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Abstract. Pre-trained generative transformers (GPT) 

with their 200+ billion parameters have already 
demonstrated their ability to successfully solve a wide 
range of text-related problems without the need for 
additional task-specific training. However, it has been 
observed that solution quality can be significantly 
improved for certain queries that reflect task formulation 
and conditions. It indicates that the transformer is further 
trained based on the query context, and the aim of this 
study is to show why GPT transformers enable to do it. 
To this end, the article jointly considers: elements of 
transformer architecture (data compressors and 
sentiment neurons), elements of the user interface with 
transformers (zero-shot and few-shot prompts), and text 
processing procedures (arithmetic coding and minimum 
description length). The authors attempt to provide a 
theoretical justification for the convergence of the 
sequential fine-tuning process using Hoeffding's 
inequality. The study presents experimental results 
demonstrating GPT transformers' capabilities for in-
context learning. This confirms their potential for further 
development in natural language processing 
technologies. 

Keywords. Data compressors, sentiment neurons, in-

context learning, zero-shot learning, few-shot learning 

1 Introduction 

1.1 Motivation 

In recent years, large language models and their 
implementation as GPT transformers have 
become one of the most discussed and in-demand 

technologies in artificial intelligence. They have 
firmly entered everyday life and are used in various 
fields as personal assistants, improving search and 
enabling creative content generation. This success 
is partly due to their ability to learn from the context 
of queries. 

To understand why modern large language 
models, possess such capabilities, we must 
consider the foundational concepts underlying 
them and experimental results. 

2 Fundamental Concepts 

We divide the foundational concepts that explain 
transformers' ability for in-context learning into 
three groups. 

2.1 Regarding the Architecture and 
Functioning of the Transformer 

 Data compressor as a tool for information 
compression. This tool not only reduces 
information but also structures it. This allows 
generative models to effectively generalize 
knowledge and use it to solve new tasks. 

 Sentiment neurons. These are parts of the 
neural network activated in the presence of 
positive or negative sentiments in a text. These 
neurons exemplify how models can extract and 
represent complex emotional nuances of the 
text, forming part of their data compression 
capabilities. 
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2.1.1 Regarding the Training Process 

 In-context learning is a method where a 
language model learns to solve a task not by 
traditional parameter updates, but by being 
provided with examples or instructions in the 
query context. This means the model can 
adapt to a task by considering the context 
without needing a separate training phase. 

 Zero-shot queries involve interacting with a 
GPT transformer where the model solves a 
task without examples related to that task. The 
model uses its knowledge and generalization 
ability to perform a new task based on 
contextual information or instructions. 

 Few-shot queries involve providing the model 
with a few training examples. This approach is 
especially useful when training data is limited, 
but high accuracy and knowledge transfer 
are required. 

2.1.2 Regarding Processing Procedures 

 Arithmetic coding. A method of data 
compression that encodes symbol sequences 
using fractional values. The core idea is to 
represent the entire symbol sequence as a 
single number within a specific interval rather 
than encoding each symbol separately. 

 Minimum Description Length (MDL) is a model 
selection method based on the idea that the 
best model for data description is the one that 
minimizes the total description length. It 
includes the length of the model description 
(how well the model "compresses" the data by 
explaining its patterns) and the length of the 
data description (e.g., number of parameters, 
their precision, etc.). In other words, MDL aims 
to balance model complexity and its accuracy 
in explaining observed data.  

2.2 Problem Statement 

Researchers attempting to explain GPT models’ in-
context learning abilities typically consider the 
above foundational concepts in isolation. Unlike 
them, the authors believe these abilities arise from 
the integration of these concepts. This integrative 
approach is explored in this work. 

The article is structured as follows. Section 2 
describes the transformer architecture and training 
method. Section 3 offers a mathematical model 
explaining learning process convergence. 
Sections 4 and 5 detail compression models and 
sentiment neuron tuning. Section 6 presents zero-
shot and few-shot learning concepts and 
experimental results. Section 7 contains the 
conclusions of the study. 

