
Prerequisites of in-Context Learning for Transformers on Queries

Bulat Shkanov1, Mikhail Alexandrov2,3,*

1 Gaidar’s Institute for Economic Policy,
Russia

2 RANEPA,
Russia

3 FRUCT,
Finland

bulat.shkanov@mail.ru, malexandrov@mail.ru, malexandrov.uab@gmail.com

Abstract. Pre-trained generative transformers (GPT)

with their 200+ billion parameters have already
demonstrated their ability to successfully solve a wide
range of text-related problems without the need for
additional task-specific training. However, it has been
observed that solution quality can be significantly
improved for certain queries that reflect task formulation
and conditions. It indicates that the transformer is further
trained based on the query context, and the aim of this
study is to show why GPT transformers enable to do it.
To this end, the article jointly considers: elements of
transformer architecture (data compressors and
sentiment neurons), elements of the user interface with
transformers (zero-shot and few-shot prompts), and text
processing procedures (arithmetic coding and minimum
description length). The authors attempt to provide a
theoretical justification for the convergence of the
sequential fine-tuning process using Hoeffding's
inequality. The study presents experimental results
demonstrating GPT transformers' capabilities for in-
context learning. This confirms their potential for further
development in natural language processing
technologies.

Keywords. Data compressors, sentiment neurons, in-

context learning, zero-shot learning, few-shot learning

1 Introduction

1.1 Motivation

In recent years, large language models and their
implementation as GPT transformers have
become one of the most discussed and in-demand

technologies in artificial intelligence. They have
firmly entered everyday life and are used in various
fields as personal assistants, improving search and
enabling creative content generation. This success
is partly due to their ability to learn from the context
of queries.

To understand why modern large language
models, possess such capabilities, we must
consider the foundational concepts underlying
them and experimental results.

2 Fundamental Concepts

We divide the foundational concepts that explain
transformers' ability for in-context learning into
three groups.

2.1 Regarding the Architecture and
Functioning of the Transformer

 Data compressor as a tool for information
compression. This tool not only reduces
information but also structures it. This allows
generative models to effectively generalize
knowledge and use it to solve new tasks.

 Sentiment neurons. These are parts of the
neural network activated in the presence of
positive or negative sentiments in a text. These
neurons exemplify how models can extract and
represent complex emotional nuances of the
text, forming part of their data compression
capabilities.

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1691–1699
doi: 10.13053/CyS-29-3-5884

ISSN 2007-9737

2.1.1 Regarding the Training Process

 In-context learning is a method where a
language model learns to solve a task not by
traditional parameter updates, but by being
provided with examples or instructions in the
query context. This means the model can
adapt to a task by considering the context
without needing a separate training phase.

 Zero-shot queries involve interacting with a
GPT transformer where the model solves a
task without examples related to that task. The
model uses its knowledge and generalization
ability to perform a new task based on
contextual information or instructions.

 Few-shot queries involve providing the model
with a few training examples. This approach is
especially useful when training data is limited,
but high accuracy and knowledge transfer
are required.

2.1.2 Regarding Processing Procedures

 Arithmetic coding. A method of data
compression that encodes symbol sequences
using fractional values. The core idea is to
represent the entire symbol sequence as a
single number within a specific interval rather
than encoding each symbol separately.

 Minimum Description Length (MDL) is a model
selection method based on the idea that the
best model for data description is the one that
minimizes the total description length. It
includes the length of the model description
(how well the model "compresses" the data by
explaining its patterns) and the length of the
data description (e.g., number of parameters,
their precision, etc.). In other words, MDL aims
to balance model complexity and its accuracy
in explaining observed data.

2.2 Problem Statement

Researchers attempting to explain GPT models’ in-
context learning abilities typically consider the
above foundational concepts in isolation. Unlike
them, the authors believe these abilities arise from
the integration of these concepts. This integrative
approach is explored in this work.

The article is structured as follows. Section 2
describes the transformer architecture and training
method. Section 3 offers a mathematical model
explaining learning process convergence.
Sections 4 and 5 detail compression models and
sentiment neuron tuning. Section 6 presents zero-
shot and few-shot learning concepts and
experimental results. Section 7 contains the
conclusions of the study.

