The optimal
threshold is determined as the intensity value
maximizing the between-class variance.

Finally, the image is binarized based on this
optimal threshold, with pixel values assigned 1 for
intensities greater than or equal to the threshold
and 0 for intensities below the threshold [45]. The
mathematical details are shown in equations 3
and 4:

Toptimal = argmax
T

(
L−1∑
i=0

[(
i∑

k=0

Histogram(k)

Total Pixels

)

·

L−1∑
j=0

j ·
Histogram(j)

Total Pixels


−

i∑
j=0

j ·
Histogram(j)

Total Pixels

]2)
,

(3)

value1, otsu = threshold(blur, 0, 255,

THRESH BINARY | THRESH OTSU). (4)

After applying Otsu’s thresholding, variations in
intensity lead to certain portions of characters
being erroneously assigned the background value,
resulting in disconnected components. To address
this issue, a dilation operation is applied to
bridge the gaps and join the broken parts of
characters. Dilation in image processing expands
the boundaries of foreground objects.

It involves sliding a kernel over the image and
setting the pixel value to 1 if at least one pixel
in the kernel is 1. Here (3,3) size kernel has
been taken for the dilation operation. Let A be the
binary image, B be the kernel, and then the dilation
operation ⊕ is shown in equation (5):

(A⊕B) = {s | (B̂)s ∩A ̸= ∅}. (5)

4.3 Edge Detection, Bounding Box

The proposed method applied the Canny edge
detection method to extract edges from each text
image. The technique involves computing the
image gradients in both horizontal and vertical
directions using Sobel operators(Gx,Gy), which
highlight intensity changes [44]. Non-maximum
suppression is employed to refine edges by
retaining local maxima in the gradient direction,
emphasizing the most prominent edges.

Double thresholding is then applied to categorize
edges into strong, weak, or non-edges based
on their gradient magnitude. Pixels surpassing
a high threshold are marked as strong edges,
those below a low threshold as non-edges, and
those in between as weak edges. The final step,
edge tracking by hysteresis, focuses on connecting
weak edges to strong edges. A weak edge pixel
connected to a strong edge pixel is considered part
of the edge, while unconnected weak edges are
discarded. Here, 40 and 150 are used as the lower
and upper thresholds for the gradient value.

After edge detection, the contours are
extracted from a preprocessed image using
OpenCV. Then, the ‘RETR EXTERNAL‘ function
of OpenCV is used to ensure that only the
external contours are retrieved, focusing on the
contours that outline distinct shapes. Additionally,
‘CHAIN APPROX SIMPLE’ function is used to
simplify the representation of the contours by
compressing consecutive segments into their
endpoints, reducing memory overhead. The
resulting variable stores the detected contours,
providing a basis for subsequent image analysis or
visualization tasks.

In the IIT Bhubaneswar dataset, most of the
text images contain additional lines at the top
and right, or at the bottom and left sides.
These extraneous contours are also extracted
during the preprocessing phase. To isolate the
main text region from surrounding artifacts, the
max(contourArea) function in OpenCV is applied.

This function selects the contour with the largest
area among all detected contours, which generally
corresponds to the primary text region since
text contours are typically larger than unwanted
border lines. From this contour, the bounding

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1133–1151
doi: 10.13053/CyS-29-3-5885

Pragnya Ranjan Dash, Rakesh Chandra Balabantaray1140

ISSN 2007-9737

Algorithm 1 Image Preprocessing Algorithm
1: Set the directory path where the images are stored
2: Get a list of classes (subdirectories) in the specified directory
3: for each class do
4: Get the list of images in the class directory
5: for each image in the class do
6: Convert to grayscale: Gray = 0.299R + 0.587G + 0.114B
7: Apply Gaussian blur with a 3 × 3 kernel
8: Perform Otsu’s thresholding to obtain a binary image
9: Invert the binary image
10: Apply dilation with a 3 × 3 structuring element
11: Detect edges using the Canny edge detector
12: Apply dilation to enhance edge connectivity
13: Find contours in the dilated edges
14: for each contour do
15: Extract bounding box coordinates
16: Draw bounding box on the binary image
17: Extract ROI (region of interest)
18: Thin ROI edges using a thinning algorithm
19: Further process thinned edges if necessary
20: end for
21: end for
22: end for

Text Images Preprocessing Segmentation to extract
individual Characters

Feature extractionRecognition SystemPredict Class of the
Character

Fig. 3. Steps of character recognition

box coordinates (x, y,w,h) are obtained using the
boundingRect(max(contourArea)) function. A
white bounding box is then drawn around the
detected region, and the region of interest (ROI)
is extracted based on these coordinates. This
ensures that subsequent analysis is performed
only on the relevant text area.