3 Transformer and the Training 

Process 

3.1 Transformer Architecture 

The transformer architecture is one of the most 
significant innovations in deep learning, introduced 
in 2017 in the paper “Attention is all you need” [1]. 
This work revolutionized the processing of 
sequential data such as text. It introduced the main 
components of transformer architecture, 
described below. 

3.1.1 Self-Attention Mechanism  

Self-attention mechanism allows the transformer to 
analyze the entire input text (or other data 
sequences, e.g., time series) as a whole and 
determine which parts of the sequence are most 
important for processing each individual element. 
This is one of the key properties of the transformer 
that distinguishes it from other deep learning 
architectures, such as recurrent neural networks 
(RNNs), which process text sequentially. 

Self-attention uses three elements represented 
by their matrices: 

 Query, it is representation of the current word 
being processed. 

 Key, it is representations of all words in 
the sequence. 

 Value, it is contextual representations of 
the words. 

The model computes the similarity between the 
query and the keys to determine the weight of each 
value. It then aggregates the results to create a 
new representation of the current word considering 
all other words. 
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3.1.2 Multi-Head Attention  

Multi-head attention allows the transformer to learn 
various aspects of word dependencies. Instead of 
using a single attention mechanism, the 
transformer applies multiple "heads" of attention. 
Each "head" computes its own attention and then 
the results are combined. This enables the model 
to capture more complex dependency patterns 
between words. 

3.1.3 Encoder and Decoder  

The self-attention mechanism and the layers of 
connected neurons are included in two main 
components of the transformer: 

 Encoder is used for processing input data. 
Each of its layers includes attention 
mechanisms and weights of fully connected 
neurons (feedforward layers). Each word in the 
sequence is transformed using self-attention, 
and the result is passed to the next layers. 

 Decoder is used for generating the output 
sequence based on the encoded information. 
The decoder also uses attention mechanisms, 
but unlike the encoder, it additionally applies 
attention to the original sequence (encoder-
decoder attention). This allows it to consider 
both its own previous outputs and the encoded 
input data.  

Figure 1 shows here these elements in a very 
simplified way in the process of translation (see, 
2.2 below). 

3.1.4 Normalization and Residual Connections  

To improve learning and prevent gradient 
vanishing, residual connections are used at each 
layer of the transformer. These connections: 

 Add an original input data to the 
layer's outputs. 

 Introduce a layer normalization step to stabilize 
training. 

3.1.5 Feed-Forward Layers  

After each attention layer, standard feedforward 
neural networks are applied independently to each 
sequence element. This helps to improve data 
representation at each processing step. 

3.1.6 Positional Encoding 

As noted above, transformers do not process data 
sequentially like recurrent networks. Therefore, 
they lack a built-in mechanism for capturing word 
order in a sequence. To solve it, positional 
encoding is used, namely each word in the text is 
assigned a position number in the sequence. This 
allows the model to account for element order. 

3.1.7 Conclusions on Transformer 
Architecture 

Transformers offer several advantages over 
RNNs/LSTMs for sequence processing: 

 The entire sequence can be processed in 
parallel, whereas RNNs process 
step- by- step. 

 Transformers can be trained on very large 
datasets by scaling width and depth (as seen 
in language models with billions of 
parameters), while training such deep LSTMs 
is extremely difficult. 

 Self-attention more easily captures long-
range dependencies. 

However, transformers have two 
disadvantages compared to classical 
linear models: 

 They require large amounts of data 
and computations. 

 When trained on small datasets, transformers 
often lose generalization ability and overfit 
more quickly. 

 
Fig.1. Simplified transformer architecture 
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 The transformer architecture is the foundation 
for many modern language models such as 
GPT, BERT, and their successors. It has 
opened new possibilities for the advancement 
of artificial intelligence. 