3 Transformer and the Training

Process

3.1 Transformer Architecture

The transformer architecture is one of the most
significant innovations in deep learning, introduced
in 2017 in the paper “Attention is all you need” [1].
This work revolutionized the processing of
sequential data such as text. It introduced the main
components of transformer architecture,
described below.

3.1.1 Self-Attention Mechanism

Self-attention mechanism allows the transformer to
analyze the entire input text (or other data
sequences, e.g., time series) as a whole and
determine which parts of the sequence are most
important for processing each individual element.
This is one of the key properties of the transformer
that distinguishes it from other deep learning
architectures, such as recurrent neural networks
(RNNs), which process text sequentially.

Self-attention uses three elements represented
by their matrices:

 Query, it is representation of the current word
being processed.

 Key, it is representations of all words in
the sequence.

 Value, it is contextual representations of
the words.

The model computes the similarity between the
query and the keys to determine the weight of each
value. It then aggregates the results to create a
new representation of the current word considering
all other words.

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1691–1699
doi: 10.13053/CyS-29-3-5884

Bulat Shkanov, Mikhail Alexandrov1692

ISSN 2007-9737

3.1.2 Multi-Head Attention

Multi-head attention allows the transformer to learn
various aspects of word dependencies. Instead of
using a single attention mechanism, the
transformer applies multiple "heads" of attention.
Each "head" computes its own attention and then
the results are combined. This enables the model
to capture more complex dependency patterns
between words.

3.1.3 Encoder and Decoder

The self-attention mechanism and the layers of
connected neurons are included in two main
components of the transformer:

 Encoder is used for processing input data.
Each of its layers includes attention
mechanisms and weights of fully connected
neurons (feedforward layers). Each word in the
sequence is transformed using self-attention,
and the result is passed to the next layers.

 Decoder is used for generating the output
sequence based on the encoded information.
The decoder also uses attention mechanisms,
but unlike the encoder, it additionally applies
attention to the original sequence (encoder-
decoder attention). This allows it to consider
both its own previous outputs and the encoded
input data.

Figure 1 shows here these elements in a very
simplified way in the process of translation (see,
2.2 below).

3.1.4 Normalization and Residual Connections

To improve learning and prevent gradient
vanishing, residual connections are used at each
layer of the transformer. These connections:

 Add an original input data to the
layer's outputs.

 Introduce a layer normalization step to stabilize
training.

3.1.5 Feed-Forward Layers

After each attention layer, standard feedforward
neural networks are applied independently to each
sequence element. This helps to improve data
representation at each processing step.

3.1.6 Positional Encoding

As noted above, transformers do not process data
sequentially like recurrent networks. Therefore,
they lack a built-in mechanism for capturing word
order in a sequence. To solve it, positional
encoding is used, namely each word in the text is
assigned a position number in the sequence. This
allows the model to account for element order.

3.1.7 Conclusions on Transformer
Architecture

Transformers offer several advantages over
RNNs/LSTMs for sequence processing:

 The entire sequence can be processed in
parallel, whereas RNNs process
step- by- step.

 Transformers can be trained on very large
datasets by scaling width and depth (as seen
in language models with billions of
parameters), while training such deep LSTMs
is extremely difficult.

 Self-attention more easily captures long-
range dependencies.

However, transformers have two
disadvantages compared to classical
linear models:

 They require large amounts of data
and computations.

 When trained on small datasets, transformers
often lose generalization ability and overfit
more quickly.

Fig.1. Simplified transformer architecture

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1691–1699
doi: 10.13053/CyS-29-3-5884

Prerequisites of in-Context Learning for Transformers on Queries 1693

ISSN 2007-9737

 The transformer architecture is the foundation
for many modern language models such as
GPT, BERT, and their successors. It has
opened new possibilities for the advancement
of artificial intelligence.

3.2 Transformer Training

The transformer architecture, developed in 2017
by researchers from Google, was originally created
for machine translation tasks. Previously, recurrent
neural networks were used for such tasks, but they
had several drawbacks that hindered effective use.
A breakthrough occurred in mid-2017 with the
publication of the article "Attention is All You Need"
(Vaswani et al., 2017).

