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Abstract. The adoption of cloud-native technologies
for distributed computing presents a set of unique
challenges. It is essential to carefully consider
the technologies offered by the cloud provider to
exploit the benefits of the architecture better while
preserving the intended functionality. This paper
introduces a container-based implementation of a
cloud-native multi-swarm PSO on Amazon’s Elastic
Container Service. This paper is dedicated to a
cost analysis, comparing multiple configurations of
both local and cloud deployments. Furthermore, the
paper proves that the proposed solution offers a robust
alternative for both local and cloud environments. The
results underscore the benefits of containerization for
cloud-based bioinspired computing.
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1 Introduction

Cloud computing is becoming a standard way
of running computer science experiments. This
shift is primarily attributed to its cost-effective,
pay-as-you-go model, eliminating the hefty
upfront investment and ongoing management
expenses associated with local computing
infrastructures. Furthermore, cloud computing
simplifies defining the infrastructure within the
code itself, greatly enhancing the reproducibility of
scientific computing results.

A basic example of the benefits of having
easily reproducible code is the rise of web-based

interactive computing platforms such as the
Jupyter Notebook project [10] or Google’s
Colaboratory [3] platforms. When executing the
interactive code, in these platforms, we can easily
choose to scale the execution environment, using
computing resources that greatly exceed what we
have in our personal computers. This capability
is a key advantage, enabling more complex and
resource-intensive operations beyond our local
hardware’s limitations.

A cloud-native implementation of a
computational experiment can also scale from
a local development environment to a wide range
of execution options via cloud computing services
like Google Cloud Platform or Microsoft Azure.
Cloud services evolved from primarily hosting
monolithic applications on virtual machines to
advanced distributed architectures adhering to the
principles of microservices [28] and serverless
computing [31].

Microservices architecture [14] emphasizes on
decomposing applications into smaller, loosely
coupled components, fostering flexibility and
scalability. On the other hand, serverless
computing further refines this paradigm by
abstracting away infrastructure concerns, enabling
developers to focus on coding while minimizing
the management of computational resources.
Combining these architectural patterns enhances
the efficiency and reproducibility of computational
experiments in cloud-native environments.
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Cloud-native applications bring new
methodologies and techniques [1] to the
development of enterprise applications. To
better exploit the capabilities of the cloud
infrastructure, applications are implemented
as reactive systems [2] that are generally more
scalable, flexible, and fault-tolerant; these can be
implemented as a loosely coupled collection of
microservices. These application components
are easily implemented and deployed to cloud
environments, where processing nodes can be
defined and deployed using scripts, and scalable
message queue services are provided to send
and receive events between them. Furthermore,
best practices propose the use of continuous
deployment procedures using software tools for
automatic software provisioning, configuration
management, and application deployment.
Additionally, scalability in such systems is achieved
through the automatic provisioning of additional
computing nodes as demand increases or in
response to node failures, ensuring consistent
performance and reliability.

Microservices are typically executed within
isolated runtime environments called containers
[12]. These containers do more than provide
a runtime environment; they encapsulate all
the components required for the microservice
to function autonomously. This includes
software libraries, binaries, and configuration
files. Essentially, containers package everything
that a node needs to operate. The strength
of a containerized application lies in its
ease of operation on automation platforms.
These platforms can take containerized
microservice-based applications from a local
computer to be deployed in a cloud or an
ephemeral infrastructure [9, 11].

In our previous research [21], we highlighted
that a reactive architecture is well-suited for
implementing population-based metaheuristics if
they require extensive computational resources.
Building on this foundation, the current work
details the deployment process of a reactive,
container-based, multi-swarm PSO algorithm
specifically designed for deployment in Amazon’s
AWS. This design decomposes the previous

application into docker containers using an
event-driven architecture.

The optimization problem tackled in this work
is presented in [17] and consists of tuning the
membership functions of a fuzzy controller. This
optimization problem is computationally intensive,
primarily because it requires evaluating the fitness
of all potential solutions. This evaluation process
involves running multiple simulations for each
candidate solution, as explored in [19].

Despite the computational demands of this
optimization problem, the independent nature
of solution evaluation in evolutionary algorithms
allows for the efficient parallelization of work.
In the literature, we found only a few works
[5, 23, 4] attempting to distribute fuzzy controller
optimization; however, these works have not
fully leveraged the advancements in cloud-native
technologies. This gap presents an opportunity
to explore how modern cloud-native solutions
can enhance population-based optimization.
This examination focuses on the intricacies
of deploying such an algorithm within a cloud
environment, leveraging the scalability and
flexibility of AWS services.