4.4 Thinning

The thinning operation is an important step in
the image processing pipeline, particularly due
to the variation in line widths that naturally
occurs in handwritten data [1]. For consistent
analysis, it is necessary to obtain a uniform
representation of the characters. To achieve this,
the ximgproc.thinning function from OpenCV’s
ximgproc module is applied. This function
skeletonizes binary images by reducing strokes
to one-pixel-wide representations while preserving
their connectivity and overall structure. The
algorithm works by iteratively removing boundary

pixels, resulting in a simplified skeleton that retains
the essential shape of the original character.

4.5 Resizing

In the initial stage of the study, the samples
collected from different datasets varied in size.
To ensure consistency and facilitate uniform
processing across all repositories, the images
were resized to a standard dimension as a key
preprocessing step.This not only contributed to a
reduction in both time and space requirements but
also facilitated the training of our proposed model,
which was designed to operate with fixed-size
images. All image samples have been resized to
64×64 pixels. The selection of a 64×64 pixel size
was determined to be the optimal compromise,
effectively balancing computational efficiency with
image clarity. This choice ensures that the
images are of a manageable size for computational
processes while still maintaining sufficient clarity
for meaningful analysis. Algorithm 1 demonstrates
all the necessary preprocessing steps.

5 Proposed Method

The proposed method uses a lightweight Con-
volutional Neural Network (CNN) for text image
classification [19]. The model is designed to
handle 64 × 64 binary images. It follows a
sequence of convolutional layers, each paired
with a max-pooling operation to reduce spatial
dimensions. The output of the final pooling layer
is flattened and passed through fully connected
(dense) layers before reaching the output layer.
The number of neurons in the output layer
corresponds to the number of classes, and a
softmax activation function is applied to produce
class probabilities.

The first convolutional layer contains 32 filters
of size 3 × 3, followed by ReLU activation and a
2×2 max-pooling layer [31, 15]. This stage extracts
basic features while reducing spatial complexity.
The second convolutional layer increases the filter
count to 64 (size 3 × 3), again followed by ReLU
activation and max-pooling. This layer captures
more detailed structures beyond the basic features.
A third convolutional layer with 128 filters of size

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1133–1151
doi: 10.13053/CyS-29-3-5885

An Optimized Workflow for Odia Handwritten Character Recognition 1141

ISSN 2007-9737

3 × 3 is then applied, along with ReLU and a final
max-pooling step. This deeper stage allows the
network to learn more complex patterns in the data.

The output from the last pooling layer is flattened
into a one-dimensional vector and passed to three
fully connected layers. The first dense layer has 64
neurons, followed by a second with 128 neurons,
both of which refine the representations learned
by the convolutional blocks. The final dense layer
contains a number of neurons equal to the dataset
classes and applies softmax activation to generate
probability distributions [24]. To reduce overfitting,
dropout with a rate of 0.2 is applied before the last
layer [6]. This regularization step improves the
robustness of the model, ensuring more reliable
classification of handwritten Odia characters.

The mathematical details of the activation
function used are shown in equations (6) and (7):

ReLU(z) = max(0, z), (6)

softmax(xi) =
exi∑n
j=1 e

xj
. (7)

In this work, categorical cross-entropy is adopted
as the loss function because it is well-suited for
multi-class classification problems [26, 14]. It
measures the difference between the predicted
probability distribution and the true class labels,
and works naturally with the softmax activation
function in the output layer [18]. By penalizing
incorrect predictions, it guides the network to
assign higher probabilities to the correct classes
and improves overall accuracy. For optimization,
the Adam algorithm is employed [4]. Adam
combines the advantages of Momentum and
RMSprop by maintaining adaptive learning rates
for each parameter [25]. Specifically, it tracks
two moving averages: the first moment (the
mean of gradients) and the second moment
(the uncentered variance of gradients). These
values are updated during training and used to
dynamically adjust parameter updates, resulting
in faster convergence and more stable learning
[43, 32]. The algorithm also incorporates bias
correction to enhance the accuracy of estimates,
particularly in the early stages of training. The
update rule for a parameter θ in Adam involves

adjusting it based on the learning rate, the first
moment estimate, and the square root of the
biased second moment estimate as given in
equation (8):

θt+1 = θt −
η√

v̂t + ϵ
m̂t. (8)

Prior to model training, one-hot encoding was
applied to the class labels within the dataset [33].
This technique converts each class label into a
binary vector, where only one element is set to 1
to indicate the presence of a particular class, and
all other elements are 0, as shown in Equation (9).
This transformation provides a clear and consistent
label representation, making it easier for the
model to interpret the data. Furthermore, one-hot
encoding enhances the efficiency of model training
by aligning the label format with the softmax output,
thereby facilitating accurate learning in multi-class
classification tasks:

One-Hot(i,n) = δij =

{
1, if i = j,

0, if i ̸= j.
. (9)

One-Hot(i,n): One-hot encoding vector for
category i in a set of n categories.

