ISSN 2007-9737

Cross-Platform Performance Evaluation of Matrix Multiplication:
Insights from MKL, cuBLAS, and SYCL

Luis A. Torres!*, Carlos J. Barrios H.1, Yves Denneulin?

1 Universidad Industrial de Santander,
Colombia

2 Université Grenoble Alpes,
France

{luis.torres, cbarrios}@uis.edu.co, yves.denneulin@grenoble-inp.fr

Abstract. Matrix multiplication is a fundamental
operation in deep neural network training and scientific
computing, optimized through libraries such as Intel
MKL [4] and NVIDIA cuBLAS [5]. MKL enhances
CPU execution using multithreading and AVX-based
vectorization, improving memory bandwidth utilization
and computational throughput. Conversely, cuBLAS
leverages CUDA’s massive parallelism, employing
thousands of GPU cores and Tensor Cores to
accelerate matrix computations, though Tensor Core
usage introduces numerical precision loss. SYCL [23]
extends heterogeneous computing capabilities, enabling
efficient workload distribution across CPUs and GPUs.
This study analyzes execution time, computational
efficiency, and power consumption, utilizing PAPI [20]
and PERF [9] to evaluate third- and fourth-generation
Intel CPUs and selected NVIDIA GPUs. Results
indicate that MKL delivers high CPU performance,
while SYCL offers an alternative approach with distinct
efficiency characteristics. = GPU-based benchmarks
show that cuBLAS with Tensor Cores achieves maximum
throughput but at the cost of precision, whereas
cuBLAS without Tensor Cores preserves accuracy with
minimal performance trade-offs. These differences
highlight the importance of optimization strategies in
artificial intelligence and scientific computing, where
scaling models and simulations demand efficient,
high-performance, and sustainable computation.

Keywords. Matrix multiplication, performance evalua-
tion, power consumption, CUDA, MKL, SYCL.

1 Introduction

Heterogeneous computing systems have become
essential for modern computational workloads, as

specialized hardware can significantly enhance
performance compared to traditional CPUs. This
shift is particularly evident in artificial intelligence
(Al), deep learning (DL), and machine learning
(ML), where complex mathematical operations de-
mand efficient execution. These systems integrate
diverse hardware architectures—CPUs, GPUs,
TPUs, and FPGAs—to optimize high-performance
workloads while managing power consumption,
a critical factor in modern computing trends.
Beyond Al, disciplines such as computational fluid
dynamics and multimedia processing rely on sub-
stantial computational power, requiring advanced
mathematical operations and efficient coordination
of heterogeneous resources to balance speed and
energy efficiency [7].

Among the fundamental operations in scientific
computing, matrix multiplication plays a crucial
role in high-performance computing (HPC) and ML
applications. In deep learning, it is central to model
training, particularly within the backpropagation
algorithm, which iteratively adjusts neural network
weights to minimize learning error [24]. The
backpropagation process consists of two key
phases: forward propagation, where input data
flows through the network to generate predictions,
and backward propagation, where errors are
computed and distributed across network layers.
During backward propagation, matrix multiplication
is extensively used to compute gradients, which
determine the necessary weight adjustments.
These computations involve multiplying weight
matrices by error matrices, ensuring efficient gra-

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1597-1615

doi: 10.13053/CyS-29-3-5567

ISSN 2007-9737

1598 Luis Alejandro Torres Nifio, Carlos Jaime Barrios Hernandez, et al.

dient updates across large-scale neural networks.
Consequently, optimizing matrix multiplication in
backpropagation is essential, as it directly impacts
training time and computational efficiency.

Since the 1950s, researchers have sought to
reduce the complexity of N x N matrix multipli-
cation beyond the conventional O(n?8!), with the
best-known algorithms achieving O(n237) [25]. In
HPC environments, matrix multiplication falls under
general matrix multiplication (GEMM) routines [2],
widely utilized in deep neural networks, often
involving matrices exceeding 10,000 elements
[21]. To enhance efficiency, modern numerical
libraries employ memory optimization techniques,
improving data locality and execution speed [17].
However, key challenges persist, including the
need for architecture-specific implementations,
low-level assembly coding, and delays in optimiz-
ing libraries for emerging hardware platforms.

Historically, CPUs were the primary architecture
for scientific computing, with algorithms designed
to parallelize execution across multiple cores.
However, the introduction of GPUs revolutionized
the field, significantly outperforming CPUs in
highly parallel workloads [3]. To enhance matrix
computations, major vendors like Intel and NVIDIA
developed optimized numerical libraries. Intel’s
oneAPIl Math Kernel Library (MKL) and NVIDIA’s
CUDA Basic Linear Algebra Subroutine (cuBLAS)
are widely used for efficient numerical computation
[14, 16]. Moreover, NVIDIA Tensor Cores further
accelerated matrix operations, enabling rapid 4 x 4
multiplications per clock cycle, with early imple-
mentations featuring 640 Tensor Cores, achieving
125 TFlops/s in mixed precision computing [28].
While mixed precision enhances computational
throughput, it may reduce numerical accuracy
in HPC applications requiring high precision.
Currently, matrix multiplication using Tensor Cores
is performed through three primary methods: the
CUDA Warp Matrix Multiply Accumulate (WMMA)
API, the WMMA-based CUTLASS template library,
and cuBLAS GEMM [19].

The increasing complexity of HPC architectures
has driven efforts to simplify programming models
and improve accessibility. OpenCL' was intro-
duced in 2009 as a framework for heterogeneous

Thttps://www.khronos.org/opencl/

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1597-1615

doi: 10.13053/CyS-29-3-5567

computing, but its low-level programming com-
plexity limited widespread adoption. In 2014,
SYCL? emerged as a more accessible alternative,
offering an open programming model that facil-
itates heterogeneous system development while
reducing implementation complexity. The SYCL
runtime handles critical tasks such as memory
allocation and synchronization, utilizing the SMPC
(single-source multiple compiler-passes) approach
to compile host and device code into a unified
executable for CPUs and GPUs [22, 8].

This study compares matrix multiplication al-
gorithms across multiple hardware architectures,
measuring execution times, computational perfor-
mance, and power consumption. It examines
the potential for distributed matrix computation
in neural network training, emphasizing workload
distribution in forward and backward propagation.
The evaluation encompasses OpenMP, intrinsic
functions (AVX2 and AVX512), CUDA, Intel MKL,
and NVIDIA cuBLAS, with and without Tensor
Cores, alongside SYCL implementations on both
CPUs and GPUs. The paper is structured
as follows: Section Il discusses related work,
Section 1l outlines the methodology, Section IV
presents experimental results, Section V provides
a scientific discussion, and Section VI summarizes
conclusions and future directions.

