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Abstract. This study explores the neural correlates of
consumer preferences for functional foods using EEG
signals from 83 participants. Using Principal Component
Analysis (PCA) for dimensionality reduction and visu-
alization, we identified distinctive brain wave patterns
associated with liked and disliked food products. PCA
revealed dominant activity in Delta (0.97) and Theta
(0.92) waves for preferred foods, indicating strong sen-
soriemotional interaction, while disliked foods showed
reduced Alpha (0.23) and Beta (0.14) activity, reflect-
ing decreased cognitive processing. Statistical valida-
tion (70% explained variance using PCA, p ¡ 0.05 in
permutation tests) confirmed the robustness. The ap-
proach demonstrates how integrating PCA can decode

consumer behavior, providing useful insights for neuro-
marketing and product development, such as optimizing
sensory attributes or adapting formulations based on
neural profiles. Future work could integrate machine
learning for predictive modeling.

Keywords. EEG, PCA, Neuromarketing, Functional
Foods, Consumer Preferences.

1 Introduction

Arterial hypertension is a major health issue in
Mexico, affecting nearly 40% of adults. This con-
dition, characterized by chronic high blood pres-
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sure, increases the risk of cardiovascular diseases,
strokes, and kidney problems [14, 11]. It is impor-
tant to highlight that many people are unaware that
they suffer from hypertension, which can compli-
cate treatment and increase the likelihood of se-
vere complications. One of the main causes of
hypertension is diet. Diet plays a crucial role in
both the development and control of hypertension
[37]. Excessive sodium intake, commonly found
in salt and many ultra-processed foods, is one of
the leading factors contributing to elevated blood
pressure. In Mexico, the average daily salt con-
sumption exceeds the World Health Organization’s
(WHO) recommendation of a maximum of 5 grams
per day, which results in approximately 27,700
deaths from cardiovascular causes each year in
the country [13, 3]. In addition to sodium, diets
high in saturated fats and added sugars typical of
ultra processed foods contribute to overweight and
obesity, which are conditions that further increase
the risk of hypertension. However, a balanced
diet that includes fruits, vegetables, whole grains,
and legumes provides essential nutrients such as
potassium, fiber, and antioxidants, all of which help
maintain healthy blood pressure levels.

The Mexican government has implemented var-
ious strategies to promote healthier eating habits.
One of the most recent measures is the ban on junk
food sales in schools, aimed at encouraging health-
ier eating from an early age. This initiative seeks
to reduce the consumption of products high in fat,
sugar, and sodium among students. Additionally,
campaigns have been launched for the prevention
and early detection of non-communicable chronic
diseases, with the goal of reducing the prevalence
of hypertension, type 2 diabetes, and obesity by
5% to 10% over six years. These campaigns in-
clude the monitoring of at least 500,000 individuals
to implement effective preventive actions [1, 36].

The objective of this study is to analyze con-
sumer behavior based on their perceptions during
decision-making, in order to predict their choice of
functional products. This is achieved by using the
mathematical tool Principal Component Analysis
(PCA) to process data obtained through electroen-
cephalography (EEG). The objective is to identify
various brain responses associated with different
perceptions and evaluate their relationship with the

Fig. 1. Identification of Related Works via re-
search databases

participants’ expressed preferences. To do this,
data is collected from a group of individuals who
try different functional products, and the brainwave
frequencies present during consumption are iden-
tified. The results seek to determine whether there
are specific brain activity patterns related to con-
sumer decision-making.

To conduct this research, a literature review was
conducted to identify studies that use similar tools
and methods for data processing, with a focus
on efforts to reduce hypertension in Mexico and
understand how human brain frequencies respond
to different stimuli. The selected articles include
recent publications from 2021 to 2025, as well as
two studies from the 1990s that began exploring
the use of mathematical tools to identify rising lev-
els of hypertension at that time. The articles related
to this research are presented in Table 1.

Figure 1 shows the PRISMA flowchart, a selec-
tion methodology that includes a systematic review
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Table 1. Related Works

Reference Title Summary

[39] Single-cell analysis of peripheral blood
from HAPH patients

Identifies increased non-classical and
intermediate monocytes, suggesting a
role in pathogenesis.

[15] AI-Based Screening for White-coat and
Masked Hypertension

Machine Learning identifies key gut mi-
crobiota; SMOTE and SHAP improve
model accuracy and interpretability.

[40] Role of Gut Microbiota in Hypertension ML reveals microbial taxa linked to
hypertension; highlights interpretable
models and data balancing.

[7] Senescent Cells and Pulmonary Hy-
pertension

Analyzes impact of senescent cells
in disease using patients and animal
models.

[18] ML Model Based on microRNAs for Es-
sential Hypertension

Uses SVM and miRNAs to create a
high-accuracy diagnostic model inte-
grating clinical data.

[10] LLM Knowledge Distillation for Health
Event Prediction

CKLE model improves prediction of
heart failure and hypertension by
4.48% using LLM and EHR data.

[46] Monocyte Pathways in Pulmonary Ar-
terial Hypertension

Shows reduced monocyte infiltration in
PAH.

[38] NAMPT and Macrophage Polarization
in PAH

Links macrophages to smooth muscle
cell modulation in PAH.

[41] Facial Image Detection of Hyperten-
sion

Combines visible and NIR images us-
ing sparse coding; achieves 81% ac-
curacy.

[45] Dietary Patterns and Hypertension
Risk

PCA vs principal balances analysis
used to link diets with hypertension
risk.