δij : Kronecker delta, equal to 1 if i = j and 0 if
i ̸= j.

The proposed methodology involves a multi-
faceted approach, incorporating preprocessing
and data augmentation, followed by the training of
the model using the diversified augmented dataset.
The applied augmentations include rotation, as
well as adjustments to contrast and brightness,
as detailed earlier. This comprehensive strategy
aims to expose the model to a diverse set
of examples, enhancing its ability to recognize
different characters present in various benchmark
datasets mentioned in the ”Dataset Description”
section and enabling it to recognize characters in
diverse natural environments and various writing
styles. The architectural details of the proposed
model are shown in Fig. 4, which provides a
comprehensive overview of the different layers
used in our proposed model. The description of
different parameters used in the model is shown
in Table 2. The detailed specifics of character

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1133–1151
doi: 10.13053/CyS-29-3-5885

Pragnya Ranjan Dash, Rakesh Chandra Balabantaray1142

ISSN 2007-9737

Table 2. Parameters of the Proposed Model

Parameter Name/Value Description

Activation Function ReLU Simple, non-linear, and efficient thresholding. Ac-
celerates training, mitigates vanishing gradients,
and improves feature extraction.

Categorical
Cross-entropy

Measures divergence between predicted and
true probability distributions in multi-class clas-
sification, guiding the model toward accurate
predictions.

Loss Function

Optimization Algorithm Adam Combines Momentum and RMSprop for adaptive
learning rates, ensuring faster and stable conver-
gence across diverse neural networks.

Classifier Softmax Converts logits into probability distribution, en-
abling efficient multi-class classification, decision-
making, and interpretability.

Learning Rate 0.001 Selected heuristically.
Dropout Rate 0.2 Selected heuristically.
Total Epochs 20 Selected heuristically.

Text
image

Conv_1
Convolution

(3 × 3) kernel
valid padding

ReLU activation

INPUT
(64 × 64 × 1)

32 channels
(62 × 62 × 32)

32 channels
(31× 31 × 32)

64 channels
(31× 31 × 64)

64 channels
(15 × 15 × 64)

128 channels
(13 × 13 × 128)

Flattend

128 channels
(6 × 6 × 128)

64 units
128 units OUTPUT

n units

Conv_2
Convolution

(3 × 3) kernel
same padding

ReLU activation
Max-Pooling

(2 × 2)

Conv_3
Convolution

(3 × 3) kernel
valid padding

ReLU activation

fc_4
Fully -connected
Neural Network
ReLU activation

fc_5
Fully -connected
Neural Network
ReLU activation

fc_6
Fully -connected
Neural Network
(with dropout)

Softmax activation
Max-Pooling

(2 × 2)
Max-Pooling

(2 × 2)

Fig. 4. Proposed Model with Convolution, Max-pool, and Fully connected layer

classification are illustrated in algorithm 2. This
algorithm offers a concise overview of the model
training on the benchmark dataset and outlines the
evaluation of its performance.

6 Result Analysis

In this experiment, a series of experimental
investigations was conducted to recognize Odia
handwritten characters. Our analysis incorporated
four distinct datasets taken from: ISI Kolkata, IIT
Bhubaneswar, NITROHCSV1.0, and IIITBOdiaV2,
encompassing digits, basic characters, and
compound characters typical of the Odia script. To
ensure the integrity of our training and validation

data, each dataset is split into separate training
and validation subsets, adhering to an 80-20 split
ratio using a stratified data splitting algorithm to
maintain class balance across both training and
validation sets, thereby maintaining proportional
distribution of samples from each class [17].
Performance metrics such as precision, recall, and
F1-score were evaluated for each of dataset as per
the equation 10,11,12,13.

This helped to understand how well the model
works for different aspects. To ensure the
proposed model’s strength on different, unseen
data, it has been tested with various benchmark
datasets and real-world data. The analysis showed
high accuracy, confirming the model’s reliability

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1133–1151
doi: 10.13053/CyS-29-3-5885

An Optimized Workflow for Odia Handwritten Character Recognition 1143

ISSN 2007-9737

Table 3. Result analysis of proposed model on benchmark datasets

Training(%) Validation(%)