2 Related Work

Matrix multiplication is a fundamental operation in
high-performance computing (HPC), widely used in
applications ranging from scientific simulations to
advanced deep learning algorithms. Due to its high
computational demand, especially when working
with large matrices, optimizing its performance and
energy efficiency is a crucial challenge in improving
modern computing systems. This aspect is partic-
ularly relevant in large-scale infrastructures, such
as data centers, where power consumption and
heat dissipation directly impact operational costs
and long-term sustainability. Various optimization
strategies have been developed to enhance matrix
multiplication execution, addressing aspects from

2https://www.khronos.org/sycl/

ISSN 2007-9737

Cross-Platform Performance Evaluation of Matrix Multiplication: Insights from MKL, cuBLAS, and SYCL 1599

instruction-level improvements to advanced energy
management techniques.

One of the most effective approaches to improv-
ing matrix multiplication efficiency is vectorization,
which leverages data-level parallelism in modern
hardware architectures. By using SIMD (Single
Instruction, Multiple Data) instruction sets such
as AVX-512 [12] and AVX2 [15], it is possible to
execute the same operation simultaneously across
multiple data elements, significantly reducing
the total number of required instructions [1].
Vectorization can be implemented through two
primary methods:

1. Automatic vectorization, where compilers
analyze the source code and introduce SIMD
instructions when optimization opportunities
are detected [13].

2. Manual vectorization, where developers use
processor-specific intrinsic functions to exert
finer control over instruction generation,
potentially leading to greater performance and
energy savings [13].

In addition to vectorization, loop-level op-
timizations play a crucial role in enhancing
computational performance. Techniques such as
loop unrolling reduce the overhead associated
with loop control by expanding the loop body,
exposing additional optimization opportunities for
compilers [13]. Another essential technique is
blocking (tiling), which improves data locality by
partitioning matrices into smaller blocks that can fit
within higher levels of the cache hierarchy. Working
with these blocks increases data reusability in
cache, minimizing access to main memory, which
is significantly more expensive in terms of latency
and energy consumption. The optimal block size
is determined by the capacities of L1 and L2
caches [18].

Parallelization is another key approach for accel-
erating matrix multiplication, distributing computa-
tional workloads among multiple cores in modern
processors to reduce execution times. OpenMP is
widely used for task-level parallelization, enabling
workloads to be divided across multiple threads
within multi-core architectures. Some hybrid
implementations combine OpenMP for task-level

parallelism with SIMD for data-level parallelism,
achieving optimal performance on multi-core
systems. Additionally, OpenCL facilitates parallel
execution on both CPUs and GPUs, offering
cross-platform portability [1].

In the context of heterogeneous computing,
SYCL has evolved into a flexible programming
standard for high-performance applications. It
provides a high-level C++ abstraction, enabling
developers to write portable parallel programs
across multiple hardware backends, including
NVIDIA, AMD, and Intel GPUs [6]. Recent updates
in SYCL 2020 have expanded its adaptability,
integrating vendor-specific backends such as
CUDA, ROCm, and Level Zero. Additionally,
Unified Shared Memory (USM) in SYCL simplifies
memory management between host and device,
reducing explicit data transfer overhead and
improving execution efficiency [6].

Specialized hardware accelerators, such as
NVIDIA Tensor Cores, introduce dedicated matrix
multiplication units optimized for deep learning
workloads. Mixed-precision arithmetic, particularly
using fp16, can significantly increase computa-
tional throughput [11]. Although lower precision
may reduce numerical accuracy, it often provides
substantial speed and energy benefits in deep
learning applications. Multiword arithmetic has
been explored as a technique to extend numerical
precision, representing matrices as a sum of
multiple lower-precision components, balancing
accuracy and performance [11].

Energy-efficient computation is another crucial
aspect of matrix multiplication optimization. Dy-
namic Voltage and Frequency Scaling (DVFS)
improves processor performance and energy
efficiency by adjusting clock speeds based on
workload demands. Running processors at slightly
lower frequencies can yield substantial energy
savings while incurring minimal performance
degradation [27].

Understanding performance metrics is es-
sential for optimizing matrix multiplication in
high-performance computing systems. The
Performance API (PAPI) framework plays a crucial
role in this domain by providing access to
hardware performance counters that offer insights
into computational efficiency, execution behavior,

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1597-1615

doi: 10.13053/CyS-29-3-5567

ISSN 2007-9737

1600 Luis Alejandro Torres Nifio, Carlos Jaime Barrios Hernandez, et al.

and bottlenecks. PAPI enables developers
to monitor low-level processor events such as
cache misses, floating-point operations, memory
bandwidth utilization, and instruction throughput,
facilitating performance profiling and optimization
in both serial and parallel applications [26].

A key extension of PAPIl is PowerPAPI,
which enhances the original APl by enabling
power and energy consumption measurement.
This integration allows researchers and system
architects to correlate performance metrics with
power efficiency, offering a comprehensive view
of computational trade-offs [26]. PowerPAPI
supports data collection from external power
meters and built-in telemetry interfaces of modern
processors and GPUs, such as Intel's Run-
ning Average Power Limit (RAPL) technology
[6]. By linking power measurements with
computational workload data, PowerPAPI aids
in identifying energy-efficient execution patterns
and optimizing workload distribution strategies.
PAPI's significance extends beyond individual
process profiling; its metrics are widely used
in performance modeling and dynamic tuning
of applications. By leveraging PAPI counters,
frameworks such as MuMMI (Multiple Metrics
Modeling Infrastructure) perform systematic anal-
ysis of execution time, power consumption, and
efficiency trends. These analyses contribute to the
development of adaptive optimization techniques,
where applications dynamically adjust execution
parameters—such as scheduling policies, memory
management strategies, and frequency scaling—to
balance performance and energy constraints
effectively [27].

Within heterogeneous computing, PAPI plays
an instrumental role in benchmarking CPU-GPU
workloads, helping evaluate and compare perfor-
mance across different architectures. This capabil-
ity is particularly relevant when assessing SYCLs
portability across multiple hardware backends, as
PAPI metrics provide quantitative insights into how
diverse architectures handle matrix multiplication
workloads [6]. Additionally, in large-scale
parallel systems, PAPI's multi-threaded profiling
capabilities enable developers to fine-tune task
distribution, ensuring efficient resource utilization
and minimizing execution bottlenecks.

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1597-1615

doi: 10.13053/CyS-29-3-5567

By integrating PAPI with modern optimization
frameworks, researchers can quantify compu-
tational efficiency, refine matrix multiplication
algorithms, and design more energy-conscious
execution models. As computing architectures
evolve, PAPIl remains a cornerstone for per-
formance measurement, guiding advancements
in parallel execution strategies and sustainable
high-performance computing solutions [26].

Optimizing matrix multiplication requires a multi-
faceted approach, integrating instruction-level
enhancements, memory hierarchy optimizations,
parallelization frameworks, specialized hardware
accelerators, and power management strategies.
Performance modeling tools such as MuMMI
and PowerPAP| play a crucial role in refining
computational efficiency. Within heterogeneous
computing, SYCL continues to evolve as a versatile
programming model, enabling portable and high-
performance matrix computations. The synergy
between hardware and software optimizations will
drive future advancements in matrix multiplication
performance and energy efficiency, reinforcing its
critical role in high-performance computing and
Al-driven applications.