When we input Russian text into the model, it
undergoes a certain process, and as output we
receive a translation in English. This task belongs
to the class of supervised learning problems, and
training such a model requires collecting a huge
number of text pairs, e.g., Russian-English pairs.
This involves engaging many people to form these
pairs, organizing the annotation process, paying
the translators, and setting up the labeling system.

Let’s assume we know the translation of a
Russian phrase into English: «Я студент» => «I

am a student». Table 1 shows a fragment of
annotation for training a transformer to solve this
machine translation task.

For the first position of the phrase in Russian,
we must predict the token or word “I”, then “am”
and so on. We don’t need to map the target
translation to specific positions directly: we just
write one long sentence that is the correct
translation. The transformer algorithm uses a
tokenization mechanism to break this sentence
into positions, but the original translation is
still required.

Once the model is trained for translation, it will
make predictions based on dictionary probabilities.
Table 2 shows a fragment of transformer
predictions for the same translation task. The
labeling is again binary: 1 or 0.

For example, if the first token is supposed to be
“I” a well-trained model will likely predict “I” as the
first token with 93% confidence. Then, when asked
what token should come second, it predicts “am”
with 80% probability. This is an example of how
supervised learning is performed.

Even though the model predicts one word after
another, this is still supervised learning, and we
can provide a mathematical justification for why
this mechanism works.

4 Hoeffding’s Inequality and the

Learning Process

Hoeffding’s inequality [2] is a theorem in probability
theory used to estimate the likelihood that the
sample mean of a random variable significantly
deviates from its expected value. In the context of
supervised machine learning, this inequality
provides a confidence bound on the convergence
of training algorithms, indicating the probability that
the empirical mean (computed from a sample)
significantly differs from the true mean.

In machine learning and mathematical
statistics, error is defined as the deviation of the
model's prediction from the true value. In this
context, two types of errors are distinguished:

 True error (generalization error). This is the
expected value of the model's loss function
over the entire (unknown) data distribution. It
reflects the model's real ability to generalize

Table 1. Annotation fragment from the example

Token from Vocabulary/Position 1 2 3

«a» 0 0 1

«am» 0 1 0

«I» 1 0 0

«thanks» 0 0 0

«student» 0 0 0

Table 2. Transformer prediction fragment from

the example

Token from
Vocabulary/Position

1 2 3

«a» 0,01 0,01 0,99

«am» 0,02 0,80 0,001

«I» 0,93 0,10 0,001

«thanks» 0,01 0,05 0,001

«student» 0,03 0,001 0,002

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1691–1699
doi: 10.13053/CyS-29-3-5884

Bulat Shkanov, Mikhail Alexandrov1694

ISSN 2007-9737

the knowledge it learned from the
training sample.

 Empirical error (training error, empirical risk).
This is the average error value calculated over
the finite training dataset. In other words, the
empirical error shows how well the model
performs on the data it was trained on.

Since the training set is only a finite sample
from the full distribution, the empirical error differs
from the true error. As the sample size increases,
the empirical error should converge to the true
error. This is indirectly reflected in the law of
large numbers.

Hoeffding’s inequality for a sample X1,X2,...,Xn
of independent and identically distributed random
variables in the interval [a,b] gives the following
bound for any deviation t>0:

𝑃(|𝑋̅ − 𝐸[𝑋̅]| ≥ 𝑡) ≤ 2𝑒
−

2𝑛𝑡2

(𝑏−𝑎)2 , (1)

where E[𝑋̅] is the expected value of the random

variable 𝑋̅.

Hoeffding’s inequality shows that as the training
sample of size n increases, the probability of a
large deviation of empirical error from true error
tends to zero. This guarantees that the training
algorithm will converge to the true parameters if the
training dataset is sufficiently large. This
conclusion underscores the significance of
Hoeffding’s inequality for supervised
learning algorithms.

5 Data Compressor

5.1 Unsupervised vs. Supervised Learning

When considering transformer learning from the
context of queries, it is natural to raise the
following questions:

 What happens to the model when we have no
pre-prepared training datasets, that is, when
we use unsupervised learning instead of
supervised learning?