Dataset Samples Accuracy Accuracy Precision Recall F1-Score

ISI Kolkata Digit 99.44 99.28 99.29 99.27 99.28

IIT Bhubaneswar Digit 99.27 99.18 99.22 99.17 99.19

IIIT Bhubaneswar Digit 98.82 98.57 98.54 98.60 98.56

NITROHCSv1.0 Basic Chars 99.18 99.12 99.14 99.12 99.12

IIT Bhubaneswar Characters 94.10 92.87 94.11 94.05 94.07

IIIT Bhubaneswar Basic Chars 96.89 95.84 95.77 95.87 95.82

Table 4. Testing accuracy of the model on benchmark and real-life numeral data

Testing Accuracy(%) on Numeral Dataset

Training Dataset ISI Kolkata IIT Bhub. IIIT Bhub. IIITBOdia real

ISI Kolkata Numeral 99.28 92.46 91.4 91.43

IIT Bhubaneswar
Numeral

92.14 99.18 91.62 91.57

IIIT Bhubaneswar
Numeral

91.02 90.92 98.57 91.05

Table 5. Testing accuracy of the model on benchmark and real-life character data

Testing Accuracy(%) on Character Dataset

Training Dataset NIT Rourkela IIT Bhub. IIIT Bhub. IIITBOdia real

NIT Rourkela Character 99.12 89.40 91.05 91.42

IIT Bhubaneswar Character 87.75 92.87 88.42 88.54

IIIT Bhubaneswar Character 90.80 89.70 95.84 91.65

and adaptability in different situations. The training
accuracy, validation accuracy, precision, recall,
and F1-score of the proposed model on different
benchmark datasets are shown in Table 3.

A series of graphical representations depicting
the progression of recognition accuracy and loss
values across multiple epochs has been presented
in Figures 5 and 6, showcasing the evolution of
accuracy and loss metrics over time, providing
insight into the performance trends of our model.

To assess the model’s robustness post-training
and validation, performance tests have been

conducted using random samples from diverse
benchmark datasets and real-life data, as pre-
viously mentioned. While datasets such as ISI
Kolkata, IIIT BBSR, and IIT BBSR shared digit
datasets with identical class counts, allowing for
direct testing without adjustments to the output
layer, discrepancies arose in character datasets
such as NITROOHCS V1.0 and IITBOdia V1.

These Datasets primarily consisted of basic
characters with matching class counts, unlike the
IIT BBSR dataset, which included basic charac-
ters and frequently used compound characters,

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1133–1151
doi: 10.13053/CyS-29-3-5885

Pragnya Ranjan Dash, Rakesh Chandra Balabantaray1144

ISSN 2007-9737

Algorithm 2 Character Recognition with Convolu-
tional Neural Network

1: Set the directory path where the images are
stored.

2: Get a sorted list of classes in the directory.
3: Count the number of classes (n) and assign

labels.
4: Initialize empty lists images[] and labels[].
5: for each class do
6: Create the path to the class directory.
7: for each image in the class directory do
8: Read the preprocessed image.
9: Convert the image to binary.

10: Resize the image to 64× 64 pixels.
11: Append image and class index to

images[] and labels[].
12: end for
13: end for
14: Convert lists to NumPy arrays.
15: Perform one-hot encoding on the labels.
16: for each class do
17: Compute class weights using maximum

class frequency.
18: end for
19: Split dataset into training (80%) and validation

(20%) using stratified split.
20: for i = 1 to 3 do
21: Add Conv2D layer with filters = [32,

64, 128][i], kernel size (3, 3).
22: Add ReLU activation.
23: Add MaxPool2D layer with pool size (2, 2).
24: end for
25: Flatten the output of convolutional layers.
26: for i = 1 to 2 do
27: Add Dense layer with units =

[64,128][i] and ReLU activation.
28: end for
29: Add Dense output layer with n units and

softmax activation.
30: Compile model with categorical cross-entropy

loss and Adam optimizer.
31: Train model using fit() with training/validation

data, epochs, batch size, class weights, and
checkpoint.

32: Make predictions on test dataset.

resulting in differing class counts. During testing
with the IIT BBSR dataset, basic characters
were exclusively selected to ensure compatibility.
Furthermore, when evaluating a model trained on
the IIT BBSR dataset, the last fully connected
layer was adjusted during testing by configuring
the number of neurons to match the class count
present in the testing dataset. The testing
accuracy of the proposed model, trained on one
of the benchmark datasets and tested on other
benchmark and real-life data, is shown in Table 4
and 5:

Precision =
TP

TP + FP
, (10)

Recall =
TP

TP + FN
, (11)

F1 Score =
2× Precision × Recall

,
Precision + Recall,

(12)

Accuracy =
TP + TN

TP + FP + FN + TN
. (13)

TP : Prediction of True Positives cases
TN : Prediction of True Negative cases,
FP : Prediction of False Positive cases
FN : Prediction of False Negative cases

6.1 Result Comparison

The quality of the suggested approach is
validated through a rigorous comparison based
on recognition rates with existing literature. Table
6 summarizes key findings from several studies
on the datasets under consideration. Notably,
our proposed model consistently outperforms
prior work in terms of recognition rate across
multiple benchmark datasets. The proposed
model achieves peak accuracy on numerical
datasets such as ISI Kolkata, IIT BBSR, and IIIT
BBSR. Additionally, it achieves peak accuracy on
character datasets from NIT Rourkela and IIIT
BBSR, demonstrating its efficacy across diverse
contexts.