3 Methodology

Matrix multiplication is a fundamental operation
in computational science, playing a key role
in numerical simulations, machine learning, and
high-performance computing (HPC). Due to its
computational intensity and impact on execution
efficiency, optimizing matrix multiplication requires
a systematic evaluation of its implementations
across heterogeneous hardware architectures.

This study analyzes different matrix multiplica-
tion techniques, evaluating their execution time,
power consumption, and numerical accuracy
under controlled experimental conditions. The
source code and experimental results are publicly
available in the repository: GitHub — MatMul®, fos-
tering transparency and enabling further research
and validation.

3https://github.com/alejandrotorresn/MatMul

ISSN 2007-9737

Cross-Platform Performance Evaluation of Matrix Multiplication: Insights from MKL, cuBLAS, and SYCL 1601

3.1 Matrix Multiplication

Evaluating the efficiency of matrix multiplication
requires analyzing how different implementations
perform across various hardware architectures.
This study examines multiple approaches, in-
cluding optimized numerical libraries and intrinsic
functions, to determine their impact on computa-
tional performance. By systematically assessing
execution time, power consumption, and numerical
accuracy, this methodology provides a comparative
perspective on how these techniques behave
under different conditions.

This study evaluates both optimization tech-
niques and specialized numerical libraries for
matrix multiplication across different computational
architectures. For CPUs, the analysis includes
vectorization using AVX2 and AVX512, where
intrinsics enable precise control over instruction-
level execution, optimizing register usage and
minimizing memory access latency. Additionally,
parallelization using OpenMP is examined, eval-
uating its scalability in multi-core architectures.
On GPUs, the study focuses on high-performance
libraries such as cuBLAS, specifically its SGEMM
(Single-precision General Matrix Multiplication)
implementation. Meanwhile, for CPUs, MKL is
evaluated, also utilizing SGEMM to accelerate
single-precision matrix multiplication operations.

To ensure statistically stable and reproducible
results, each N x N matrix multiplication was
executed ten times, averaging execution times to
reduce variability. Power consumption measure-
ments were conducted over twenty executions,
compensating for incomplete PAPI metrics on
certain platforms.

The study evaluates matrices ranging from 32 x
32 to 8192 x 8192, covering both small-scale
computations, commonly used in embedded
systems, and large-scale SGEMM operations,
essential for deep neural network training and
scientific simulations. This range provides a
comprehensive analysis of performance trends
across varying matrix sizes and architectures,
offering insights into computational scalability
and efficiency.

3.2 Experimental Environment

This study was conducted across three distinct en-
vironments featuring heterogeneous architectures,
ensuring a comprehensive and reliable evaluation
of matrix multiplication methods across diverse
computing systems. Each platform presents a
unique configuration, influencing computational
efficiency, parallelism, scalability, and power
consumption behavior.

3.2.1 Environment 1: Grid5000 Infrastructure

Grid5000* is a large-scale testbed designed for
high-performance computing (HPC) and experi-
mental research. To ensure diversity in CPU
architectures and memory subsystems, three dis-
tinct servers with varying hardware configurations
were selected. The specific hardware details are
provided in Tables 1 and 2.

To maintain a controlled and reproducible
software environment, a custom Rocky Linux
9.2 image was deployed using Kadeploy, an
automated large-scale system provisioning tool®.
The kernel version across these servers was
Linux 5.14.0, ensuring compatibility with low-level
performance counters and power measurement
tools. Additionally, the experimental workload was
executed in isolated runtime sessions to minimize
external system interference, ensuring reliable
benchmarking and performance evaluation.

3.2.2 Environment 2: PACCA Cluster
(University of Cartagena, Colombia)

The PACCA cluster is an advanced computing
facility designed for parallel and GPU-intensive
workloads. This platform integrates modern multi-
core processors and high-performance GPUSs,
enabling comparative analysis between CPU and
GPU execution models. The detailed hardware
specifications for this system are provided in Tables
3 and 4.

“4https://www.grid5000.fr
Shttps://kadeploy.imag.fr/

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1597-1615

doi: 10.13053/CyS-29-3-5567

ISSN 2007-9737

1602 Luis Alejandro Torres Nifio, Carlos Jaime Barrios Hernandez, et al.

3.2.3 Environment 3: Intel Developer Cloud

Final validation and comparative evaluations were
conducted on the Intel Developer Cloud, which
provides access to 4th-generation Intel Xeon
processors. The system specifications for this
architecture are detailed in Table 5.

Due to PAPI's incompatibility with the Intel
Xeon Platinum 8480+ processor, power mea-
surements on this platform were performed
exclusively using PERF. Unlike PAPI, which
records energy consumption specific to matrix
computation kernels, PERF captures total system
energy usage, including runtime overhead and
background services. This distinction is critical
for interpreting power efficiency metrics across
different measurement tools.

3.3 Software Configuration

To ensure consistency across all evaluations, the
same software stack was installed on all three
platforms, including:

— Rocky Linux 9.2 as the operating system

— CUDA Toolkit 12.4 for NVIDIA GPU computa-
tions

— Intel oneAPI 2023 for CPU-based workloads

— SYCL plugin for NVIDIA support ©.

However, on the Intel Developer Cloud, CUDA
was not installed, as this platform does not include
NVIDIA GPUs, and thus GPU-accelerated CUDA
computations were not performed.

Shitps://developer.codeplay.com/products/oneapi/nvidia’lhome/

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1597-1615

doi: 10.13053/CyS-29-3-5567

3.4 Power Measurement Methodology

Energy consumption was assessed using two
monitoring tools, PAPI (Performance API) and
PERF, each utilizing distinct methodologies for
power measurement:

— PAPI (Performance API) provides access to
processor-level power counters via RAPL
(Running Average Power Limit) events, as
well as GPU energy metrics through NVML
(NVIDIA Management Library). RAPL enables
detailed energy tracking at the package, core,
and DRAM levels on supported CPU archi-
tectures, while NVML provides precise GPU
power monitoring, capturing consumption at
the core, memory, and PCle levels. However,
RAPL is limited to architectures that natively
support energy monitoring, meaning it cannot
provide data for all processor models (e.g.,
Intel Xeon Platinum 8480+).

— PERF (Performance Monitoring Tool) operates
differently, aggregating total system power
consumption, including CPU, memory, and
I/O activity. Unlike PAPI, PERF does
not exclusively track the energy used by
computation kernels, but instead captures
broader system-wide power metrics. This
approach accounts for additional overhead
factors, such as operating system background
tasks, process scheduling overhead, and
memory allocations. While this method
provides a more holistic view of system
efficiency, it lacks the granularity needed to
isolate computation-specific power usage.

Despite their differences, PAPI and PERF share
several fundamental similarities:

1. Performance Monitoring — Both tools track
execution performance, integrating power
metrics into broader profiling capabilities.

2. Hardware-Based Energy Metrics—Each tool
retrieves energy consumption data directly
from hardware sensors, ensuring high mea-
surement accuracy.