 Is there a mathematical framework for this
case that could help to answer the question?

Unsupervised learning is not limited to natural
language processing tasks. In computer vision

tasks, most models are trained using
unsupervised learning.

Here are some common situations where
unsupervised learning is applied:

 When data labeling is difficult. This could be
due to the large volume of data or the lack of
experts capable for performing
high- quality labeling.

 When we have a dataset of unlabeled data and
we intentionally avoid labeling it to train a
model that is more robust and capable
of generalization.

5.2 Arithmetic Coding

Arithmetic coding, as a data compression method,
is closely related to machine learning. The
following processing procedures reflect
this connection:

 Data storage. In machine learning, large
volumes of data are often involved, and
compression can significantly reduce storage
and transmission requirements. Arithmetic
coding allows data to be compressed with
minimal loss, which is especially important for
storing training and test datasets.

 Entropy coding. Arithmetic coding is an
example of entropy coding used to minimize
the average code length. In machine learning,
- especially in tasks involving probabilistic
modeling (e.g., Hidden Markov Models,
Bayesian Networks), - entropy coding helps to
optimize the representation of probability
distributions and improve model efficiency.

 Generative Adversarial Networks (GANs). In
GANs, arithmetic coding helps to create
compact data representations, enhancing the
model's ability to generate new data.

 Security and data protection. In tasks related
to data security and protection, arithmetic
coding can be used both for compression and
for encryption. This is particularly important for
confidential data used in machine learning.

The performance of large language model
training algorithms can be evaluated using the
parameter of entropy, borrowed from information
theory. Information entropy measures the

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1691–1699
doi: 10.13053/CyS-29-3-5884

Prerequisites of in-Context Learning for Transformers on Queries 1695

ISSN 2007-9737

uncertainty in a system, particularly the
predictability of a primary alphabet symbol's
occurrence. In our case, the primary alphabet
consists of the symbols that the language model
processes as input and output. We can estimate
how likely or unlikely it is that the model will
correctly predict a given sequence of words.

Let us consider two datasets: X and Y. Suppose
we have a compressor that compresses data well.
The compressor should use patterns from X to
better compress Y. That is, if we have additional
information from X that is relevant to Y, we can use
it to better compress Y. The reverse is also true,
namely, if we have additional information from Y
relevant to X, we can use it to better compress X.
This principle can be formally expressed by
the inequality:

|𝐶(𝑐𝑜𝑛𝑐𝑎𝑡(𝑋, 𝑌))| < |𝐶(𝑋)| + |𝐶(𝑌)| + 𝑂(1), (2)

where: C denotes the compression operation, and
concat (concatenation) denotes the operation of
combining two datasets.

This applies to prediction as well: if we use a
sample that contains extractable useful patterns,
the predictive model that captures these patterns
should also reduce entropy on that sample.

5.3 Minimum Description Length

Minimum Description Length, MDL [3] is a
parameter (or criterion) used to guide model
selection based on a balance between model
complexity and its ability to explain the data. This
parameter is closely related to the concept of data
compression and entropy coding. In machine
learning, MDL helps to prevent overfitting.

The MDL principle states that the best model for
describing a dataset is the one that minimizes the
total description length of the model and the data.
It includes:

 the length of the model description itself,

 the length of the data description as used by
the model.

A model that efficiently compresses data also
minimizes its entropy. At the same time:

 complex models reduce data uncertainty but
increase the length of the model description.

 simple models reduce the model description
length but increase data uncertainty.

The Minimum Description Length principle ensures
the right balance between the two factors above.

6 Sentiment Neurons

Research into sentiment analysis mechanisms in
large language models (LLMs) was initiated by
OpenAI in 2017. The authors of the study
"Learning to generate reviews and discovering
sentiment" [4] proposed an approach for using
sentiment neurons to generate textual reviews and
detect sentiment in texts. The study tested
two hypotheses:

 Hypothesis 1: Models trained on large volumes
of textual data can effectively generate realistic
text reviews.