[27] Treatment Patterns for PAH and
CTEPH in Finland

Describes treatment patterns over 12
years in Finnish cohort.

[24] Transparent AI for Lung Disease in PH Uses uncertainty estimation and di-
mensionality reduction in 3D lung mod-
els.

[33] Transcriptomics of Endothelial Cells in
PH

RNA-seq reveals PAH-specific signa-
tures from catheter-derived cells.

[17] Ocular Blood Flow in Essential Hyper-
tension

Measures blood flow changes after
Trandolapril treatment.

[44] Sympathetic Tone in Essential Hyper-
tension

Evaluates sympathetic activity dynam-
ically, showing limitations of baseline
measures.
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of citations from articles related to the present re-
search to discard those less relevant to the objec-
tive and the method used.

Thanks to this process, four articles related to
the proposal were identified, each with its own per-
spective and use of mathematics, whose objective
is to contribute to the reduction of hypertension, in
addition to using various data reduction methods,
especially principal component analysis (PCA). In
addition to this method, these works use other
techniques such as:

1. t-SNE (t-distributed Stochastic Neighbor Em-
bedding): This is a nonlinear dimensionality
reduction technique that preserves the local
structure of the data, ideal for two- or three-
dimensional visualizations [34].

2. Autoencoder: which is an unsupervised neural
network that learns a compressed representa-
tion, in other words, an encoding of the input
data, which is useful for dimension reduction
and noise removal in various studies [5].

3. UMAP (Uniform Manifold Approximation and
Projection): is a nonlinear dimensionality
reduction method that preserves both the
local and global structure of the data, offering
high speed and is faster than t-SNE on large
data sets. [35].

PCA and t-SNE Implementation for KNN Hyper-
tension Classification Visualization [9], where the
authors of the article address the high prevalence
of hypertension and the importance of its accu-
rate classification for effective treatment through an
approach based on machine learning algorithms
and dimensionality reduction techniques, with the
aim of predicting the type of hypertension from
common characteristics and improve data visual-
ization to increase awareness about the disease,
the methodology used is data collection, its classi-
fication with K-Nearest Neighbors, in order to apply
a dimensionality reduction with Principal Compo-
nent Analysis and t-Distributed Stochastic Neigh-
bor Embedding, thus having a model whose input
is the use of a database of 7,794 patients with char-
acteristics such as age, weight and blood pressure,

and then a process with these data, in order to
obtain the classification of the types of hyperten-
sion at the output and generating understandable
visualizations for medical decision making, demon-
strating an improvement in the accuracy of the
model and in the interpretation of data complex,
which may contribute to more effective diagnosis
and greater awareness of hypertension.

As another example, there is the article, noncon-
tact remote sensing of abnormal blood pressure
using a deep neural network: a novel approach
for hypertension screening, [22], where the use
of a deep learning model is explored to detect hy-
pertension from infrared thermal images, with the
aim of developing a non-invasive detection system
that allows rapid detection, given that hypertension
often goes unnoticed and can lead to cardiovas-
cular emergencies, it is crucial to have accessible
and efficient methods for its early detection, the
methodology uses a deep neural network Panyc-
Net to analyze thermal images of different parts
of the body, captured by a specialized device, pro-
cessed with a deep learning model and evaluated
with metrics such as precision, recall and AUC;
the system receives as input thermal images and
clinical data of the participants, processing them to
generate results on the presence of hypertension,
along with visualizations of the most relevant body
regions for classification, thus representing an in-
novation in hypertension screening with potential
applications in public health and safety.

In the article, a comparison of principal compo-
nent analysis, partial least-squares, and reduced-
rank regressions in the identification of dietary pat-
terns associated with hypertension: YaHS-TAMYZ
and Shahedieh cohort studies [4], the authors ex-
amine the relationship between dietary patterns
and hypertension in two parts of a population in
Iran, using advanced statistical techniques such as
PCA, PLS and RRR to identify and assess these
patterns from 32 food groups and their associa-
tion with hypertension, a significant public health
problem; the methodology includes the assess-
ment of dietary intake using a food frequency ques-
tionnaire, the use of data reduction techniques to
derive dietary patterns, linear regression to assess
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the variance explained by these patterns, and in-
dependent t-tests and chi-square tests to compare
variables between groups.

Input data include participants’ demographic in-
formation and dietary intake data obtained from
the questionnaire, while the process encompasses
data collection, identification of dietary patterns
and analysis of their relationship with hypertension,
thus resulting in significant associations between
certain dietary patterns and the risk of hyperten-
sion, highlighting diet as a modifiable factor in its
prevention, and providing valuable evidence for fu-
ture research and the design of dietary interven-
tions to reduce the prevalence of hypertension.

Finally, there is the study Hypertension Detection
in Facial Image of Visible and Near-Infrared Bands
Using Sparse Coding, [41], where the use of a ma-
chine learning model based on microRNAs for the
diagnosis of essential hypertension is analyzed,
with the aim of improving its early detection and
clinical management, developing and validating a
model that identifies patients with hypertension
from microRNA profiles, evaluating accuracy and
applicability in different populations; the integration
of microRNAs in clinical practice faces challenges
in data collection and acceptance by patients and
health professionals, the study design included
174 participants, divided into two phases: one of
discovery through small RNA sequencing to iden-
tify relevant microRNAs, and another of validation
through RT-qPCR (Reverse Transcription quanti-
tative Polymerase Chain Reaction, a technique
used to convert RNA into complementary DNA
and quantitatively measure gene expression in real
time); the methodologies used were small RNA
sequencing to identify regulated microRNAs in hy-
pertensive patients, their validation by RT-qPCR
and the use of a support vector machine model for
classification; The input data included blood sam-
ples, clinical data, and microRNA levels obtained
through the aforementioned techniques; the final
result was a highly accurate ML model for classify-
ing patients as hypertensive or non-hypertensive,
in addition to identifying specific microRNAs as
biomarkers for hypertension, facilitating its early
detection and treatment.