Cross-Platform Performance Evaluation of Matrix Multiplication: Insights from MKL, cuBLAS, and SYCL 1603

Table 1. GRID5K Hardware Description

ISSN 2007-9737

CPU Type CPU Cores Freq(GHz) Mem(GiB) Freq(MHz) PCI TFLOPs TDP

1 Intel Xeon Gold 6126 2 24 2.60 192 2666 3.0 3.6864 125

2 Intel Xeon Gold 6254 2 36 3.10 384 2933 3.0 7.1424 200

3 Intel Xeon Silver 4314 2 32 2.40 256 3200 4.0 49152 135
Table 2. GPU description for server No. 1

GPU Type Cores T. Cores freq(MHz) Mem(GB) Freq(MHz) TFLOPs TDP

NVIDIA Tesla V100 5120 640 1230 32 876 14 300

Table 3. PACCA Hardware Description

CPU Type CPU Cores Freq(GHz) Mem(GiB) Freq(MHz) PCI TFLOPs TDP

4 Intel Xeon Gold 5320 2 26 2.20 256 3200 4.0 7.3216 185

5 Intel Xeon Gold 5315Y 2 16 3.20 256 3200 4.0 3.2768 140
Table 4. GPU description for server No. 5

GPU Type Cores T. Cores freq(MHz) Mem(GB) Freq(MHz) TFLOPs TDP

NVIDIA A100 6912 432 765 40 1215 19.5 250
Table 5. Intel Cloud Hardware Description

CPU Type

6 Xeon Platinum 8480+

3. Integration with Benchmarking Workflows
— These tools are widely used in HPC
benchmarking studies, allowing researchers
to correlate energy usage with computational
performance across different architectures.

4. Their complementary roles define their rela-
tionship:

5. PAPI provides detailed kernel-specific energy
measurements for both CPU and GPU
workloads (with GPU measurements obtained
via NVML).

6. PERF captures total system power consump-
tion, including background processes.

By leveraging both tools in combination, this
study ensures a comprehensive analysis of energy
efficiency, balancing fine-grained kernel-level mea-
surements with broader workload power profiling
across CPUs and GPUs.

4 Evaluation and Results

The results of this study are categorized into
execution time, power consumption, and compu-
tational performance, providing a comprehensive
evaluation of matrix multiplication efficiency across
different architectures.

Execution time measurements strictly corre-
spond to the matrix multiplication operation itself,
except for CUDA and cuBLAS, where the reported
time includes both computation and memory
transfer overhead. Since GPU implementations
require explicit data movement between system
memory (RAM) and device memory (VRAM),
these transfers contribute to total execution time.
Consequently, performance comparisons between
CPU and GPU implementations must account for
these differences to ensure an accurate evaluation
of computational efficiency.

Computational performance was assessed
based on matrix size, rather than time-dependent

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1597-1615
doi: 10.13053/CyS-29-3-5567

ISSN 2007-9737

1604 Luis Alejandro Torres Nifio, Carlos Jaime Barrios Hernandez, et al.

throughput metrics. The metric was computed by
determining the number of floating-point operations
required for each matrix multiplication, providing
a direct comparison of efficiency across varying
matrix dimensions. This approach enables a
detailed assessment of how different architectures
handle computations as matrix sizes increase.

Power consumption metrics were obtained using
both PAPI and PERF, each offering distinct
perspectives on energy usage:

— PAPI measures power consumption exclu-
sively from the matrix multiplication process,
ensuring a direct correlation between com-
putation and energy usage. Additionally, for
GPU power measurements, PAPI retrieves
energy consumption data via NVML (NVIDIA
Management Library), providing detailed met-
rics on GPU core power draw, memory
subsystem consumption, and PCle interface
energy usage.

— In contrast, PERF captures total system-wide
energy consumption, including background
processes, memory operations, and data
loading functions, offering a holistic view of
power utilization across all executed code

This distinction is crucial for ensuring that en-
ergy efficiency comparisons properly differentiate
between computation-specific power usage and
overall system consumption.

4.1 Performance and Precision

The efficiency of matrix multiplication was evalu-
ated across various computational architectures,
comparing CPU and GPU performance, optimiza-
tion strategies, and numerical accuracy. This
section systematically examines execution time,
scalability with matrix size, and precision variations
across different implementations.

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1597-1615

doi: 10.13053/CyS-29-3-5567

4.1.1 Computational Performance Analysis

This study evaluates matrix multiplication across
six Intel processors spanning two generations,
assessing the performance of MKL and SYCL
for CPU-based computations, alongside cuBLAS
and SYCL for GPU executions, tested on
two distinct GPU architectures. Additionally,
implementations using OpenMP and intrinsic
functions leveraging AVX2 and AVX512 were
analyzed to assess the effectiveness of high- and
low-level parallelization techniques.

Performance metrics are presented in Figures
1 and 2, where: The left section of the image
displays computational throughput in TFLOPS/s.
The central section shows execution time in
milliseconds. The right section quantifies
numerical precision using Mean Square Error
(MSE), calculated by comparing results against the
output from serial matrix multiplication execution.

— CPU Performance: Among CPU-based im-
plementations, MKL and SYCL exhibited
optimal execution times, benefiting from
efficient multithreading and optimized memory
access patterns. OpenMP-based approaches
demonstrated significantly higher execution
times, approximately twice that of SYCL,
leading to their exclusion. Intrinsic functions
with AVX2 and AVX512 consistently resulted
in the lowest performance, indicating that
raw vectorization alone is insufficient without
proper memory management.

— GPU Performance: CUDA-based implemen-
tations demonstrated superior computational
efficiency, with cuBLAS outperforming SYCL
due to its tile-based memory optimizations,
which enhance parallel execution by reducing
global memory access overhead. The Tiled
Matrix Multiplication approach further im-
proved performance, yielding lower execution
times compared to SYCL, as illustrated in
Figure 2. However, SYCLs lambda function
was not optimized for GPU execution, as
it remained unchanged for both CPU and
GPU computations.

ISSN 2007-9737

Cross-Platform Performance Evaluation of Matrix Multiplication: Insights from MKL, cuBLAS, and SYCL 1605

IA A100-PCIE-40GB)

e —

‘f} ~~—— e el 3

ntel Xeon Gold 6126 (48 cores @ 2.60 GHz - NVIDIA V100-PCIE-32GB)

/
/

| /

] S e — L T

Intel Xeon Silver 4314(64 cores @ 2.40 GHz)
- -/ ..

I\

Mo . -

Intel Xeon Gold 5320 (104 cores @ 2.20 GHz)

o
»

Intel Xeon Platinum 8480+ (224 cores @ 2.0 GHz)
(a) Performace (b) Execution times (c) Mean Square Error

Fig. 1. Comparison of (a) Performace (b) Execution times (c) and Error (MSE)

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1597-1615
doi: 10.13053/CyS-29-3-5567

ISSN 2007-9737

1606 Luis Alejandro Torres Nifio, Carlos Jaime Barrios Hernandez, et al.

Intel Xeon Gold 5315Y(32 cores @ 3.20 GHz) - NVIDIA A100-PCIE-40GB

(a) Performace

(b) Execution times

(¢) Mean Square Error

Fig. 2. Comparison between (a) Performace (b) Execution times (c) and Error (MSE) of the two NVIDIA architectures

evaluated)

4.1.2 Portability of SYCL Across CPU and GPU
Architectures

SYCL provides a unified programming model,
enabling a single kernel to run across CPUs,
GPUs, and other accelerators. In this study, no
architecture-specific optimizations were applied,
ensuring a direct comparison of its portability
across different processing units without modifying
the lambda function.