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1133–1151
doi: 10.13053/CyS-29-3-5885

An Optimized Workflow for Odia Handwritten Character Recognition 1145

ISSN 2007-9737

Table 6. Comparative analysis of recognition accuracy between existing literature and the proposed model on Odia
handwritten datasets

Literature Dataset Samples Method Accuracy (%)

Das et al., 2019 [8] ISI Kolkata Digit ELM 94.47

Sethy et al., 2020 [40] ISI Kolkata Digit CNN 98.40

Das et al., 2020 [9] ISI Kolkata Digit SVM 97.70

Dash et al., 2020 [13] ISI Kolkata Digit MQDF 99.22

R. Dey et al., 2021 [16] ISI Kolkata Digit CNN 98.22

Proposed ISI Kolkata Digit CNN 99.44

Dash et al., 2017 [10] IIT Bhubaneswar Digit KNN, SCCST 99.20

Sethy et al., 2020 [40] IIT Bhubaneswar Digit CNN 97.71

R. Dey et al., 2021 [16] IIT Bhubaneswar Digit RNN 97.34

Proposed IIT Bhubaneswar Digit CNN 99.27

R. Dey et al., 2021 [16] IIIT Bhubaneswar Digit CNN 98.72

Proposed IIIT Bhubaneswar Digit CNN 98.82

Das et al., 2020 [9] NIT Rourkela Basic chars RF 98.90
Sethy et al., 2019 [37] NIT Rourkela Basic chars RBF NN 98.80

R. Dey et al., 2021 [16] NIT Rourkela Basic chars CNN 93.35

Proposed NIT Rourkela Basic chars CNN 99.18

Dash et al., 2017 [10] IIT Bhubaneswar Characters KNN, SCCST 96.35

Dash et al., 2020 [13] IIT Bhubaneswar Characters MQDF 93.24

R. Dey et al., 2021 [16] IIT Bhubaneswar Characters CNN 88.23

Proposed IIT Bhubaneswar Characters CNN 94.10

R. Dey et al., 2021 [16] IIIT Bhubaneswar Basic chars CNN 83.56

Proposed IIIT Bhubaneswar Basic chars CNN 96.89

7 Conclusion and Future Scope

The Odia language, spoken by over 50 million
people worldwide, is one of India’s most widely
spoken languages. Despite its widespread
use, Odia remains a low-resource language
in the fields of natural language processing
and pattern recognition, with limited availability
of large, annotated datasets and robust tools.
There is a significant demand for an offline
handwritten character recognition system for the
Odia language, encompassing numerals, basic
characters, and compound characters.

Although computers and smartphones are in-
creasingly integrated into daily life, research efforts
focused on handwritten character recognition in

Odia are still sparse. This study aims to address
this gap by focusing on offline recognition of
Odia handwritten characters, particularly within
the constraints of low-resource language settings.
Deep learning models are highly effective at
recognizing patterns, yet their accuracy can drop
when working with large images or samples that
contain a lot of noise. To address these issues,
a series of preprocessing steps were carried out to
clean the data and bring the handwritten inputs into
a uniform format. In addition, data augmentation
was used to introduce realistic variations, including
rotations and changes in brightness and contrast,
so that the model could better handle differences
in writing style, orientation, and lighting conditions.

In this work, a lightweight CNN model was

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1133–1151
doi: 10.13053/CyS-29-3-5885

Pragnya Ranjan Dash, Rakesh Chandra Balabantaray1146

ISSN 2007-9737

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epochs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Training accuracy ISI Kolkata dataset
validation accuracy ISI Kolkata dataset

(a) ISI kolkata

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epochs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Training accuracy IIT BBSR numeral dataset
Validation loss IIT BBSR numeral dataset

(b) IIT BBSR num.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training accuracy IIIT BBSR numeral dataset
validation accuracy IIIT BBSR numeral dataset

(c) IIIT BBSR num.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Training accuracy NIT Rourkela character dataset
validation accuracy NIT Rourkela character dataset

(d) NIT Rourkela

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Training accuracy IIT BBSR character dataset
validation accuracy IIT BBSR character dataset

(e) IIT BBSR char.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epochs

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training accuracy IIIT BBSR character dataset
validation accuracy IIIT BBSR character dataset

(f) IIIT BBSR char.