The use of containerization is a key feature
of this deployment because it offers the benefit
of environment consistency and scalability. This
approach aligns with the principles of reactive
systems, ensuring that the deployed algorithm
is efficient in resource usage and robust and
adaptable to varying computational loads.

Furthermore, our application can be
easily replicated and even run with other
cloud providers. The code, including the
container definitions, is available on GitHub
(https://github.com/mariosky/fuzzy-control) with an
open-source license. Our approach addresses a
fuzzy control problem by applying a cloud-native
distributed Particle Swarm Optimization (PSO)
algorithm characterized by its minimal set
of tunable parameters. We emphasize the
significance of our design choices and elucidate
the deployment process leveraging various cloud
technologies provided by Amazon’s AWS.

This paper is dedicated to a cost analysis,
comparing multiple local and cloud deployments
configurations. By scrutinizing the associated
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costs, we aim to provide insights into the
economic considerations associated with
implementing our proposed solution in different
computing environments.

We structured the paper as follows: Section
2 explores contemporary research related to
our work. In Section 3, we introduce the
proposed approach, followed by a discussion
on container-based cloud deployment in Section
4. We then outline the use case and
experimental setup for evaluating deployment
options, particularly focusing on time-to-solution
performance, with an analysis of the results in
Section 5. Finally, we provide conclusions and
suggestions for future work in Section 6.

2 Related Work

The proliferation of container-based architectures
[11] has given rise to a set of patterns that
collectively define the landscape of cloud-native
application development.

Integrating cloud-based evolutionary algorithms
into cloud computing has been a gradual evolution
within the field. Two notable examples of
the integration of evolutionary algorithms with
cloud computing include the Offspring framework
developed by Vecchiola et al. [32] and the
FlexGP system by Sherry et al. [27]. The
Offspring framework implements a multi-objective
Evolutionary Algorithm (EA) designed to operate
on Aneka Enterprise Clouds. The system is built
on top of a task model with a plugin architecture,
enhancing flexibility and extensibility. On the
other hand, the FlexGP system is a pioneering
large-scale Genetic Programming (GP) system
designed for cloud deployment. It adopts an Island
model approach with a client-server architecture
implemented on Amazon EC2. Furthermore,
Valenzuela and Garcı́a-Valdez [30] implemented
a pool-based evolutionary algorithm using EC2
instances as workers, using a distributed pool
for asynchronous collaboration between workers.
Another feature of cloud computing is to provide
infrastructure as a service (IaaS).

Several works starting to use these platforms,
EvoSpace [8] used the PiCloud platform. PiCloud
was a cloud for developers to run Python-based

applications and tasks. It was designed to simplify
the deployment and scaling of Python code in
the cloud. Salza and Ferrucci took similar steps
[25, 26] when they proposed an architecture to
extend the reach of evolutionary algorithms into the
cloud. This pioneering work laid the foundation
for subsequent developments, as demonstrated in
their subsequent paper [6].

The mentioned papers mark a transition toward
incorporating cloud-native elements into the
domain of evolutionary algorithms. Notably,
they introduced aspects like the integration of
messaging queues and adopting CoreOS as an
operating system specifically tailored for efficient
container utilization in evolutionary algorithms.
However, it’s worth noting that despite the infusion
of cloud-native features, the management of
containers in these instances still adheres to a
more traditional approach from the perspective
of distributed Evolutionary Computing (EC).
Specifically, a master-worker architecture is
employed, with communication facilitated through
RabbitMQ, a messaging queue. In this setup,
replicated workers are responsible for executing
tasks in parallel, aligning with the distributed nature
of EC methodologies.

While the papers introduce cloud-native
elements, the underlying container management
strategy retains a classical distributed EC
framework, emphasizing the orchestration of
tasks through a master node and distributed
workers communicating via a messaging
queue. This hybrid approach leverages both
cloud-native technologies and established
EC paradigms to enhance the scalability and
efficiency of evolutionary algorithms in distributed
environments. Dziurzanski et al. [7] implements an
island model using a container-based architecture.

Another popular approach is offered by
Pool-based systems [20, 22] in which a pool
of candidate solutions is shared among all
computing resources. In a pool-based system,
worker nodes pull population samples from the
pool and run several iterations of population-based
algorithms instead of just evaluating candidate
solutions. These systems behave more like
serverless systems [14], which are closer to the
nature of cloud-native systems.
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Similar to the multi-population concepts in EC,
other bioinspired algorithms employ the same
ideas, currently, there are many proposals in
the PSO research area exploiting Multi-Swarm
configurations [13].