While SYCL can be optimized for GPUs, such
modifications may reduce efficiency on CPUs,
necessitating separate tuning for each architecture.
Similarly, optimizing SYCL for CPU execution can
negatively impact its performance on GPUs, as
CPU-friendly memory layouts, execution ordering,
and threading models may not efficiently translate
to GPU parallelism.

Unlike cuBLAS, which is tailored for NVIDIA
GPUs, SYCL maintains cross-platform compati-
bility, though it exhibits lower peak performance
on specialized hardware. As shown in Figures
3 and 4, cuBLAS achieves higher computational
throughput, whereas SYCL provides consistent
execution across CPU and GPU environments,
emphasizing its flexibility despite performance
trade-offs.

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1597-1615

doi: 10.13053/CyS-29-3-5567

4.1.3 Comparison of CUDA Implementations
Across GPUs

CUDA performance was evaluated across two
distinct GPU architectures, comparing execution
efficiency under different hardware configurations.
Figure 4 illustrates processing times for NVIDIA
A100 and NVIDIA V100, demonstrating that A100
consistently outperforms V100, benefiting from
advanced memory optimizations and increased
computational density. These results highlight the
importance of hardware-specific optimizations, as
the differences between these two architectures
directly impact performance scaling and numeri-
cal stability.

4.1.4 Numerical Precision Analysis

Numerical accuracy was assessed using Mean
Squared Error (MSE), comparing each implemen-
tation against a serial reference model. While
all tested methods comply with floating-point
computation standards, variations in memory
representation, execution order, and accumulation
precision led to minor numerical discrepancies.
MSE was chosen as the primary metric due to its
sensitivity to large errors, its ability to evaluate nu-
merical stability in high-performance computations,
and its usefulness in comparing computational
efficiency across different architectures. Unlike

ISSN 2007-9737

Cross-Platform Performance Evaluation of Matrix Multiplication: Insights from MKL, cuBLAS, and SYCL 1607

(a) Performace

(b) Execution times

(c) Mean Square Error

Fig. 3. Comparison of the execution times of the different processors evaluated using the MKL library

(a) Performace

(b) Execution times

(¢) Mean Square Error

Fig. 4. Comparison of the execution times of the different GPUs evaluated using the cuBLAS library

metrics such as Mean Absolute Error (MAE),
MSE emphasizes significant deviations, providing
a more detailed analysis of how accumulated
errors affect final results.

Additionally, individual performance across im-
plementations showed:

— MKL exhibited an increasing error trend,
though it remained within an acceptable 10~¢
MSE threshold, primarily due to accumulated
rounding effects in large matrix computations.

— cuBLAS achieved lower numerical errors,
benefiting from tile-based memory optimiza-
tions, which reduce rounding inconsistencies
in large-scale computations.

— SYCL displayed greater MSE variability,
likely due to architecture-dependent rounding
mechanisms, affecting cross-platform numeri-
cal consistency

4.1.5 Impact of Floating-Point Computation on
Precision

Precision degradation in floating-point operations
occurs due to several factors:

— Loss of significant bits in computations
involving high-magnitude values, amplifying
accumulated rounding errors.

— Inconsistencies in parallel execution, where
the order of floating-point summation influ-
ences final results.

— Differences in memory representation, partic-
ularly in GPU environments, where storage
formats may introduce additional numeri-
cal variations.

These findings highlight the trade-off between ef-
ficient execution and numerical stability, reinforcing
the importance of precision-aware optimizations in
high-performance computing applications.

4.1.6 Comparison of CPU and GPU
Performance

Figure 5 compares Intel Xeon 5320 (104 cores, 2.2
GHz), Intel Xeon Platinum 8489+ (224 cores, 2.0
GHz), and NVIDIA A100, highlighting the best com-
putational results obtained across architectures.
While the Xeon 5320 exhibits lower performance,
the Platinum 8489+ surpasses NVIDIA A100 when
executing cuBLAS, achieving higher computational

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1597-1615

doi: 10.13053/CyS-29-3-5567

ISSN 2007-9737

1608 Luis Alejandro Torres Nifio, Carlos Jaime Barrios Hernandez, et al.

throughput, though at the cost of increased
numerical error due to accumulated floating-point
rounding effects.

Figure 6 further illustrates the impact of Tensor
Cores in cuBLAS, which significantly enhances
NVIDIA A100’s execution efficiency, allowing it to
exceed Intel Platinum’s processing performance.
Despite this improvement, the trade-off between
execution speed and numerical precision remains,
as parallel computations in CPUs and GPUs
introduce differences in numerical accumulation
and data representation.

These results highlight the impact of
architecture-specific optimizations on floating-point
stability, emphasizing the balance between
computational efficiency and numerical accuracy
in high-performance computing environments.

4.2 Power Consumption

Energy efficiency is a critical factor in high-
performance computing (HPC) and artificial in-
telligence (Al) applications, where optimizing
computational workloads must be balanced with
power constraints. This section provides a detailed
examination of the power consumption metrics
collected using PAPI and PERF for the CPUs and
GPUs analyzed in this study.

4.2.1 Measurement Framework and Limitations

The power consumption of each system was
recorded using PAPI and PERF, each employing
different approaches to energy measurement:

— PAPI: The power consumption data for the
CPU and GPU were obtained directly using
PAPI, except for the Intel Xeon Platinum
8480+ processor, where RAPL could not be
used due to compatibility limitations with this
processor generation.

— PERF: All processors were evaluated using
PERF, which measured power consumption
considering both CPU and RAM usage during
matrix multiplication execution. For the GPU,
consumption was estimated by summing the
CPU and RAM power data obtained from
PERF with the GPU power data extracted

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1597-1615

doi: 10.13053/CyS-29-3-5567

via PAPI through NVML, providing an overall
system energy consumption estimate.

4.2.2 Comparative Power Consumption
Analysis

Figure 7 presents a visual comparison of TFLOPs
vs. Watts measurements obtained using PAPI
(left) and PERF (right) for the CPUs and GPUs
analyzed. The observed trends highlight distinct
differences between the two measurement tools:

— According to PAPI, MKL exhibited the high-
est power consumption among CPU-based
methods. However, it also achieved the best
computational performance compared to other
CPU-based approaches, despite not reaching
the processor’s peak theoretical performance.

— PERF, in contrast, measures total system
power consumption, including additional tasks
such as memory allocation, array initialization,
and data loading, leading to higher aggre-
gated values.

A notable discrepancy appears in the SYCL vs.
MKL comparison:

— According to PAPI, SYCL demonstrates lower
power consumption than MKL, suggesting a
more energy-efficient execution pattern.