Fig. 5. Accuracy plot of model on benchmark datasets

designed, trained, and validated on multiple
benchmark datasets. The datasets underwent
carefully chosen preprocessing steps to reduce
noise and preserve essential character details,
enabling the model to achieve strong pattern
recognition.

Experimental results show that the proposed
model consistently outperforms existing
approaches, achieving state-of-the-art accuracy on

all numeral datasets as well as on the NIT Rourkela
and IIIT Bhubaneswar character datasets.

Additional evaluations on benchmark and real-
life samples further demonstrate the model’s
robustness and reliability. Looking ahead,
extending the framework to handle complete
words or full-page handwritten documents could
open new possibilities for document retrieval and
large-scale handwriting analysis.

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1133–1151
doi: 10.13053/CyS-29-3-5885

An Optimized Workflow for Odia Handwritten Character Recognition 1147

ISSN 2007-9737

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ss

Training loss ISI Kolkata dataset
Validation loss ISI Kolkata dataset

(a) ISI kolkata

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

Training loss IIT BBSR numerical dataset
Validation loss IIT BBSR numerical dataset

(b) IIT BBSR num.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

Training loss IIIT BBSR numerical dataset
Validation loss IIIT BBSR numerical dataset

(c) IIIT BBSR num.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

Training loss NIT Rourkela character dataset
Validation loss NIT Rourkela character dataset

(d) NIT Rourkela

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

Training loss IIT BBSR character dataset
Validation loss IIT BBSR character dataset

(e) IIT BBSR chars.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

Training loss IIIT BBSR character dataset
Validation loss IIIT character dataset

(f) IIIT BBSR chars.

Fig. 6. Loss plot of model on benchmark datasets

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1133–1151
doi: 10.13053/CyS-29-3-5885

Pragnya Ranjan Dash, Rakesh Chandra Balabantaray1148

ISSN 2007-9737

Overall, the findings highlight the effectiveness of
the proposed model and its potential contribution
to the broader field of character recognition and
document processing.

References

1. Baruch, O. (1988). Line thinning by line
following. Pattern Recognition Letters, Vol. 8,
No. 4, pp. 271–276.

2. Bhattacharya, U., Chaudhuri, B. (2005).
Databases for research on recognition of
handwritten characters of Indian scripts.
Eighth International Conference on Document
Analysis and Recognition (ICDAR’05), IEEE,
pp. 789–793.

3. Bhowmik, T. K., Parui, S. K., Bhattacharya,
U., Shaw, B. (2006). An HMM based recog-
nition scheme for handwritten Oriya numerals.
9th International Conference on Information
Technology (ICIT’06), IEEE, pp. 105–110.

4. Bock, S., Weiß, M. (2019). A proof of
local convergence for the Adam optimizer.
2019 international joint conference on neural
networks (IJCNN), IEEE, pp. 1–8.

5. Castro, D., Zanchettin, C., Amaral, L. A. N.
(2024). On the improvement of handwritten
text line recognition with octave convolutional
recurrent neural networks. International Jour-
nal on Document Analysis and Recognition
(IJDAR), pp. 1–15.

6. Chooi, S. L., Ab Ghafar, A. S. B.
(2021). Handwritten character recognition
using convolutional neural network. Progress
in Engineering Application and Technology,
Vol. 2, No. 1, pp. 593–611.

7. Das, D., Dash, R., Majhi, B. (2018).
Optimization based feature generation for
handwritten Odia-numeral recognition. 2018
Fourteenth International Conference on Infor-
mation Processing (ICINPRO), IEEE, pp. 1–5.

8. Das, D., Nayak, D. R., Dash, R., Majhi,
B. (2019). An empirical evaluation of extreme
learning machine: application to handwritten

character recognition. Multimedia Tools and
Applications, Vol. 78, pp. 19495–19523.

9. Das, D., Nayak, D. R., Dash, R., Ma-
jhi, B. (2020). MJCN: Multi-objective jaya
convolutional network for handwritten optical
character recognition. Multimedia Tools and
Applications, Vol. 79, pp. 33023–33042.

10. Dash, K. S., Puhan, N., Panda, G. (2016).
A sparse concept coded spatio-spectral fea-
ture representation for handwritten character
recognition. 2016 International Conference
on Signal Processing and Communications
(SPCOM), IEEE, pp. 1–5.

11. Dash, K. S., Puhan, N. B., Panda,
G. (2015). Handwritten numeral recognition
using non-redundant stockwell transform and
bio-inspired optimal zoning. IET Image pro-
cessing, Vol. 9, No. 10, pp. 874–882.