3.2 Transformer Training 

The transformer architecture, developed in 2017 
by researchers from Google, was originally created 
for machine translation tasks. Previously, recurrent 
neural networks were used for such tasks, but they 
had several drawbacks that hindered effective use. 
A breakthrough occurred in mid-2017 with the 
publication of the article "Attention is All You Need" 
(Vaswani et al., 2017). 

When we input Russian text into the model, it 
undergoes a certain process, and as output we 
receive a translation in English. This task belongs 
to the class of supervised learning problems, and 
training such a model requires collecting a huge 
number of text pairs, e.g., Russian-English pairs. 
This involves engaging many people to form these 
pairs, organizing the annotation process, paying 
the translators, and setting up the labeling system. 

Let’s assume we know the translation of a 
Russian phrase into English: «Я студент» => «I 

am a student». Table 1 shows a fragment of 
annotation for training a transformer to solve this 
machine translation task. 

For the first position of the phrase in Russian, 
we must predict the token or word “I”, then “am” 
and so on. We don’t need to map the target 
translation to specific positions directly: we just 
write one long sentence that is the correct 
translation. The transformer algorithm uses a 
tokenization mechanism to break this sentence 
into positions, but the original translation is 
still required. 

Once the model is trained for translation, it will 
make predictions based on dictionary probabilities. 
Table 2 shows a fragment of transformer 
predictions for the same translation task. The 
labeling is again binary: 1 or 0. 

For example, if the first token is supposed to be 
“I” a well-trained model will likely predict “I” as the 
first token with 93% confidence. Then, when asked 
what token should come second, it predicts “am” 
with 80% probability. This is an example of how 
supervised learning is performed. 

Even though the model predicts one word after 
another, this is still supervised learning, and we 
can provide a mathematical justification for why 
this mechanism works.  

4 Hoeffding’s Inequality and the 

Learning Process  

Hoeffding’s inequality [2] is a theorem in probability 
theory used to estimate the likelihood that the 
sample mean of a random variable significantly 
deviates from its expected value. In the context of 
supervised machine learning, this inequality 
provides a confidence bound on the convergence 
of training algorithms, indicating the probability that 
the empirical mean (computed from a sample) 
significantly differs from the true mean. 

In machine learning and mathematical 
statistics, error is defined as the deviation of the 
model's prediction from the true value. In this 
context, two types of errors are distinguished: 

 True error (generalization error). This is the 
expected value of the model's loss function 
over the entire (unknown) data distribution. It 
reflects the model's real ability to generalize 

Table 1. Annotation fragment from the example 

Token from Vocabulary/Position 1 2 3 

«a» 0 0 1 

«am» 0 1 0 

«I» 1 0 0 

«thanks» 0 0 0 

«student» 0 0 0 

Table 2. Transformer prediction fragment from 

the example 

Token from 
Vocabulary/Position 

1 2 3 

«a» 0,01 0,01 0,99 

«am» 0,02 0,80 0,001 

«I» 0,93 0,10 0,001 

«thanks» 0,01 0,05 0,001 

«student» 0,03 0,001 0,002 
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the knowledge it learned from the 
training sample. 

 Empirical error (training error, empirical risk). 
This is the average error value calculated over 
the finite training dataset. In other words, the 
empirical error shows how well the model 
performs on the data it was trained on. 

Since the training set is only a finite sample 
from the full distribution, the empirical error differs 
from the true error. As the sample size increases, 
the empirical error should converge to the true 
error. This is indirectly reflected in the law of 
large numbers. 

Hoeffding’s inequality for a sample X1,X2,...,Xn 
of independent and identically distributed random 
variables in the interval [a,b]  gives the following 
bound for any deviation t>0: 

𝑃(|𝑋̅ − 𝐸[𝑋̅]| ≥ 𝑡) ≤ 2𝑒
−

2𝑛𝑡2

(𝑏−𝑎)2 , (1) 

where E[𝑋̅] is the expected value of the random 

variable 𝑋̅.  