This research proposes an innovative approach
compared to previous related work, applying ad-

vanced mathematical tools such as Principal Com-
ponent Analysis (PCA) to analyze neural data. Un-
like previous studies that also explore this tool to
combat hypertension in people, this work focuses
specifically on the analysis of brain signals (EEG)
obtained while participants observe and taste func-
tional foods. The main objective is to identify the
brain frequencies most frequently activated upon
contact with these products, allowing us to infer
the degree of attraction or preference toward them.
This will contribute to the development of more
effective strategies to promote the consumption of
functional and healthy foods, making them more at-
tractive to consumers. This ties in with the current
problem, where excessive consumption of ultra-
processed products is associated with an increase
in obesity and, consequently, with a higher risk of
developing hypertension.

By understanding consumers’ brain preferences,
products and campaigns can be designed that are
more aligned with their neurocognitive responses,
representing a significant contribution to both the
food industry and public health. The uniqueness
of this approach lies in the application of dimen-
sionality reduction (PCA) methods to complex brain
data to simplify, visualize, and interpret patterns
that would otherwise be difficult to detect.

These methods make it possible to reduce the
large volume of variables present in EEG signals,
preserving the most relevant information to facili-
tate the identification of neural responses to food
stimuli. Principal Component Analysis (PCA) al-
lows the detection of linear relationships between
variables and the generation of new components
that concentrate the greatest variability of the orig-
inal dataset.

This provides a compact and manageable repre-
sentation that facilitates the interpretation of brain
responses. Therefore, the structure of this arti-
cle is organized as follows: Section 2 describes
the mathematical tools used, specifically Principal
Component Analysis (PCA), as well as the pro-
posed methodology, detailing the composition of
the approach used and the electroencephalogra-
phy (EEG) signal collection process. Next, Sec-
tion 4 presents the main findings derived from the
application of dimensionality reduction techniques
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to EEG signals, in addition to explaining the ex-
perimental design and the results obtained during
the research. Subsequently, Section 4.4 analyzes
and interprets the results, highlighting the patterns
identified in brain activity during the evaluation of
functional products, with an emphasis on the use-
fulness of PCA in this analysis. Finally, Section 5
presents the most relevant reflections and general
conclusions of the study.

2 Bridging Theory and Practice: EEG
Signal Acquisition and Analytical
Frameworks for Neuromarketing

This section is structured in three main subsections
and addresses brain frequencies from a scientific
and analytical perspective. The first subsection,
Mathematical Basis presents the theoretical foun-
dations, including the role of Principal Component
Analysis (PCA) in reducing the dimensionality of
data and facilitating the interpretation of brain sig-
nals. It also explains what an electroencephalo-
gram (EEG) is and its relevance for recording brain
activity.

The second subsection, Method, describes the
techniques used for signal acquisition and process-
ing, focusing on how the EEG signals were ob-
tained and their importance for analyzing brain ac-
tivity related to decision-making. The general op-
erating model of the proposed system is also pre-
sented.

Together, these subsections provide a compre-
hensive and rigorous framework for studying the
interaction between brain processes and consumer
decision-making, an essential aspect for the ad-
vancement of neuromarketing.

2.1 Mathematical Basis

2.2 Definition of Principal Component Analysis

Principal Component Analysis (PCA) is a statistical
technique that helps simplify large datasets by con-
verting them into a smaller number of uncorrelated
variables known as principal components. These
components are linear combinations of the original
variables and are designed to capture as much
variance as possible from the dataset [8, 29].

PCA transforms the original data into a new coor-
dinate system using eigenvectors and eigenvalues
of the covariance matrix. The eigenvectors indi-
cate the directions in which the data exhibits the
greatest variance, while the eigenvalues quantify
the importance of these directions. The general
steps in applying PCA are:

1. Standardization: Data is normalized to avoid
biases that may arise from differences in
scales, since PCA is sensitive to the variances
of the initial variables. That is, if there are
large differences in the ranges of the original
variables, those with greater ranges will dom-
inate over those with smaller ranges, leading
to biased results.

2. Covariance Matrix Calculation: This step iden-
tifies the correlation between variables. Some-
times variables are highly correlated, thus con-
taining redundant information. To detect these
correlations, the covariance matrix is com-
puted. This matrix is symmetric of size P × P
(where P is the number of dimensions) and
contains the covariances associated with all
possible pairs of the original variables:

F =

(X,X) (X,Y ) (X,Z)
(Y ,X) (Y ,Y ) (Y ,Z)
(Z,X) (Z,Y ) (Z,Z)

 . (1)

3. Eigenvector and Eigenvalue Calculation: In
this step, the directions and the amount of
variance contained in the data are determined.
These values are the core of the magic behind
principal components. The eigenvectors of the
covariance matrix represent the axes direc-
tions where the greatest variance (the most
information) exists, [19, 25], and these are
called principal components. The eigenvalues
are the coefficients associated with the eigen-
vectors that indicate the amount of variance
present in each principal component.

Principal Component Analysis is an incredibly
powerful and versatile statistical technique with a
wide variety of applications in research and data
analysis. Thanks to its ability to simplify com-
plex data and reveal patterns, PCA has become a
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fundamental tool for exploring and analyzing large
datasets [28, 12].