12. Dash, K. S., Puhan, N. B., Panda, G. (2017).
Odia character recognition: a directional
review. Artificial Intelligence Review, Vol. 48,
pp. 473–497.

13. Dash, K. S., Puhan, N. B., Panda, G. (2020).
Sparse concept coded tetrolet transform for
unconstrained Odia character recognition.
arXiv preprint arXiv:2004.01551.

14. Dash, P. R., Balabantaray, R. C., Dey,
R. (2024). An approach for handwritten
alphanumeric character recognition: Lever-
aging cnn for accurate recognition. 2024 1st
International Conference on Cognitive, Green
and Ubiquitous Computing (IC-CGU), IEEE,
pp. 1–6.

15. Dehghanian, A., Ghods, V. (2018). Farsi
handwriting digit recognition based on convo-
lutional neural networks. 2018 6th International
Symposium on Computational and Business
Intelligence (ISCBI), IEEE, pp. 65–68.

16. Dey, R., Balabantaray, R. C., Mohanty,
S. (2022). Offline Odia handwritten charac-
ter recognition with a focus on compound
characters. Multimedia Tools and Applications,
Vol. 81, No. 8, pp. 10469–10495.

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1133–1151
doi: 10.13053/CyS-29-3-5885

An Optimized Workflow for Odia Handwritten Character Recognition 1149

ISSN 2007-9737

17. Dey, R., Balabantaray, R. C., Piri, J., Singh,
D. (2021). Offline natural scene character
recognition using vgg16 neural networks.
2021 Third International Conference on In-
ventive Research in Computing Applications
(ICIRCA), IEEE, pp. 946–951.

18. D’souza, R. N., Huang, P.-Y., Yeh, F.-C.
(2020). Structural analysis and optimization
of convolutional neural networks with a small
sample size. Scientific reports, Vol. 10, No. 1,
pp. 834.

19. Gysel, P., Motamedi, M., Ghiasi, S.
(2016). Hardware-oriented approximation of
convolutional neural networks. arXiv preprint
arXiv:1604.03168.

20. Hochuli, A. G., Oliveira, L. S., Britto Jr,
A., Sabourin, R. (2018). Handwritten digit
segmentation: Is it still necessary?. Pattern
Recognition, Vol. 78, pp. 1–11.

21. Huh, J.-H. (2020). Surgery agreement signa-
ture authentication system for mobile health
care. Electronics, Vol. 9, No. 6, pp. 890.

22. Ignat, A., Aciobanitei, B. (2016). Handwritten
digit recognition using rotations. 2016 18th
International symposium on symbolic and
numeric algorithms for scientific computing
(SYNASC), IEEE, pp. 303–306.

23. Jindal, T., Bhattacharya, U. (2013). Recog-
nition of offline handwritten numerals using
an ensemble of mlps combined by adaboost.
Proceedings of the 4th International Workshop
on Multilingual OCR, pp. 1–5.

24. Khan, S., Hafeez, A., Ali, H., Nazir,
S., Hussain, A. (2020). Pioneer dataset
and recognition of handwritten Pashto char-
acters using convolution neural networks.
Measurement and Control, Vol. 53, No. 9-10,
pp. 2041–2054.

25. Kulkarni, S. R., Rajendran, B. (2018).
Spiking neural networks for handwritten digit
recognition—supervised learning and network
optimization. Neural Networks, Vol. 103,
pp. 118–127.

26. Li, P., He, X., Song, D., Ding, Z.,
Qiao, M., Cheng, X., Li, R. (2021).
Improved categorical cross-entropy loss for
training deep neural networks with noisy
labels. Pattern Recognition and Computer
Vision: 4th Chinese Conference, PRCV 2021,
Beijing, China, October 29–November 1, 2021,
Proceedings, Part IV 4, Springer, pp. 78–89.

27. Maalej, R., Kherallah, M. (2020). Improving
the DBLSTM for online Arabic handwriting
recognition. Multimedia Tools and Applica-
tions, Vol. 79, pp. 17969–17990.

28. Majhi, B., Pujari, P. (2018). On development
and performance evaluation of novel odia
handwritten digit recognition methods. Arabian
Journal for Science and Engineering, Vol. 43,
pp. 3887–3901.

29. Mohapatra, R. K., Mishra, T. K., Panda, S.,
Majhi, B. (2015). OHCS: A database for hand-
written atomic Odia character recognition.
2015 Fifth National Conference on Computer
Vision, Pattern Recognition, Image Processing
and Graphics (NCVPRIPG), IEEE, pp. 1–4.