 Hypothesis 2: During text analysis, the model
can automatically detect sentiment in these
texts and classify the texts.

The results of the experiments from that article
are presented below.

6.1 Experiment 1

The experiment focused on training a model to
generate texts. The researchers trained a large
language model on a dataset of textual reviews.
The model was configured to generate texts that
mimic the style and content of real reviews. An
unsupervised learning algorithm was used, which
allowed the model to learn from a variety of text
data without prior annotation. The experiment
confirmed Hypothesis 1: the model generated texts
that were stylistically and semantically close to
actual reviews.

6.2 Experiment 2

This experiment focused on identifying sentiment
neurons. The researchers analyzed neuron
activations in the model to identify those
responsible for sentiment analysis. They
discovered that certain neurons were activated in
the presence of positive or negative sentiments in

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1691–1699
doi: 10.13053/CyS-29-3-5884

Bulat Shkanov, Mikhail Alexandrov1696

ISSN 2007-9737

the text, while others were not. These active
neurons were labeled “sentiment neurons.”

Figure 2 shows the activation level of one such
sentiment neuron when analyzing a set of texts
containing sentiments. The experiment confirmed
Hypothesis 2: the model detected and classified
sentiment in the texts.

6.3 Experiment 3

This experiment focused on sentiment
classification. The model was tested on a dataset
of reviews labeled as “positive” or “negative.”

Activation of sentiment neurons was used to
predict the overall tone of each review.

Figure 3 shows the classifier’s accuracy
depending on the size of the training dataset.
Accuracy reaches its maximum when fine-tuned on
just 10 examples. This experiment once again
confirmed Hypothesis 2: the model successfully
detected and classified sentiments in texts and
provided an overall assessment of text tone.

The research results discussed above [4]
demonstrated that large language models can not
only generate realistic texts but also automatically
analyze sentiment in those texts. The identified
sentiment neurons showed high accuracy in
sentiment classification, opening new
opportunities for applying such models in
various domains.

7 Concept of Zero-Shot and Few-Shot

Learning

In mid-2018, OpenAI released the first Generative
Pretrained Transformer (GPT). The capabilities of
the transformer were documented in the article
“Improving language understanding by generative
pre-training” [5]. This article provides a detailed
examination of the concepts of zero-shot and few-
shot learning, presents experimental examples,
and discusses the results. We summarize these
materials below.

7.1 Experiment 1

Experiment Focus: Zero-shot learning.
Goal: To test GPT-1's ability to perform various

NLP tasks without any additional task-specific
training. The model was evaluated on three tasks:

 Sentiment classification. Determining whether
texts were positive or negative without training
on labeled data. A binary classification task.

 Translation. Translating phrases between two
languages based on prior pretraining
knowledge. A machine translation task.

 Question answering. Answering questions
based on general understanding of language
and context.

Results for each task:

Fig. 2. Activation distribution of a neuron responsible for

review sentiment

Fig. 3. Relationship between classification accuracy and

the size of the training dataset for the Yelp
reviews dataset

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1691–1699
doi: 10.13053/CyS-29-3-5884

Prerequisites of in-Context Learning for Transformers on Queries 1697

ISSN 2007-9737

 GPT-1 demonstrated acceptable accuracy in
classifying texts as positive or negative.
However, it did not reach the performance of
models specifically trained for the task.

 Translations produced by GPT-1 were
reasonably accurate, though errors appeared
in complex or context-heavy phrases.

 GPT-1 correctly answered most questions,
showing an ability to extract relevant
information from texts.

7.2 Experiment 2

Experiment Focus: Few-shot learning.

Goal: To assess the effectiveness of few-shot
learning by adapting GPT-1 to new tasks using a
minimal number of examples. The model was
tested on the same three tasks:

 Sentiment classification. The model was
trained using just a few labeled examples of
positive and negative reviews.

 Translation. A few pairs of example sentences
were provided in the source and target
languages.

 Question answering. The model was given a
few examples of questions and answers
for training.

Results for each task:

 Classification accuracy improved significantly
compared to zero-shot learning, especially
with clearly defined examples.

 Translation quality increased, enabling the
model to more accurately convey meaning.