2.3 Definition of Covariance

Covariance is a statistical measure that quantifies
the degree to which two random variables vary
together. It is widely used in probability theory,
statistics, and machine learning to understand the
relationship between features or signals. If the
variables tend to increase or decrease together,
the covariance will be positive; if one increases
while the other decreases, it will be negative. A co-
variance close to zero indicates that the variables
are linearly independent [23].

Mathematically, the covariance between two
variables X and Y with n observations is de-
fined as:

Cov(X,Y ) =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ), (2)

where:

— xi and yi are the individual observations of X
and Y ,

— x̄ and ȳ are the means of X and Y ,

— n is the total number of paired observations.

The computation can be expressed in matrix
form for a dataset X of size n × m (where m is
the number of features):

Σ =
1

n− 1
(X− X̄)T (X− X̄). (3)

Here, Σ is the covariance matrix, X̄ is the mean
vector replicated for each observation, and each el-
ement σij in Σ represents the covariance between
features i and j.

The covariance matrix has important properties:

1. It is symmetric: σij = σji.

2. The diagonal elements σii are the variances of
each variable.

3. Positive, negative, or zero covariances indi-
cate the direction and strength of the linear
relationship between variables.

To illustrate, suppose we have EEG signals from
two electrodes X and Y . The covariance can
reveal whether increases in signal amplitude from
electrode X tend to coincide with increases or de-
creases in electrode Y . This measure is essential
in identifying correlated brain regions or redundant
features before applying dimensionality reduction
techniques.

2.3.1 Applications

In machine learning, covariance is fundamental in:

1. Feature selection — identifying redundant or
highly correlated features.

2. Principal Component Analysis (PCA) — which
directly uses the covariance matrix to find di-
rections of maximum variance.

3. Time-series analysis — assessing the syn-
chrony between signals.

Covariance thus serves as a cornerstone for un-
derstanding relationships within data and guid-
ing further dimensionality reduction or preprocess-
ing steps.

2.4 Definition of Electroencephalogram

The electroencephalogram (EEG) is a technique
that allows us to record the electrical activity of the
brain. This activity is generated when the dendrites
of neurons in the cerebral cortex are stimulated
through synapses; this stimulation causes electri-
cal impulses to be emitted in the dendrites, creating
magnetic and electric fields that can be detected by
EEG systems. This enables the analysis of brain
function both under normal conditions and during
various tests [21, 2].

However, the signal weakens due to the different
layers that make up the human head, such as the
brain, skull, and scalp, which can also introduce
both internal and external interference. Therefore,
only a considerable number of active neurons can
generate a potential strong enough to be recorded
by surface electrodes. Nonetheless, brain electri-
cal signals can be detected in various layers of the
human brain, such as the scalp, the base of the
skull with the brain exposed, or in deeper areas of
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the brain. For this, electrodes can be superficial,
basal, or even surgically implanted, with superficial
electrodes being the most common in EEG prac-
tice [42].

In the field of brain-computer interfaces (BCI),
surface electrodes are key for recording brain activ-
ity. Several acquisition methods exist, such as the
Illinois system, Montreal Aird, and Lennox, among
others. The most widely used standard in research
is the International 10-20 System. This positioning
system is based on specific anatomical landmarks,
such as the inion, nasion, and ear lobes, ensuring
uniform electrode placement regardless of head
size. Its name comes from the distribution of elec-
trodes at intervals of 10% or 20% of the reference
anatomical distances [26].

2.5 Acquisition of EEG Signal

An EEG signal represents the electrical activity
generated when the dendrites of pyramidal neu-
rons in the cerebral cortex are synaptically stimu-
lated. This neuronal activation produces electrical
impulses that, in turn, generate electric and mag-
netic fields detectable by electroencephalography
(EEG) systems; an example of this electrical im-
pulse can be seen in Figure 2. The human skull
is distinguished by three main layers: the brain,
the cranium, and the scalp, which attenuate the
signal and can introduce internal and external in-
terference. For this reason, only a large number
of simultaneously active neurons can generate a
potential intense enough to be recorded by surface
electrodes [32, 43].

The electrical signals produced by the brain can
be captured on the scalp, at the base of the skull
with the brain exposed, or in deeper brain areas.
The electrodes used for detection can be superfi-
cial, basal or surgically implanted, with superficial
electrodes being the most commonly used in EEG
studies [30, 31].

In brain-computer interface (BCI) systems, sur-
face electrodes placed on the scalp are commonly
used to record brain electrical signals. There are
several acquisition methods, also known as arrays
or positioning systems, such as those developed
in Illinois, Montreal Aird, and Lennox, among oth-
ers. However, the most widely used method in

Fig. 2. Example of a cerebral electrical impulse

research—including this study—is the International
10-20 Positioning System [6].

The International 10-20 System is a standard-
ized protocol that relies on specific anatomical
landmarks such as the nasion, inion, and earlobes
to ensure consistent electrode placement regard-
less of head size. Its name comes from the fact
that electrodes are placed 10% to 20% away from
these anatomical landmarks.

This study uses the ThinkGear TGAM1 EEG
device, which detects neural signals and sends
them to the ThinkGear chip for processing, gener-
ating a stream of useful data and digitally removing
potential interference. The raw brain signals are
amplified and analyzed to provide relevant informa-
tion to the system. Acting as a link between the
brain and the computer, the NeuroSky ThinkGear
module, shown in Figure 3, was selected for being
a non-invasive technology with a reliability level
of 98%. The electrode is placed at location Fp1

[20, 16].