30. Otsu, N. (1979). A threshold selection method
from gray-level histograms. IEEE transactions
on systems, man, and cybernetics, Vol. 9,
No. 1, pp. 62–66.

31. Panda, R., Dash, S., Padhy, S., Nayak, M.
(2022). CNN based handwritten Odia charac-
ter recognition. 2022 International Conference
on Machine Learning, Computer Systems and
Security (MLCSS), pp. 267–273. DOI: 10.

1109/MLCSS57186.2022.00056.

32. Ram, S., Gupta, S., Agarwal, B. (2018).
Devanagri character recognition model using
deep convolution neural network. Journal of
Statistics and Management Systems, Vol. 21,
No. 4, pp. 593–599.

33. Rodrı́guez, P., Bautista, M. A., Gonzalez,
J., Escalera, S. (2018). Beyond one-hot
encoding: Lower dimensional target embed-
ding. Image and Vision Computing, Vol. 75,
pp. 21–31.

34. Roy, K., Pal, T., Pal, U., Kimura, F. (2005).
Oriya handwritten numeral recognition system.

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1133–1151
doi: 10.13053/CyS-29-3-5885

Pragnya Ranjan Dash, Rakesh Chandra Balabantaray1150

ISSN 2007-9737

Eighth International Conference on Document
Analysis and Recognition (ICDAR’05), IEEE,
pp. 770–774.

35. Sarangi, P. K., Ahmed, P., Ravulakollu,
K. K., et al. (2014). Naı̈ve Bayes classifier with
lu factorization for recognition of handwritten
odia numerals. Indian Journal of Science and
Technology, Vol. 7, No. 1, pp. 35–38.

36. Sethi, R. K., Mohanty, K. K. (2020). Optical
odia character classification using cnn and
transfer learning: A deep learning approach.
International Research Journal of Engineering
and Technology (IRJET), Vol. 7, No. 07,
pp. 3885–3890.

37. Sethy, A., Patra, P. K. (2019). Off-line
odia handwritten character recognition: an
axis constellation model-based research. In-
ternational Journal of Innovative Technology
and Exploring Engineering (IJITEE), Vol. 8,
No. 9S2, pp. 788–793.

38. Sethy, A., Patra, P. K., Nayak, D. R.
(2018). Off-line handwritten Odia character
recognition using DWT and PCA. Progress in
Advanced Computing and Intelligent Engineer-
ing: Proceedings of ICACIE 2016, Volume 1,
Springer, pp. 187–195.

39. Sethy, A., Patra, P. K., Nayak, S., Jena,
P. M. (2017). Symmetric axis based off-line
odia handwritten character and numeral
recognition. 2017 3rd International Conference
on Computational Intelligence and Networks
(CINE), IEEE, pp. 83–87.

40. Sethy, A., Patra, P. K., Nayak, S. R. (2020).
Offline handwritten numeral recognition using

convolution neural network. Machine Vision
Inspection Systems: Image Processing,
Concepts, Methodologies and Applications,
Vol. 1, pp. 197–212.

41. Singh, P. K., Sarkar, R., Das, N., Basu,
S., Kundu, M., Nasipuri, M. (2018). Bench-
mark databases of handwritten Bangla-Roman
and Devanagari-Roman mixed-script docu-
ment images. Multimedia Tools and Applica-
tions, Vol. 77, pp. 8441–8473.

42. Tripathy, N., Panda, M., Pal, U. (2003). Sys-
tem for Oriya handwritten numeral recognition.
Document recognition and retrieval XI, SPIE,
Vol. 5296, pp. 174–181.

43. Tushar, A. K., Ashiquzzaman, A., Afrin,
A., Islam, M. R. (2018). A novel transfer
learning approach upon Hindi, Arabic, and
Bangla numerals using convolutional neural
networks. Computational Vision and Bio
Inspired Computing, Springer, pp. 972–981.

44. Wu, F., Zhu, C., Xu, J., Bhatt, M. W.,
Sharma, A. (2022). Research on image text
recognition based on canny edge detection
algorithm and k-means algorithm. International
Journal of System Assurance Engineering and
Management, Vol. 13, No. Suppl 1, pp. 72–80.

45. Yue, X., Wang, Z., Ishibashi, R., Kaneko, H.,
Meng, L. (2024). An unsupervised automatic
organization method for professor Shirakawa’s
hand-notated documents of oracle bone in-
scriptions. International Journal on Document
Analysis and Recognition (IJDAR), pp. 1–19.

Article received on 23/04/2025; accepted on 22/07/2025.
*Corresponding author is Pragnya Ranjan Dash.

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1133–1151
doi: 10.13053/CyS-29-3-5885

An Optimized Workflow for Odia Handwritten Character Recognition 1151

ISSN 2007-9737