 The model produced more precise answers to
questions, demonstrating its ability to learn
from examples.

7.3 Conclusions from the Experiments

 GPT-1 possesses zero-shot learning
capabilities, allowing it to perform diverse tasks
without requiring labeled data. However,
accuracy and quality can vary depending on
task complexity and context.

 GPT-1 effectively utilizes few-shot learning,
enabling it to adapt to new tasks with minimal
data. This makes the model a flexible tool
capable of rapidly adjusting to new problems
with a limited number of examples.

Following Experiments 1 and 2, the authors of
[5] conducted two additional zero-shot learning
studies. Their goals were:

 To examine how GPT-1's task performance in
zero-shot mode improves with more
pretraining updates.

 To compare GPT-1's results with those of an
alternative model-a recurrent neural network
(LSTM)specifically trained for the same tasks.

Note: The term "update" here refers to a single
gradient descent step in optimizing model
parameters during pretraining. Thus, a greater
number of updates corresponds to longer
pretraining before zero-shot testing begins.

The graph in Figure 4 illustrates the results for
two tasks:

 Sentiment classification.

 Question answering.

An LSTM neural network served as the baseline
comparison model.

Graph interpretation:

Fig. 4. Relationship between task performance and

number of updates for GPT-1 and LSTM on sentiment
and question answering tasks

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1691–1699
doi: 10.13053/CyS-29-3-5884

Bulat Shkanov, Mikhail Alexandrov1698

ISSN 2007-9737

 X-axis: Number of model updates
during pretraining.

 Y-axis: Task accuracy (percentage of
correct answers).

 Solid lines: GPT-1 performance. It is black for
sentiment classification, and it is gray for
question answering.

 Dashed lines: LSTM performance. It is black
for sentiment classification, and it is gray for
question answering.

As the graph shows, GPT-1's task accuracy
steadily improves with more pretraining. Moreover,
even in zero-shot mode, GPT-1 outperforms LSTM
after a certain number of updates. This confirms
the transformer architecture's ability to generalize
knowledge and solve tasks based on text
context alone.

8 Conclusion

In this study, we jointly examined the foundational
concepts underlying the functioning of large
models based on transformer architecture and
demonstrated that their combination provides
insight into the transformer's capacity for in-
context learning.

Experiments with zero-shot and few-shot
prompting in the GPT-1 release showed the
model’s ability to adapt to new tasks with a minimal
number of training examples. This makes such
models flexible tools for solving NLP tasks.

The releases of GPT-2, GPT-3, and GPT-4
already incorporate these capabilities, although
their detailed review falls outside the scope of this
study. However, we can note that the ability to
learn from context also applies to other machine
learning applications. For example, the Chronos
model by Amazon [6], based on Google’s T5
architecture [7], has been adapted to solve tasks in
time series analysis and forecasting.

The authors hope that the material presented
here will help uncover new prospects for both
scientific research and practical applications of

transformer-based models in various
subject domains.

References

1. Vaswani, A., Shazeer, N., Parmar, N.,
Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L., Polosukhin, I. (2017). Attention Is
All You Need. Doi:
10.48550/arXiv.1706.03762.

2. Hoeffding, W. (1963). Probability Inequalities
for Sums of Bounded Random Variables.
Journal of the American Statistical

Association, Vol. 58, No. 301, pp. 1330. Doi:
10.2307/2282952.

3. Rissanen, J. (2005). An Introduction to MDL
principle. IEEE Trans. Information Theory, Vol.

46, No. 7, pp. 25372543.

4. Radford, A., Jozefowicz, R., Sutskever, I.
(2007). Learning to Generate Reviews and
Discovering Sentiment. Doi:
10.48550/arXiv.1704.01444.

5. Radford, A., Narasimhan, K., Salimans, T.,
Sutskever, I. (2018). Improving Language
Understanding by Generative Pre-Training.
Computer Science, Linguistics.