— According to PERF, SYCL registers higher
overall power consumption, potentially due to
additional computational overhead and kernel
scheduling inefficiencies

4.2.3 Power Consumption Trends Across
Architectures

Among the processors analyzed, the Intel Xeon
Platinum 8480+ exhibited the highest power
consumption according to PERF metrics, rein-
forcing the idea that high-core-count architectures
require significant energy resources for intensive
workloads. However, due to PAPI’s incompatibility
with this processor, a detailed breakdown of
power consumption was not possible, limiting
direct comparisons of MKLs efficiency. Figure 7
specifically displays TFLOPs vs. Watts results

ISSN 2007-9737

Cross-Platform Performance Evaluation of Matrix Multiplication: Insights from MKL, cuBLAS, and SYCL 1609

(a) Performace

(b) Execution times

(c) Mean Square Error

Fig. 5. Comparison between the best CPU and GPU execution times. Intel Xeon Platinum 8480+, Intel Xeon Gold 5320,

and NVIDIA A100-PCIE-40GB GPU. MKL Vs. cuBLAS

(a) Performace

(b) Execution times

(c) Mean Square Error

Fig. 6. Comparison between the best CPU and GPU execution times. Intel Xeon Platinum 8480+, Intel Xeon Gold 5320,
and NVIDIA A100-PCIE-40GB GPU. MKL Vs. cuBLAS with Tensor Cores

obtained via PERF for the Intel Xeon Platinum
8480+, representing the system’s total energy
consumption, as PAPlI RAPL does not support
this architecture, preventing a more detailed
component-level analysis.

Given these findings, future research should
integrate cross-architecture power normalization
techniques to ensure fair comparisons between
CPU and GPU platforms. The adoption of
per-component power tracking methods would
enhance the accuracy of benchmarking method-
ologies, refining efficiency analyses for next-
generation HPC and Al workloads.

Figure 8 presents a detailed analysis of the
power consumption associated with cuBLAS and
SYCL executions on GPUs, considering energy
usage across the CPU, memory, and GPU compo-
nents. According to official NVIDIA documentation,
the recorded power consumption for cuBLAS on

the V100 and A100 GPUs exhibits comparable
values, indicating consistent energy behavior
across these architectures. In contrast, SYCL
demonstrates higher overall power consumption
under typical execution conditions. However, for
matrix sizes where N > 5120, a notable reduction
in energy usage is observed. This decline is
attributed to SYCLs architectural design, which
prioritizes energy efficiency and portability, as
highlighted in the work of Fagir-Rhazoui [10].

Figure 9 illustrates the power consumption
trends observed in MKL executions on the Intel
Xeon Platinum 8480+, as well as cuBLAS on
the NVIDIA A100 GPU. The results indicate
that increasing the number of active cores and
operating frequency in the Intel Xeon Platinum
8480+ leads to a significant rise in power con-
sumption, reflecting the direct correlation between
computational intensity and energy demand in

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1597-1615

doi: 10.13053/CyS-29-3-5567

ISSN 2007-9737

1610 Luis Alejandro Torres Nifio, Carlos Jaime Barrios Hernandez, et al.

Intel Xeon Gold 5315Y (32 cores @ 3.20 GHz) - NVIDIA A100-PCIE-40GB GPU

T w
i

Intel Xeon Gold 6126 (48 cores @ 2.60 GHz) - NVIDIA V100-PCIE-32GB0

I
5

LR
Intel Xeon Silver 4314(64 cores @ 2.40 GHz)
Intel Xeon Gold 6254 (72 cores @ 3.10 GHz)
Intel Xeon Gold 5320 (104 cores @ 2.20 GHz)
(a) PAPI - Power Consumption (b) PERF - Power Consumption

'
L
o] ke

Intel Xeon Platinum 8480+ (224 cores @ 2.0 GHz)
(c) PERF - Power Consumption

Fig. 7. The power consumption results obtained with PAPI are shown on the left, while the PERF results are on the right.
The Intel Xeon Platinum 8480+ processor couldn’t measure power consumption because PAPI does not have counters
available to support this processor

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1597-1615
doi: 10.13053/CyS-29-3-5567

ISSN 2007-9737

Cross-Platform Performance Evaluation of Matrix Multiplication: Insights from MKL, cuBLAS, and SYCL 1611

Power Consumption

g w0 m Xeon Gold 6126 CPU @ 2.60 GHz, 48 cores, Tesla V100-PCIE-32GB, cublas
Xeon Gold 6126 CPU @ 2.60 GHz, 48 cores, Tesla V100-PCIE-32GB, sycl_gpu

Fig. 8. Power consumption of NVIDIA V100 (top) and
NVIDIA A100 (bottom). Comparison between SYCL,
cuBLAS and cuBLAS with Tensor Cores

CPU architectures. In contrast, the NVIDIA
A100 maintains a nearly stable power profile
across both small and large matrix computations.
This stability suggests that GPU workloads do
not generate the same power fluctuations as
CPU-intensive tasks, as computational demands
are efficiently distributed across the GPU’s
parallelized architecture.

Power Consum ption

Power Consumption (Watts)

Fig. 9. Comparison of power consumption between the
Intel Xeon Gold 5320, Intel Xeon Gold 5315Y processors
with the MKL library and the NVIDIA A100 GPU with the
CuBLAS library

5 Discussion

Efficient matrix multiplication in heterogeneous
computing systems requires an optimal balance
between performance and energy consumption.
The experimental findings in this study reinforce
the complex interaction between software opti-
mizations, hardware architecture, and resource
utilization, emphasizing the deviation between
theoretical peak performance and real-world
execution metrics.

5.1 Impact of Software Optimization and
Execution Frameworks

The results presented for MKL, cuBLAS, and
SYCL reveal the substantial influence of execution
frameworks on computational efficiency and
power consumption. While MKL demonstrated
high power demand, it also achieved the best
computational performance among CPU-based
methods, reinforcing the importance of low-level
optimizations and vectorization techniques in
numerical computing libraries. However, MKL
did not reach the theoretical peak performance
of the Intel Xeon Platinum 8480+, suggesting
the presence of bottlenecks related to memory
bandwidth and thread scheduling overhead.

Conversely, SYCL exhibited higher overall
energy consumption compared to cuBLAS across
GPU architectures. However, a reduction in
power demand was observed for large matrix sizes
(N > 5120), aligning with SYCLs design principles,
which emphasize energy efficiency and portability,
as noted in Faqir-Rhazoui’s work [10]. These find-
ings highlight the necessity of adaptive workload
optimization strategies to mitigate energy overhead
while preserving computational throughput.

5.2 Hardware Architecture and Computational
Efficiency

The analysis of Intel Xeon Platinum 8480+
and NVIDIA A100 provides key insights into
the energy-performance trade-offs between CPU
and GPU execution. Increasing the number
of active cores and operating frequency in the
Intel Xeon Platinum 8480+ led to a significant
rise in power consumption, reinforcing the direct

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1597-1615

doi: 10.13053/CyS-29-3-5567

ISSN 2007-9737

1612 Luis Alejandro Torres Nifio, Carlos Jaime Barrios Hernandez, et al.

relationship between computational intensity and
energy demand in CPU architectures.