3 Cloud-based Deployment

Fig. 1 shows the container-based architecture
proposed by Garcı́a-Valdez and Merelo [29] the
multi-swarm design. We adapted this initial design,
adding components and strategies presented in
previous papers. Adapting the initial parameters of
the algorithm to use a heterogeneous strategy [16]
together with an adaptation of these parameters
considering the algorithm’s diversity and the
number of iterations. In these previous works,
we implemented the event-driven design using
containers running locally in a single workstation.

We first explain the overall design before
explaining the cloud deployment in detail. Fig.
1 shows the system’s main components as swim
lanes. Following an event-driven design, we
have two processing components (combinator
and worker) that communicate via message
queues. The data passed and interchanged
between components are swarms (or populations)
containing the current state of the proposed
solutions (in this case, particles). Decoupling
the population state from the search algorithm
presents several advantages. We can scale the
system by adding new populations and even have
multiple algorithms processing the populations.
The current implementation is considered a
Multi-Swarm PSO because the PSO algorithm was
used to process all the populations.

The combinator process is responsible for the
first step, that is, creating a certain number of
swarms, with each particle randomly positioned
in the search space. Together with the collection
of particles, the initial parameters of the PSO
algorithm are also randomly generated within a
range of values. This is called a heterogeneous
strategy; this strategy gives acceptable results
without the burden of searching the parameters
experimentally [15]. As a second step (2), the data
for each swarm is packed in a message in JSON
format and pushed to the input-queue. The queue

is constantly consumed by Worker Containers.
We can have many workers; each worker is a
daemon process that takes one message at a
time from the input-queue (3), reads the PSO
parameters contained in the message, and then
runs the specified number of iterations on the
received swarm. In the local PSO algorithm, there
is not an initialization step. The algorithm takes
the current state of the swarm and starts the
iteration. After several iterations, the resulting state
of the swarm is pushed to the output-queue (4).
The combinator process pulls the resulting swarm
messages and checks if the best solution has been
found (5); if this is true, the algorithm ends. If the
solution is not found, the best solutions are kept in
a list structure storing only the k -best individuals.
The combinator also has a buffer to store a certain
number of swarms temporarily.

When the buffer reaches a certain number
of swarms (in this case, two), the populations
currently in the buffer are combined by swapping
particles between the two in a process similar
to a one-point crossover (6). This process is
similar to the migration step of other Multi-swarm
PSO algorithms. Before sending the modified
swarms and depending on the current state of
the algorithm, a fuzzy system adapts the C1 and
C2 parameters of the swarms and pushes the
newly generated swarms again to the input-queue

starting a new cycle. The parameters C1 and C2
are acceleration coefficients that control the impact
of personal best and global best values on the
particle’s movement.

We mentioned earlier that we have several
options for deploying cloud-native applications to
AWS; the most common approach is to use single
or several virtual servers using EC2 instances. We
used Amazon Elastic Container Service (ECS) in
our current deployment. ECS is a fully managed
container orchestration service, and it allows the
user to run, stop, and manage Docker containers
on a cluster, simplifying the process of deploying,
managing, and scaling containerized applications.
ECS uses Task Definitions as a blueprint for a set
of containers that run together on the same host. It
defines parameters such as which Docker images
to use, the CPU and memory requirements, and
networking information, among others. A task
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Fig. 1. Container-based architecture proposed by Garcı́a-Valdez and Merelo [29] in which multiple swarms are created
and added to an input-queue, multiple workers then evolve these swarms, and finally, they migrate in the combinator

process. This cycle is repeated several times. In this work, we included dynamic adaptation of parameters, which are
implemented inside the combinator module

definition is similar to a docker-compose file in
the sense that it defines the interaction of several
containers. To minimize the need to manage the
underlying infrastructure, we use what is called
Fargate Tasks, a serverless compute engine that
eliminates the need for launching and managing
EC2 instances ourselves.

We only need to specify the resource
requirements needed for our task. Fig. 2,
shows the main cloud computing technologies
from Amazon’s AWS used in the deployment of the
multi-swarm algorithm. We had specified a Docker
container definition for each component described
previously using a Docker file. With this Docker
definition, we could run the algorithm locally using
a docker-compose script. As a first step for cloud
deployment, we must create a repository for
each container definition in the Amazon Elastic
Container Registry (ECR) (1). ECR is a fully

managed container registry service provided by
AWS. This registry stores, manages, and deploys
Docker container images. The advantage of
having an image repository is that we can keep
several versions of each image. As a second step
(2), we defined a Fargare Task Definition for each
component. We then created an ECS cluster is a
logical grouping of container instances or tasks on
which we can run our containerized applications.
We now run the Task Definitions (3) and observe
the execution logs in Amazon CloudWatch; this
is a monitoring and observability service. These
steps can be realized using a browser-based user
interface or using a command-line interface.