3 Methodology

3.1 General Model

The component analysis system, Figure 4 uses
mathematical dimensionality reduction tools, such
as PCA and t-SNE, to extract the principal compo-
nents of a person’s EEG signal. To do this, the
EEG signal is input and processed using these
statistical techniques, which transform and analyze
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Fig. 3. Sensor ThinkGear ASIC Module v1.0 (TGAM1)

Fig. 4. General model of the system

the data to identify the predominant frequencies of
brain activity. In addition, the model has a feedback
mechanism that allows the mathematical analysis
to be dynamically adjusted based on the results
obtained, thereby improving its accuracy.

3.2 The Internal Model of the System

Internally, the model performs several processing
steps, beginning with preprocessing the EEG sig-
nal, which involves filtering and cleaning the data
to reduce noise and corrupted signal components.
Then, upon moving to the next block, the signal is
transformed into the frequency domain, leading to
the next block where the signals are classified. The
resulting data are then processed using two dimen-
sionality reduction techniques: Principal Compo-
nent Analysis (PCA) and t-SNE. These techniques
operate in parallel to extract meaningful patterns,

which are then combined to form the principal fre-
quency components in the final block. The output is
thus the identification of the predominant frequen-
cies of brain activity, Figure 5.

3.2.1 Signal Preprocessing

The first block in the processing pipeline is the
Signal Preprocessing stage. Its main purpose is to
clean and prepare the raw EEG signal for further
analysis. EEG signals are typically contaminated
with various types of noise and artifacts, such as
muscle activity, eye movements (like blinking), and
external electrical interference, especially from the
power line (50 or 60 Hz).

Because of this, preprocessing is a crucial step
to ensure the reliability of the data before applying
any transformations or analyses.

The preprocessing process usually begins with
a bandpass filtering, which preserves only the fre-
quency range of interest, generally between 0.5 Hz
and 100 Hz. This can be mathematically repre-
sented as:

xfiltered(t) = BandpassFilter(x(t), flow, fhigh), (4)

where flow = 0.5 Hz and fhigh = 100 Hz.

Finally, a normalization or standardization pro-
cess is applied, adjusting each signal segment to
have zero mean and unit variance. This makes it
easier to compare data across different samples or
subjects. The formula used is:

xnorm =
x− µ

σ
. (5)

As a result of these procedures, we obtain
clean, normalized, and well-structured EEG sig-
nals, ready to be transformed.

The next step in the pipeline is the Domain
Transformation block, which is responsible for con-
verting signals from the time domain into the fre-
quency domain. This allows for a deeper analysis
of brain activity.

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1845–1864
doi: 10.13053/CyS-29-3-5805

EEG-Based Classification of Consumer Preferences Using PCA 1853

ISSN 2007-9737



Fig. 5. Internal model of the system

3.2.2 Domain Transformation

The second block in the EEG processing pipeline
is known as Domain Transformation. Its main
objective is to convert the EEG signal from the
time domain where it was originally recorded—into
the frequency domain. This transformation is cru-
cial for analyzing the brain’s electrical activity in
terms of its constituent frequency bands: Delta,
Theta, Alpha, Beta, and Gamma, which are associ-
ated with various cognitive and physiological states
such as attention, relaxation, and mental workload.

To achieve this transformation, mathematical
tools like the Fast Fourier Transform (FFT) or the
Wavelet Transform are typically used. Each tech-
nique has its advantages depending on the type of
analysis required.

The FFT provides a global view of the frequency
content of the signal, under the assumption that it
is stationary. It is defined as:

X(f) =

N−1∑
n=0

x(n) · e−j2πfn/N , (6)

where x(n) represents the EEG signal in the time
domain, and X(f) is its representation in the fre-
quency domain.

However, EEG signals are often non-stationary,
meaning their properties vary over time. In these
cases, the Wavelet Transform either Continuous
(CWT) or Discrete (DWT)—is more suitable, as it
provides both temporal and frequency resolution.
The continuous wavelet transform is expressed as:

Wx(a, b) =

∫ ∞

−∞
x(t) · ψ∗

(
t− b

a

)
dt. (7)

Here, ψ is the mother wavelet function, which
analyzes the signal at different scales a (related to
frequency) and translations b (related to time).

As a result, we obtain a frequency-based rep-
resentation of the signal, which highlights how the
energy is distributed across the different brainwave
bands. This spectral information is then passed
on to the next processing block, usually involving
classification or interpretation.

3.2.3 Frequency Classification

The third essential stage in the EEG signal pro-
cessing pipeline is Frequency Classification. Af-
ter the signal has been transformed into the fre-
quency domain, this block aims to categorize the
signal’s spectral content into well-established EEG
frequency bands. These bands reflect different
brain states and cognitive activities:

1. Delta (δ): 0.5–4 Hz – associated with deep
sleep and unconscious states.

2. Theta (θ): 4–8 Hz – linked to relaxation, medi-
tation, and light sleep.

3. Alpha (α): 8–13 Hz – related to calm wakeful-
ness and closed-eye rest.

4. Beta (β): 13–30 Hz – connected to active
thinking, attention, and problem-solving.

5. Gamma (γ): 30–100 Hz – associated with
higher cognitive functions like perception and
memory integration.
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To classify the frequency content into these bands,
the spectral power of the signal is first estimated.
One common method to obtain this is through the
Power Spectral Density (PSD), which provides the
distribution of signal power across frequencies. It
is defined as:

P (f) =
|X(f)|2

N
. (8)

Here, X(f) is the Fourier transform of the time-
domain EEG signal, and N is the number of fre-
quency bins or samples.