Hoeffding’s inequality shows that as the training 
sample of size n increases, the probability of a 
large deviation of empirical error from true error 
tends to zero. This guarantees that the training 
algorithm will converge to the true parameters if the 
training dataset is sufficiently large. This 
conclusion underscores the significance of 
Hoeffding’s inequality for supervised 
learning algorithms.  

5 Data Compressor 

5.1 Unsupervised vs. Supervised Learning 

When considering transformer learning from the 
context of queries, it is natural to raise the 
following questions: 

 What happens to the model when we have no 
pre-prepared training datasets, that is, when 
we use unsupervised learning instead of 
supervised learning? 

 Is there a mathematical framework for this 
case that could help to answer the question? 

Unsupervised learning is not limited to natural 
language processing tasks. In computer vision 

tasks, most models are trained using 
unsupervised learning. 

Here are some common situations where 
unsupervised learning is applied: 

 When data labeling is difficult. This could be 
due to the large volume of data or the lack of 
experts capable for performing 
high- quality labeling. 

 When we have a dataset of unlabeled data and 
we intentionally avoid labeling it to train a 
model that is more robust and capable 
of generalization. 

5.2 Arithmetic Coding 

Arithmetic coding, as a data compression method, 
is closely related to machine learning. The 
following processing procedures reflect 
this connection: 

 Data storage. In machine learning, large 
volumes of data are often involved, and 
compression can significantly reduce storage 
and transmission requirements. Arithmetic 
coding allows data to be compressed with 
minimal loss, which is especially important for 
storing training and test datasets. 

 Entropy coding. Arithmetic coding is an 
example of entropy coding used to minimize 
the average code length. In machine learning, 
- especially in tasks involving probabilistic 
modeling (e.g., Hidden Markov Models, 
Bayesian Networks), - entropy coding helps to 
optimize the representation of probability 
distributions and improve model efficiency. 

 Generative Adversarial Networks (GANs). In 
GANs, arithmetic coding helps to create 
compact data representations, enhancing the 
model's ability to generate new data. 

 Security and data protection. In tasks related 
to data security and protection, arithmetic 
coding can be used both for compression and 
for encryption. This is particularly important for 
confidential data used in machine learning. 

The performance of large language model 
training algorithms can be evaluated using the 
parameter of entropy, borrowed from information 
theory. Information entropy measures the 
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uncertainty in a system, particularly the 
predictability of a primary alphabet symbol's 
occurrence. In our case, the primary alphabet 
consists of the symbols that the language model 
processes as input and output. We can estimate 
how likely or unlikely it is that the model will 
correctly predict a given sequence of words. 

Let us consider two datasets: X and Y. Suppose 
we have a compressor that compresses data well. 
The compressor should use patterns from X to 
better compress Y. That is, if we have additional 
information from X that is relevant to Y, we can use 
it to better compress Y. The reverse is also true, 
namely, if we have additional information from Y 
relevant to X, we can use it to better compress X. 
This principle can be formally expressed by 
the inequality: 

|𝐶(𝑐𝑜𝑛𝑐𝑎𝑡(𝑋, 𝑌))| <  |𝐶(𝑋)| + |𝐶(𝑌)| + 𝑂(1), (2) 

where: C denotes the compression operation, and 
concat (concatenation) denotes the operation of 
combining two datasets. 

This applies to prediction as well: if we use a 
sample that contains extractable useful patterns, 
the predictive model that captures these patterns 
should also reduce entropy on that sample. 

5.3 Minimum Description Length  

Minimum Description Length, MDL [3] is a 
parameter (or criterion) used to guide model 
selection based on a balance between model 
complexity and its ability to explain the data. This 
parameter is closely related to the concept of data 
compression and entropy coding. In machine 
learning, MDL helps to prevent overfitting. 

The MDL principle states that the best model for 
describing a dataset is the one that minimizes the 
total description length of the model and the data. 
It includes: 

 the length of the model description itself, 

 the length of the data description as used by 
the model. 