6. Ansari, A. F., Stella, L., Turkmen, C., Zhang,
X., Mercado, P., Shen, H., Shchur, O.,
Rangapuram, S. S., Pineda Arango, S.,
Kapoor, S., Zschiegner, J., Maddix, D. C.,
Wang, H., Mahoney, M. W., Torkkola, K.,
Wilson, A. G., Bohlke-Schneider, M., Wang,
Y. (2024). Chronos: Learning the Language of
Time Series. Doi: 10.48550/
arXiv.2403.07815.

7. Raffel, C., Shazeer, N., Roberts, A., Lee, K.,
Narang, S., Matena, M., Zhou, Y., Li, W., Liu,
P. J. (2019). Exploring the Limits of Transfer
Learning with a Unified Text-To-Text
Transformer. Doi: 10.48550/arXiv.1910.
10683.

Article received on 09/01/2025; accepted 24/07/2025.
*Corresponding author is Mikhail Alexandrov.

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1691–1699
doi: 10.13053/CyS-29-3-5884

Prerequisites of in-Context Learning for Transformers on Queries 1699

ISSN 2007-9737

https://arxiv.org/search/cs?searchtype=author&query=Vaswani,+A
https://arxiv.org/search/cs?searchtype=author&query=Shazeer,+N
https://arxiv.org/search/cs?searchtype=author&query=Parmar,+N
https://arxiv.org/search/cs?searchtype=author&query=Uszkoreit,+J
https://arxiv.org/search/cs?searchtype=author&query=Jones,+L
https://arxiv.org/search/cs?searchtype=author&query=Gomez,+A+N
https://arxiv.org/search/cs?searchtype=author&query=Kaiser,+L
https://arxiv.org/search/cs?searchtype=author&query=Polosukhin,+I
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1704.01444
https://doi.org/10.48550/arXiv.1704.01444
https://arxiv.org/search/cs?searchtype=author&query=Ansari,+A+F
https://arxiv.org/search/cs?searchtype=author&query=Stella,+L
https://arxiv.org/search/cs?searchtype=author&query=Turkmen,+C
https://arxiv.org/search/cs?searchtype=author&query=Zhang,+X
https://arxiv.org/search/cs?searchtype=author&query=Mercado,+P
https://arxiv.org/search/cs?searchtype=author&query=Shen,+H
https://arxiv.org/search/cs?searchtype=author&query=Shchur,+O
https://arxiv.org/search/cs?searchtype=author&query=Rangapuram,+S+S
https://arxiv.org/search/cs?searchtype=author&query=Rangapuram,+S+S
https://arxiv.org/search/cs?searchtype=author&query=Arango,+S+P
https://arxiv.org/search/cs?searchtype=author&query=Kapoor,+S
https://arxiv.org/search/cs?searchtype=author&query=Zschiegner,+J
https://arxiv.org/search/cs?searchtype=author&query=Maddix,+D+C
https://arxiv.org/search/cs?searchtype=author&query=Wang,+H
https://arxiv.org/search/cs?searchtype=author&query=Mahoney,+M+W
https://arxiv.org/search/cs?searchtype=author&query=Torkkola,+K
https://arxiv.org/search/cs?searchtype=author&query=Wilson,+A+G
https://arxiv.org/search/cs?searchtype=author&query=Bohlke-Schneider,+M
https://arxiv.org/search/cs?searchtype=author&query=Wang,+Y
https://doi.org/10.48550/arXiv.2403.07815
https://doi.org/10.48550/arXiv.2403.07815
https://arxiv.org/search/cs?searchtype=author&query=Raffel,+C
https://arxiv.org/search/cs?searchtype=author&query=Shazeer,+N
https://arxiv.org/search/cs?searchtype=author&query=Roberts,+A
https://arxiv.org/search/cs?searchtype=author&query=Lee,+K
https://arxiv.org/search/cs?searchtype=author&query=Narang,+S
https://arxiv.org/search/cs?searchtype=author&query=Matena,+M
https://arxiv.org/search/cs?searchtype=author&query=Zhou,+Y
https://arxiv.org/search/cs?searchtype=author&query=Li,+W
https://arxiv.org/search/cs?searchtype=author&query=Liu,+P+J
https://doi.org/10.48550/arXiv.1910.10683
https://doi.org/10.48550/arXiv.1910.10683