Once the PSD is computed, the next step in-
volves integrating the power within each frequency
band. This quantifies the total energy associated
with each brainwave range. The power within a
specific band is calculated using:

Pband =

∫ f2

f1

P (f) df , (9)

where f1 and f2 are the lower and upper bounds of
the respective EEG band.

The final outcome of this classification process is
a feature vector for each subject or signal segment.
This vector consists of either the absolute or rela-
tive power values in the five EEG frequency bands:

v⃗freq = [Pδ,Pθ,Pα,Pβ ,Pγ ]. (10)

This vector is then passed to the next processing
block, which performs dimensionality reduction us-
ing techniques such as Principal Component Anal-
ysis (PCA) and t-Distributed Stochastic Neighbor
Embedding (t-SNE).

4 Results

4.1 Experimental Setup

For the execution of the proposed system, a series
of hardware and software requirements were de-
fined, necessary for the execution and acceptable
performance of the system during the processing
and analysis of EEG signals. First, a Windows
10 operating system is required, which provides a
stable environment compatible with the tools used.
Regarding the processor, an Intel Core i5 proces-
sor is recommended as a minimum, offering the

computing power necessary to efficiently execute
analysis and machine learning processes.

The minimum RAM to be used is 8 GB, suffi-
cient to handle the volumes of data generated and
process multiple tasks simultaneously without af-
fecting system performance. For the acquisition of
brain signals, the NeuroSky ThinkGear device was
used, a portable, low-cost, and easy-to-implement
EEG sensor, ideal for experimental studies that
require efficient and simple capture of brain elec-
trical activity. Data processing and the execution
of the mathematical tools necessary for analysis
were performed using the Google Colab platform.
This platform was chosen for its ability to offer cloud
computing resources, such as graphics processing
units (GPUs) and preconfigured development envi-
ronments in Python, which significantly facilitates
and accelerates model development and execu-
tion.

Finally, the system was experimentally validated
with the participation of 81 test subjects, all univer-
sity students between the ages of 18 and 25. Each
participant consented to the collection and use of
their EEG signals, thus contributing to the develop-
ment of a way to identify which brain frequencies
are most prominent when making a decision.

4.2 Method under Study

The proposed system works with two output
classes: like and dislike, which represent the user’s
preference for a healthy food. Brain frequency
classification is achieved through data reduction
and analysis using Principal Component Analysis
(PCA), which allows for the extraction of relevant
patterns from the processed EEG signals. This
dimensionality reduction tool helps identify the prin-
cipal components associated with the participant’s
brain activity, thus facilitating the grouping of re-
sponses into like or dislike categories.

4.3 PCA

4.3.1 Like

EEG Frequency Band Correlation Matrix

Figure 6 shows an analysis of the correlation ma-
trix of EEG frequency bands, revealing significant
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Fig. 6. Inference Matrix ”Like”

associations between different frequencies. The
Delta band shows a high correlation (0.97) with
the raw EEG signal (RAW), indicating a strong
influence on the recorded brain activity. Similarly,
Theta presents a high correlation with Delta (0.92),
indicating that both share similar patterns. On the
other hand, the High Alpha band shows a consid-
erable correlation with Low Alpha (0.75), implying
a close relationship between the two during brain
activity. Likewise, a positive correlation is observed
between High Gamma and Attention (0.69), indi-
cating an association with cognitive focus. Addi-
tionally, Attention and Meditation are positively cor-
related (0.72), suggesting a relaxed mental state
but with a high level of concentration.

On the other hand, negative correlations are
shown, such as Low Gamma (-0.6) and High
Gamma (-0.44), which show inverse relationships
with other bands, indicating neuronal behavior con-
trary to lower frequencies. Similarly, the nega-
tive correlation between Attention and Meditation
(-0.69) may imply that these mental states operate
under opposite dynamics in the EEG signal. During
meditation, there is a decrease in Gamma activity,
reinforcing the idea that higher Gamma activation
is associated with less relaxation.

From these correlations, it is concluded that
Delta and Theta bands dominate the EEG sig-
nal during the consumption of pleasant functional
foods, reflecting sensory and emotional process-
ing. Alpha and Beta bands, for their part, show
interactions related to the cognitive evaluation of
food, including its flavor, texture, and acceptance.
Gamma waves and Attention are positively cor-
related, suggesting greater cognitive involvement
during food enjoyment. The inverse relationship
between Attention and Meditation highlights the
existence of different neural mechanisms for active
focus and relaxed state.

Role of EEG Frequency Bands in the
Eating Experience

Each frequency band is associated with specific
cognitive and emotional processes, and in the con-
text of food consumption, these associations help
to understand at a neural level why participants
enjoyed the product. Starting with the Delta band
(0.5 – 4 Hz), it is highly correlated with Theta (0.92)
and with the raw signal (0.97), and is related to
unconscious processing, sensory integration, and
reward mechanisms. Theta (4 – 8 Hz), in addition
to its correlation with Delta, presents a negative
relationship with Alpha (-0.32) and is linked to
memory and emotional processing, indicating an
emotional connection with the food, evoking mem-
ories or creating positive associations.