Each of the services mentioned above has a
cost that is charged monthly, the current prices are
shown in Table 1.

First, we must consider the cost of storing the
Docker container images in the ECR. We have
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Fig. 2. Implementation using AWS cloud technologies

50GB a month for free, but it is important to
remember that some container images can grow
to several GB depending on the operating system,
languages, libraries, and software included in the
container. The data transfer cost for a private
registry is negligible; there is no cost for uploading
the images and no data transfer to the outside.
When we specify the computing resources for
running a specific Fargate Task, we select the
number of vCPUs to assign, and depending on
our selection, there is a minimum and maximum
amount of memory we can assign to the task. At
this time, when selecting one vCPU, the minimum
memory is 2 GB, and the maximum is 8 GB, in

1 GB increments. We selected 3 GB memory for
our containers. To run these experiments, we did
not need additional ephemeral storage; we used
the 20 GB included for free. Finally, we used the
CloudWatch service extensively to keep track of
the algorithm and summarize the results.

4 Use Case

To test the deployment, we compare the execution
time of three configurations running on Amazon’s
Elastic Container Service against a local execution
using a Mac Studio workstation. We describe next
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Table 1. Cost of AWS Fargate Services, the Elastic
Container Registry is needed to upload images for
creating and running the containers; each container runs
in a Task using one vCPU, 3 GB of RAM, and 20GB of
ephemeral Storage. The results of the experiment are
stored in Amazon Cloud Watch logs

Service Price Free tier
Elastic Container Registry

Storage $0.10 per GB 50 GB
Transfer IN $0.00 per GB
Transfer OUT

AWS Fargate
each vCPU per hour $0.040480
each GB per hour $0.004445
Ephemeral Storage GB
per hour

$0.000111 20 GB

Amazon Cloud Watch
Collect (Data Ingestion)
Standard $0.50 per GB 0 to 5 GB
Infrequent Access $0.25 per GB 0 to 5 GB

the resource-intensive optimization problem used
as proof-of-concept.

In this case, we want to optimize the membership
functions for a fuzzy controller for a rear-wheel
controller [24]. The fuzzy controller is presented in
a previous paper [19]. This problem was selected
because it consumes extensive computational
resources to evaluate candidate solutions. Fig.
3 details the evaluation components for each
candidate solution. Each solution consists of a
list of floating-point parameters for establishing
the components of the membership functions for
a fuzzy controller definition. With this definition,
we create a controller instance and simulate the
control by following several paths with different
degrees of difficulty. We then calculate the average
of the RMSEs obtained for each path. This
average is considered the fitness of the candidate
solution. If a controller cannot follow the track to
a certain degree, the simulation is terminated, and
that controller is assigned the worst fitness value
(RMSE=5000).

The current implementation uses the Python
language, which means that even if there are
multiple CPUs in the computer, the Python
interpreter process uses only a single thread or
CPU at a time. For this reason, we only run

Simulation

Parameterized Fuzzy 
Controller FC(xmf)

Path (sk)

Population-based metaheuristic

[a,b,c,d,e,f,g,h,i j] Fitness

Candidate Solutions

Evaluate 
Population

 Population
Fitness

RMSE

Fuzzy 
Controller 
Definition

Fig. 3. Fuzzy Controller Problem [18]

workers in Fargate instances using a single vCPU.
Each vCPU is a hyperthread of an Intel Xeon
CPU core. We validated this by running a few
experiments using instances with 4vCPUs, but we
did not find a substantial difference in the compute
time, so the additional cost is not justified.

For the cloud configurations, we compare three
configurations: 36, 40, and 90 workers. This
means 36, 40, and 90 vCPUs. This number
of processors is higher than what we normally
find in a PC Workstation. We are comparing
the results with a local implementation using a
high-end workstation, in this case, a 2022 Mac
Studio with an Apple M1 Ultra chip with 20 CPUs
(16 performance and 4 efficiency). We use 16
workers in this configuration to fully exploit the
maximum number of performance cores.

We usually set the number of swarms and the
number of workers with a similar value; if we
increase the number of swarms, many will remain
in the input-queue waiting for a worker to be
available. If we have more workers than swarms,
the situation will be worse because we now have
workers waiting for swarms to be available. To
test how much the ratio of swarms/workers affects
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the time of execution, we test with these four
configurations: the same number of swarms and
workers with 36 each, 36 workers and 40 swarms,
40 workers and 36 swarms, and finally, 90 workers
and 80 swarms.