A model that efficiently compresses data also 
minimizes its entropy. At the same time: 

 complex models reduce data uncertainty but 
increase the length of the model description. 

 simple models reduce the model description 
length but increase data uncertainty. 

The Minimum Description Length principle ensures 
the right balance between the two factors above. 

6 Sentiment Neurons 

Research into sentiment analysis mechanisms in 
large language models (LLMs) was initiated by 
OpenAI in 2017. The authors of the study 
"Learning to generate reviews and discovering 
sentiment" [4] proposed an approach for using 
sentiment neurons to generate textual reviews and 
detect sentiment in texts. The study tested 
two hypotheses: 

 Hypothesis 1: Models trained on large volumes 
of textual data can effectively generate realistic 
text reviews. 

 Hypothesis 2: During text analysis, the model 
can automatically detect sentiment in these 
texts and classify the texts. 

The results of the experiments from that article 
are presented below. 

6.1 Experiment 1 

The experiment focused on training a model to 
generate texts. The researchers trained a large 
language model on a dataset of textual reviews. 
The model was configured to generate texts that 
mimic the style and content of real reviews. An 
unsupervised learning algorithm was used, which 
allowed the model to learn from a variety of text 
data without prior annotation. The experiment 
confirmed Hypothesis 1: the model generated texts 
that were stylistically and semantically close to 
actual reviews. 

6.2 Experiment 2 

This experiment focused on identifying sentiment 
neurons. The researchers analyzed neuron 
activations in the model to identify those 
responsible for sentiment analysis. They 
discovered that certain neurons were activated in 
the presence of positive or negative sentiments in 
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the text, while others were not. These active 
neurons were labeled “sentiment neurons.” 

Figure 2 shows the activation level of one such 
sentiment neuron when analyzing a set of texts 
containing sentiments. The experiment confirmed 
Hypothesis 2: the model detected and classified 
sentiment in the texts. 

6.3 Experiment 3 

This experiment focused on sentiment 
classification. The model was tested on a dataset 
of reviews labeled as “positive” or “negative.” 

Activation of sentiment neurons was used to 
predict the overall tone of each review. 

Figure 3 shows the classifier’s accuracy 
depending on the size of the training dataset. 
Accuracy reaches its maximum when fine-tuned on 
just 10 examples. This experiment once again 
confirmed Hypothesis 2: the model successfully 
detected and classified sentiments in texts and 
provided an overall assessment of text tone. 

The research results discussed above [4] 
demonstrated that large language models can not 
only generate realistic texts but also automatically 
analyze sentiment in those texts. The identified 
sentiment neurons showed high accuracy in 
sentiment classification, opening new 
opportunities for applying such models in 
various domains. 

7 Concept of Zero-Shot and Few-Shot 

Learning 

In mid-2018, OpenAI released the first Generative 
Pretrained Transformer (GPT). The capabilities of 
the transformer were documented in the article 
“Improving language understanding by generative 
pre-training” [5]. This article provides a detailed 
examination of the concepts of zero-shot and few-
shot learning, presents experimental examples, 
and discusses the results. We summarize these 
materials below. 

7.1 Experiment 1 

Experiment Focus: Zero-shot learning. 
Goal: To test GPT-1's ability to perform various 

NLP tasks without any additional task-specific 
training. The model was evaluated on three tasks: 

 Sentiment classification. Determining whether 
texts were positive or negative without training 
on labeled data. A binary classification task. 

 Translation. Translating phrases between two 
languages based on prior pretraining 
knowledge. A machine translation task. 

 Question answering. Answering questions 
based on general understanding of language 
and context. 

Results for each task: 

 

Fig. 2. Activation distribution of a neuron responsible for 

review sentiment 

 

Fig. 3. Relationship between classification accuracy and 

the size of the training dataset for the Yelp 
reviews dataset 
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 GPT-1 demonstrated acceptable accuracy in 
classifying texts as positive or negative. 
However, it did not reach the performance of 
models specifically trained for the task. 