The Alpha band (8 – 12 Hz) is divided into Low
Alpha (0.71) and High Alpha (0.75). Low Alpha
is associated with relaxation, while High Alpha
reflects greater cognitive engagement, suggesting
a pleasurable but also mentally active experience.
The Beta band (12 – 30 Hz), with subcomponents
such as Low Beta (0.65) and High Beta (0.87), is
related to decision-making and cognitive process-
ing, indicating an active evaluation of the product
in terms of taste, texture, and quality. Finally, the
Gamma band (30 – 100 Hz), in its Low (-0.6) and
High (0.74) variants, is linked to higher cognitive
functions and sensory perception. High Gamma
is also correlated with Attention (0.69), reflecting
focus and perceptual intensity during the eating
experience.
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Cognitive and Emotional Involvement:
Attention and Meditation

The analysis shows that Attention and Meditation
are positively correlated (0.72), suggesting that
participants experienced a state of relaxation ac-
companied by high focus. However, there is a
negative correlation between Meditation and High
Gamma (-0.69), implying that higher cognitive ac-
tivation is associated with lower relaxation. This
allows us to interpret that, while enjoying the
food, participants combined active cognitive en-
gagement (which could be seen as the evaluation
of the food) with a pleasurable emotional response
(related to a memory or sensation).

Statistical Validation of PCA in EEG

The Principal Component Analysis (PCA) tool was
used to reduce the dimensionality of EEG data and
extract significant patterns during the consumption
of preferred functional foods. The initial correlation
matrix, Figure x, showed strong associations, such
as Delta-Theta (0.92) and Low Alpha-High Alpha
(0.75), validating the internal structure of the data
and justifying the application of PCA. The first prin-
cipal components explain between 80% and 90%
of the total variance, indicating that this technique
adequately represents the EEG signal without sub-
stantial information loss. Likewise, the factor load-
ings analysis revealed high loadings in Theta and
Beta, key elements in the consumption experience
due to their relationship with memory, decision-
making, and emotions. Additionally, a negative
loading in Gamma during meditation was con-
firmed, supporting the association between higher
Gamma activation and lower relaxation.

Practical Applications

This analysis confirms that EEG signals are ca-
pable of capturing neural responses linked to food
preferences. The results suggest that food enjoy-
ment involves increased cognitive and emotional
engagement. These conclusions are relevant and
applicable in various fields such as neuromarket-
ing, sensory analysis, and the development of new
food products, offering an objective tool to evaluate

consumer experience from a neurophysiological
perspective.

4.3.2 Dislike

Correlation Matrix Based on PCA Analysis for
Disliked Functional Foods

The figure 7 shows the correlation matrix based
on Principal Component Analysis (PCA), indicating
the correlations between EEG frequency bands
recorded in 83 participants who expressed dis-
like towards a functional or healthy food. The
analysis reveals significant relationships between
brain activity, cognitive processing, and emotional
responses, providing relevant information for con-
sumer neuroscience and the development of food
products.

Firstly, Delta and Theta waves show a strong
correlation (0.89), suggesting co-activation during
moments of deep cognitive processing and mem-
ory retrieval. This pattern suggests that partici-
pants may have compared the taste of the food with
previous negative experiences, which is consistent
with studies linking theta activity to emotional eval-
uation and episodic memory. On the other hand,
both High and Low Alpha waves are strongly corre-
lated with each other (0.72 and 0.84), suggesting a
synchronized decrease in sensory perception and
attention. This dynamic may indicate a state of
cognitive disconnection or suppression in response
to the rejection of the product.

Beta waves, both Low and High, also show a
positive correlation (0.77), indicating active infor-
mation processing. This pattern suggests that par-
ticipants were critically evaluating the product, pos-
sibly judging its taste, texture, or quality, reinforc-
ing their negative perception. Regarding Gamma
waves, a high inter-correlation (0.82) is observed
between Low and High Gamma, indicating an in-
crease in emotional response and multisensory
integration—a phenomenon commonly associated
with rejection responses.

In terms of mental state, an inverse correlation
(-0.7) was identified between attention and medi-
tation levels. This indicates that greater focus on
the negative sensory stimulus results in lower re-
laxation and acceptance. Both indicators, attention
and meditation, also show correlations with the
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Fig. 7. Inference Matrix ”Dislike”

high gamma band, reinforcing the idea that partici-
pants experienced an active but negative cognitive-
emotional state.

The interpretation of the analysis suggests that
when participants rejected the functional product,
specific brain mechanisms were activated: the syn-
chronization between Delta and Theta indicated
memory and emotional evaluation; the increase in
Beta activity reflected cognitive tension and critical
judgment; and the intensification of Gamma de-
noted sensory discomfort. The inverse relationship
between attention and meditation describes an ac-
tive yet unpleasant mental state. These results
demonstrate the value of EEG in capturing subcon-
scious emotional reactions to food products, which
is highly relevant for neuromarketing strategies.

4.4 Discussion

The joint analysis of EEG brain responses from
participants who expressed liking and disliking to-
ward functional foods reveals significantly distinct
neural patterns, reflecting divergent emotional and

cognitive processes. Through Principal Compo-
nent Analysis (PCA), correlations were identified
among frequency bands that allow inference of
underlying mechanisms of acceptance or rejection
of these types of products.

In cases where participants reported liking, no-
table synchronization was observed between high
and low Alpha waves, as well as between Theta
and Alpha waves. This suggests a state of relax-
ation, positive emotional processing, and sensory
openness. This pattern aligns with favorable affec-
tive processing, in which the gustatory experience
is associated with pleasant sensations or positive
memories. The positive correlation between at-
tention and meditation, along with their associa-
tion with gamma activity, indicates a state of full
but pleasant mental engagement. This could be
related to a harmonious sensory integration and a
favorable cognitive evaluation of the product.