On the other hand, NVIDIA A100 exhibited
a nearly constant power profile across matrix
sizes, suggesting that GPU workloads distribute
computational demands efficiently across parallel
cores, preventing excessive energy fluctuations.
This behavior contrasts with CPU-based process-
ing, where increasing core utilization introduces
nonlinear power scaling effects due to thermal
constraints and cache hierarchy bottlenecks.

5.3 Future Directions in Energy-Efficient
Computing

These findings highlight the necessity for com-
prehensive performance-energy evaluations to
establish optimal execution strategies in scientific
computing, artificial intelligence, and large-scale
simulations. Future research should address the
following key areas:

— Energy-efficient computing models: Devel-
oping architectures that minimize power
overhead while maximizing computational per-
formance.

— Workload-specific optimization techniques:
Implementing dynamic scheduling and power-
aware execution strategies tailored to diverse
HPC applications.

— Hybrid execution strategies: Integrating CPU-
GPU heterogeneous computing paradigms to
balance power efficiency and performance

scalability.
Achieving maximum computational
efficiency ~ without ~ compromising energy

sustainability remains a fundamental challenge
in high-performance computing research.
These results underscore the importance of
software-hardware co-design, ensuring that future
architectures and execution frameworks achieve
the desired equilibrium between speed, scalability,
and sustainability.

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1597-1615

doi: 10.13053/CyS-29-3-5567

6 Conclusion and Future Work

6.1 Conclusion

This study evaluated the comparative efficiency
of matrix multiplication on CPUs and GPUs,
analyzing the balance between performance,
numerical precision, and power consumption
across different architectures. The findings
indicate that Intel Xeon Platinum 8480+ with MKL
outperforms NVIDIA A100 when cuBLAS does not
utilize Tensor Cores, as shown in Figure 5, despite
exhibiting a higher Mean Square Error (MSE).
However, when Tensor Cores are enabled, NVIDIA
A100 surpasses CPU performance for matrices
larger than 5120x5120, as illustrated in Figure
6, although at the cost of significantly reduced
numerical accuracy compared to MKL. These
results suggest that fourth-generation Intel CPUs
can achieve performance levels comparable to or
exceeding high-performance GPUs in matrix multi-
plication, depending on precision requirements.

Regarding power consumption, obtaining mea-
surements using PAPI on Intel Xeon Platinum
8480+ was not feasible, due to the lack of support
for RAPL event monitoring in this processor
generation. However, Figure 7 shows that
PERF-recorded power values were significantly
higher than those obtained with PAPI in MKL
executions. This is because PERF accounts for
additional factors, such as memory management,
array initialization, and data loading, leading to
higher overall values. Nonetheless, comparing
both platforms, MKL on CPU exhibits higher energy
consumption than cuBLAS on GPU, highlighting
the difference in energy efficiency between these
computational approaches.

The findings indicate that the execution of the
backpropagation algorithm on CPU, specifically
the matrix multiplication stage, can achieve
computational performance comparable to GPUs,
and even surpass them under certain conditions,
albeit at a higher energy cost. Furthermore, the
execution of matrix operations in heterogeneous
computing systems and their optimization for
diverse workloads remain fundamental research
areas in high-performance computing.

ISSN 2007-9737

Cross-Platform Performance Evaluation of Matrix Multiplication: Insights from MKL, cuBLAS, and SYCL 1613

This study reinforces the importance of maximiz-
ing computational efficiency while maintaining en-
ergy sustainability, contributing to the development
of energy-efficient computing architectures for
hybrid applications, including scientific computing
and artificial intelligence.

6.2 Future Work

The results obtained open new research avenues
that can significantly contribute to advancing
high-performance computing. Some key areas to
explore include:

— Evaluation of next-generation computing ar-
chitectures: As new hardware technologies
continue to evolve, it will be essential to
reevaluate computational efficiency and power
consumption, assessing their impact on matrix
multiplication across diverse architectures and
execution environments.

— Impact of numerical precision on neural
network training: A key focus will be investi-
gating how accumulated errors from numerical
precision affect execution time in sequential
multiplications, particularly in neural network
training, where error propagation influences
convergence rates and model stability.

— Development of energy-efficient computing
models: Future research should explore
methods to reduce power consumption while
maintaining high computational performance.

— Implementation of dynamic task allocation
strategies: Integrating energy-aware libraries
and adaptive parallel processing techniques to
enhance efficiency in heterogeneous comput-
ing environments.

— Advancements in Al-driven optimization tech-
niques: Refining deep learning accelera-
tion frameworks will be essential for driv-
ing high-performance energy-efficient comput-
ing paradigms.

By addressing these challenges, future research
can contribute to the development of scalable,
power-efficient, and high-performance computing
models, ensuring optimal computational speed and
sustainability across diverse applications.

Acknowledgments

The experiments presented in this study were
conducted using the Grid’5000 testbed, supported
by a scientific interest group hosted by INRIA, with
the collaboration of CNRS, RENATER, multiple
universities, and research institutions across
France®. Additionally, computational resources
were provided by the High Performance and
Scientific Computing Center at the Universidad
Industrial de Santander (SC3UIS)* and the
Universidad de Cartagena in Colombia, whose
advanced computing infrastructure significantly
contributed to the execution of this research.

References

1. Akoushideh, A., Shahbahrami, A. (2022).
Performance evaluation of matrix-matrix mul-
tiplication using parallel programming models
on cpu platforms. Research Square. DOI: 10.
21203/rs.3.rs-2135830/v1.

2. Alman, J., Williams, V. V. (2021). A refined
laser method and faster matrix multiplication.
Proceedings of the Thirty-Second Annual
ACM-SIAM Symposium on Discrete Algo-
rithms, Society for Industrial and Applied
Mathematics, USA, pp. 522-539.

3. Baratta, I., Richardson, C., Wells, G. (2022).
Performance analysis of matrix-free conjugate
gradient kernels using sycl. Proceedings of
the 10th International Workshop on OpenCL,
Association for Computing Machinery, New
York, NY, USA, pp. 1-10. DOI: 10.1145/
3529538.3529993.

4. Corporation, . (2023). Intel math kernel
library (intel mkl). https://software.intel.
com/en-us/intel-mk1.

5. Corporation, N. (2025). cublas: Cuda basic
linear algebra subroutine library. https://
developer.nvidia.com/cublas.

Shttps://www.grid5000.fr
4http://www.sc3.uis.edu.co

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1597-1615

doi: 10.13053/CyS-29-3-5567

ISSN 2007-9737

1614 Luis Alejandro Torres Nifio, Carlos Jaime Barrios Hernandez, et al.

6.

10.

11.

12.

13.

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1597-1615

Crisci, L., Carpentieri, L., Thoman, P,
Alpay, A., Heuveline, V., Cosenza, B. (2024).
Sycl-bench 2020: Benchmarking sycl 2020 on
amd, intel, and nvidia gpus. Proceedings of the
12th International Workshop on OpenCL and
SYCL, Association for Computing Machinery,
New York, NY, USA, pp. 1—-12. DOI: 10.1145/
3648115.3648120.