 Translations produced by GPT-1 were 
reasonably accurate, though errors appeared 
in complex or context-heavy phrases. 

 GPT-1 correctly answered most questions, 
showing an ability to extract relevant 
information from texts. 

7.2 Experiment 2 

Experiment Focus: Few-shot learning. 

Goal: To assess the effectiveness of few-shot 
learning by adapting GPT-1 to new tasks using a 
minimal number of examples. The model was 
tested on the same three tasks: 

 Sentiment classification. The model was 
trained using just a few labeled examples of 
positive and negative reviews. 

 Translation. A few pairs of example sentences 
were provided in the source and target 
languages. 

 Question answering. The model was given a 
few examples of questions and answers 
for training. 

Results for each task: 

 Classification accuracy improved significantly 
compared to zero-shot learning, especially 
with clearly defined examples. 

 Translation quality increased, enabling the 
model to more accurately convey meaning. 

 The model produced more precise answers to 
questions, demonstrating its ability to learn 
from examples. 

7.3 Conclusions from the Experiments 

 GPT-1 possesses zero-shot learning 
capabilities, allowing it to perform diverse tasks 
without requiring labeled data. However, 
accuracy and quality can vary depending on 
task complexity and context. 

 GPT-1 effectively utilizes few-shot learning, 
enabling it to adapt to new tasks with minimal 
data. This makes the model a flexible tool 
capable of rapidly adjusting to new problems 
with a limited number of examples. 

Following Experiments 1 and 2, the authors of 
[5] conducted two additional zero-shot learning 
studies. Their goals were: 

 To examine how GPT-1's task performance in 
zero-shot mode improves with more 
pretraining updates. 

 To compare GPT-1's results with those of an 
alternative model-a recurrent neural network 
(LSTM)specifically trained for the same tasks. 

Note: The term "update" here refers to a single 
gradient descent step in optimizing model 
parameters during pretraining. Thus, a greater 
number of updates corresponds to longer 
pretraining before zero-shot testing begins. 

The graph in Figure 4 illustrates the results for 
two tasks: 

 Sentiment classification. 

 Question answering. 

An LSTM neural network served as the baseline 
comparison model. 

Graph interpretation: 

 

Fig. 4. Relationship between task performance and 

number of updates for GPT-1 and LSTM on sentiment 
and question answering tasks 
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 X-axis: Number of model updates 
during pretraining. 

 Y-axis: Task accuracy (percentage of 
correct answers). 

 Solid lines: GPT-1 performance. It is black for 
sentiment classification, and it is gray for 
question answering. 

 Dashed lines: LSTM performance. It is black 
for sentiment classification, and it is gray for 
question answering. 

As the graph shows, GPT-1's task accuracy 
steadily improves with more pretraining. Moreover, 
even in zero-shot mode, GPT-1 outperforms LSTM 
after a certain number of updates. This confirms 
the transformer architecture's ability to generalize 
knowledge and solve tasks based on text 
context alone. 

8 Conclusion 

In this study, we jointly examined the foundational 
concepts underlying the functioning of large 
models based on transformer architecture and 
demonstrated that their combination provides 
insight into the transformer's capacity for in-
context learning. 

Experiments with zero-shot and few-shot 
prompting in the GPT-1 release showed the 
model’s ability to adapt to new tasks with a minimal 
number of training examples. This makes such 
models flexible tools for solving NLP tasks. 

The releases of GPT-2, GPT-3, and GPT-4 
already incorporate these capabilities, although 
their detailed review falls outside the scope of this 
study. However, we can note that the ability to 
learn from context also applies to other machine 
learning applications. For example, the Chronos 
model by Amazon [6], based on Google’s T5 
architecture [7], has been adapted to solve tasks in 
time series analysis and forecasting. 

The authors hope that the material presented 
here will help uncover new prospects for both 
scientific research and practical applications of 

transformer-based models in various 
subject domains. 
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