In contrast, participants who reported disliking
exhibited an opposite pattern of brain activity. The
high correlation between Delta and Theta bands
suggests deeper cognitive processing, linked to
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the evocation of possibly negative memories or
critical emotional evaluation. The increase in
Beta and Gamma waves indicates cognitive ten-
sion, critical evaluation, and heightened emotional
arousal—typical features of an aversive or rejection
response. Furthermore, the inverse relationship
between attention and meditation reflects an active
but uncomfortable mental state, where attentional
focus is directed toward an unpleasant sensory
stimulus, thereby reducing subjective well-being.

These differences not only reflect distinct neuro-
logical processes but also different cognitive and
emotional strategies in response to the same type
of stimulus (functional food). Liking appears to
activate a reward and relaxation circuit, promoting
sensory acceptance, whereas disliking activates
mechanisms of negative evaluation, alertness, and
emotional disconnection—likely as a form of bio-
logical protection or rejection. Both patterns offer
valuable insights for consumer neuroscience, es-
pecially in the context of healthy food products that
often generate mixed reactions due to their taste,
texture, or association with dietary restrictions.

From an applied perspective, these findings sug-
gest that the acceptance of functional products
depends not only on their organoleptic properties
but also on their impact on the neural networks
involved in gustatory and emotional experience.
The use of EEG and PCA has proven to be a robust
tool for capturing these subconscious nuances.
Statistical validation using scree plots, explained
variance, Hotelling’s T² test, and permutation tests
supports the reliability of the results. Moreover, in-
dustrial case studies (Nestlé, PepsiCo, Coca-Cola)
show that these findings can be translated into
concrete strategies for product development, emo-
tional marketing, and consumer personalization.

To reinforce these results, a permutation test
was conducted to statistically validate the variance
explained by the PCA. The results showed that the
original model variance was 1.000000 × 100, while
the average variance obtained through permuta-
tions was 9.090909 × 10−2. This contrast yielded
a p-value of 0.000000, indicating that the patterns
detected in the original data are not due to chance.
Thus, the null hypothesis can be rejected, and it

can be concluded that the identified principal com-
ponents represent real and significant structures in
the EEG data.

This type of validation is essential in contexts
such as this, as it ensures that the observed brain
differences between liking and disliking conditions
are responses to specific stimuli and not random
noise. Factors such as the chosen significance
level, the number of permutations (1000), EEG
data preprocessing, and correction for multiple
comparisons were also carefully considered to en-
sure the reliability of the analysis.

Additionally, the factor loadings of the princi-
pal components were analyzed, which reveal how
each original variable (EEG frequencies, attention,
meditation, etc.) relates to the extracted compo-
nents. High loadings (positive or negative) indicate
a strong influence of the variable on the construc-
tion of the component. For instance, a high loading
of the ’RAW’ signal in PC1 indicates that this signal
plays a key role in the structure of that compo-
nent. These relationships can be visualized using a
heatmap, facilitating the identification of key neural
patterns.

To complement this, Hotelling’s T² statistic—a
robust multivariate test—confirmed the existence
of significant differences between the groups. With
a T² value of 30080.04, an F-value of 2734.54, and
a p-value of 1.11×10−16, the results indicate a clear
separation between EEG responses under liking
and disliking conditions, further strengthening the
model’s validity and its practical implications.

K-Fold cross-validation was implemented to en-
sure the model’s stability, finding that the optimal
value of K was 2. This configuration allowed for
evaluation of the model’s generalization to new
datasets, with no evidence of overfitting.

Regarding the proportion of variance explained
by each component, the following values were ob-
tained:

[
0.8536 0.1187 0.0161 0.0054
0.0029 0.0015 0.0010 0.0005

1.3× 10−7 2.3× 10−9 5.0× 10−10

]
. (11)

The first component explains over 85% of the
total variance, and together with the second, they
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account for approximately 97%. This notable di-
mensionality reduction capability without significant
information loss enables a clear representation of
the differentiated brain patterns between positive
and negative emotional states toward the evalu-
ated foods.

Finally, several future research directions are
proposed. One is to analyze how different sen-
sory stimuli such as bitterness, sweetness, or even
texture relate to specific EEG responses that help
identify rejection elements. Further exploration of
the implications of Delta and Theta activity is sug-
gested, distinguishing whether they represent re-
laxation or emotional dissatisfaction. Additionally, it
would be useful to examine how individual factors
such as age, gender, dietary habits, or lifestyle in-
fluence neural responses. Lastly, long-term effects
should be studied to observe whether repeated
exposure to the product leads to habituation or
even progressive acceptance.

5 Conclusions

This study analyzed consumer behavior based on
their taste perception, using electroencephalogra-
phy (EEG) data and techniques such as Principal
Component Analysis (PCA) to identify brain pat-
terns associated with different flavors and their re-
lationship to stated preferences. The results show
that EEG is an effective tool for detecting specific
brain responses linked to the decision-making pro-
cess, allowing for a better understanding of prefer-
ences and the design of more appealing functional
products. The use of mathematical tools to synthe-
size and manage the recorded variables facilitated
an accurate and efficient analysis, confirming the
viability of this approach for optimizing the devel-
opment of products tailored to consumer tastes.

As future work, we propose the inclusion of ad-
vanced mathematical methods such as t-SNE, au-
toencoders, and UMAP, which could optimize the
dimensionality reduction process, improve pattern
recognition, and allow for a deeper understanding
of the neural representations underlying consumer
preferences.
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