Cussen, D., Ullman, J. D. (2023). Matrix
multiplication using only addition.

da Silva, H. C., Pisani, F., Borin, E.
(2016). A comparative study of sycl, opencl,
and openmp. 2016 International Symposium
on Computer Architecture and High Perfor-
mance Computing Workshops (SBAC-PADW),
pp. 61-66. DOI: 10.1109/SBAC-PADW.2016.
19.

Dresden, T. (2018). Perf - system and applica-
tion tracing on linux. http://tu-dresden.de/
zih/perf/.

Faqir-Rhazoui, Y., Garcia, C. (2024). Sycl in
the edge: performance and energy evaluation
for heterogeneous acceleration. J. Supercom-
put., Vol. 80, No. 10, pp. 14203-14223. DOI:
10.1007/s11227-024-05957-6.

Fasi, M., Higham, N. J., Lopez, F., Mary,
T., Mikaitis, M. (2023). Matrix multiplication
in multiword arithmetic: Error analysis and
application to gpu tensor cores. SIAM Journal
on Scientific Computing, Vol. 45, No. 1,
pp. C1-C19. DOI: 10.1137/21M1465032.

Hemeida, A., Hassan, S., Alkhalaf, S., Mah-
moud, M., Saber, M., Bahaa Eldin, A. M.,
Senjyu, T., Alayed, A. H. (2020). Optimizing
matrix-matrix multiplication on intel's advanced
vector extensions multicore processor. Ain
Shams Engineering Journal, Vol. 11, No. 4,
pp. 1179-1190. DOI: https://doi.org/10.
1016/j.asej.2020.01.003.

Jakobs, T., Hofmann, M., Riinger, G. (2016).
Reducing the power consumption of matrix
multiplications by vectorization. 2016 IEEE Intl
Conference on Computational Science and
Engineering (CSE) and IEEE Intl Conference
on Embedded and Ubiquitous Computing

doi: 10.13053/CyS-29-3-5567

14.

15.

16.

17.

18.

19.

(EUC) and 15th Intl Symposium on Distributed
Computing and Applications for Business
Engineering (DCABES), pp. 213-220. DOI:
10.1109/CSE-EUC-DCABES.2016.187.

Khalilov, M., Timoveev, A. (2021). Per-
formance analysis of cuda, openacc and
openmp programming models on tesla v100
gpu. Journal of Physics: Conference Series,
Vol. 1740, No. 1, pp. 012056. DOI: 10.1088/
1742-6596/1740/1/012056.

Kouya, T. (2021). Acceleration of mul-
tiple precision matrix multiplication based
on multi-component floating-point arithmetic
using avx2. Gervasi, O., Murgante, B., Misra,
S., Garau, C., Blecig¢, I., Taniar, D., Apduhan,
B. O., Rocha, A. M. A. C., Tarantino, E.,
Torre, C. M., editors, Computational Science
and Its Applications — ICCSA 2021, Springer
International Publishing, Cham, pp. 202-217.

Krainiuk, M., Goli, M., Pascuzzi, V. R. (2021).
oneapi open-source math library interface.
2021 International Workshop on Performance,
Portability and Productivity in HPC (P3HPC),
pp. 22—32. DOI: 10.1109/P3HPC54578.2021.
00006.

Kuzma, B., Korostelev, I., de Carvalho, J.
P. L., Moreira, J. E., Barton, C., Araujo, G.,
Amaral, J. N. (2023). Fast matrix multiplication
via compiler-only layered data reorganization
and intrinsic lowering. Software: Practice and
Experience, Vol. 53, No. 9, pp. 1793-1814.
DOI: https://doi.org/10.1002/spe.3214.

Lim, R., Lee, Y., Kim, R., Choi, J.
(2018). An implementation of matrix—matrix
multiplication on the intel knl processor
with avx-512. Cluster Computing, Vol. 21,
No. 4, pp. 1785-1795. DOI: 10.1007/
510586-018-2810-y.

Markidis, S., Chien, S. W. D., Laure, E.,
Peng, I. B., Vetter, J. S. (2018). NVIDIA
Tensor Core Programmability, Performance &
Precision . 2018 IEEE International Parallel
and Distributed Processing Symposium Work-
shops (IPDPSW), IEEE Computer Society, Los
Alamitos, CA, USA, pp. 522-531. DOI: 10.
1109/IPDPSW.2018.00091.

20.

21.

22.

23.

24.

ISSN 2007-9737

Cross-Platform Performance Evaluation of Matrix Multiplication: Insights from MKL, cuBLAS, and SYCL 1615

PAPI (2024). Papi: A portable interface to
hardware performance counters. https:
//api.semanticscholar.org/CorpusID:
12673152.

Qin, E., Samajdar, A., Kwon, H., Nadella, V.,
Srinivasan, S., Das, D., Kaul, B., Krishna,
T. (2020). Sigma: A sparse and irregular
gemm accelerator with flexible interconnects
for dnn training. 2020 IEEE International
Symposium on High Performance Computer
Architecture (HPCA), pp. 58-70. DOI: 10.
1109/HPCA47549.2020.00015.

Reddy Kuncham, G. K., Vaidya, R., Barve,
M. (2021). Performance study of gpu appli-
cations using sycl and cuda on tesla v100
gpu. 2021 |IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1-7. DOI:
10.1109/HPEC49654.2021.9622813.

Reyes, R., Lomiiller, V. (2015). Sycl:
Single-source c++ accelerator programming.
International Conference on Parallel Comput-

ing, pp. .

Rumelhart, D. E., Hinton, G. E., Williams,
R. J. (1986). Learning representations by
back-propagating errors. Nature, Vol. 323,
pp. 533-536.

25. Strassen, V. (1969). Gaussian elimination is
not optimal. Numerische Mathematik, Vol. 13,
pp. 354-356.

26. Weaver, V. M., Johnson, M., Kasichayanula,
K., Ralph, J., Luszczek, P., Terpstra, D.,
Moore, S. (2012). Measuring energy and
power with papi. 2012 41st International Con-
ference on Parallel Processing Workshops,
pp. 262—268. DOI: 10.1109/ICPPW.2012.39.

27. Wu, X., Lively, C., Taylor, V., Chang, H.-C.,
Su, C.-Y., Cameron, K., Moore, S., Terpstra,
D., Weaver, V. (2013). Mummi: Multiple
metrics modeling infrastructure. 2013 14th
ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing, pp. 289—
295. DOI: 10.1109/SNPD.2013.73.

28. Yan, D., Wang, W., Chu, X. (2020).
Demystifying tensor cores to optimize half-
precision matrix multiply. 2020 IEEE Inter-
national Parallel and Distributed Processing
Symposium (IPDPS), pp. 634-643. DOI: 10.
1109/IPDPS47924.2020.00071.

Article received on 26/03/2025; accepted on 03/07/2025.
*Corresponding author is Luis A. Torres.

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1597-1615
doi: 10.13053/CyS-29-3-5567