The multi-swarm is composed of 36, 40, or 80
swarms with ten particles each. Although this is
a small size for a traditional single swarm PSO, in
the case of an MS-PSO, the total size of the swarm
is the sum of all swarms. Each local PSO will run
four iterations of the algorithm before returning the
resulting swarm state to the output-queue. All
swarms will complete ten cycles, meaning they
will go through the combiner and back to the
input-queue a total of ten times each.

The parameters of the multi-swarm version
of the PSO algorithm are shown in Table 2.
We use the number of function evaluations per
second (EPS) to compare the time-to-solution
performance. As we mentioned before, the fitness
evaluation function is the most computationally
demanding component of the PSO algorithm, and
this is why the number of calls to this function is
a commonly used metric to evaluate the amount
of work needed to find a solution independently of
the parameters or hardware used. In this case, we
change the parameters of the MS-PSO algorithm
depending on the number of swarms and workers
available. These changes in the configuration yield
different numbers of function evaluations for each
configuration. To consider this, we compare the
execution speed by EPS. Higher values are better.

5 Results

Table 3 shows the results for the proposed
configurations, giving the average (n=15) RMSE
obtained, the average time (in seconds), and
the function evaluations per second of the
experiments. We also included the cost per
execution according to the number of workers
(vCPUs) and memory multiplied by the time it
takes to finish an average experiment. We
discuss the results in two subsections. First,
we focus on the number of function evaluations
per second because this measure gives us the
work each worker provides. In the second,

we put our attention on the cost of each
experiment configuration.

5.1 Number of Function Evaluations per
Second

When changing the ratio between workers and
swarms, we notice a significant increase in the
#FE per second when the number of swarms
equals the number of workers. These results can
be explained by analyzing the timeline of three
representative runs. The fourth configuration is not
shown in the graph due to the complexity of the
data handling, but it would be similar to Fig. 6.
Figs. 4 to 6 show the timelines for the proposed
configurations. The x-axis shows the time elapsed
in seconds from the beginning of the experiment.
Each row represents a particular worker, identified
by a sequential number. Each box represents the
time range in seconds, beginning when a swarm
is pulled from the input-queue until pushed to the
output-queue.

A sequential integer identifies each swarm. The
elapsed time is not the same in all cases because
the time to complete the path depends on the
controller’s performance. Moreover, when the error
or distance to the path is large, the simulation
is interrupted, thus taking less time. To identify
each swarm, the color corresponds to the order in
which each worker received it, and this is to avoid
those cases where the same swarm is sequentially
received by the same worker twice. In this case, it
isn’t easy to distinguish between the two boxes if
the swarm has the same color. The vertical bold
line indicates when the number of evaluations has
been reached. At this point, no more swarms are
pushed to the input-queue. Because workers take
swarms asynchronously, the work already in the
input-queue is still pulled by workers, and the work
they are processing is also finished. This is why
more work is processed beyond the bold line.

Fig. 4 shows the timeline for the experiment
using 36 workers and 36 swarms. When we have
this configuration, it is common for each swarm to
be executed exclusively by the same worker. This
is because the input-queue will usually be empty.
Once a worker finishes processing a particular
swarm, it will be available for the next swarm in the
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Table 2. Experimental Setup, these values were obtained from initial experiments and these are the same parameters
used in our previous work [18]. The number of Function Evaluations are different because some parameters are adjusted
to the number of swarms or workers used

Algorithm Parameter Range[min,max]
MS-PSO Communication Topology Fully connected

Speed. Minimum = [-0.20, -0.30]
Maximum = [0.20, 0.30]

Coefficients C1,C2 [1.0, 2.0]

Local Cloud
Size 10 10 10 10
Swarms 16 36 40 80
Iterations 8 4 4 4
Cycles 10 10 10 10
Dimensions 15 15 15 15
# Function Evaluations 12800 14400 16000 32000

Table 3. Function Evaluations per second comparison between local and three configurations on AWS Elastic
Container Service

Local AWS Elastic Container Service
Configuration Mac Studio 1 2 3 4
Workers 16 36 36 40 90
Swarms 10 36 40 36 80
#FE 12800 14400 16000 14400 32000
RMSE 0.00271 0.00328 0.00404 0.00303 0.00238
Time in seconds 754.9677 840.660 1059.593 936.064 1324.359
Evals. per second 16.954 17.129 15.100 15.383 24.163
Cost per run (USD) 0.4524 0.570 0.559 1.782

input-queue. The combinator returns the same
swarm to the initial-queue, and the same worker
is available to retake the same swarm.

Furthermore, workers do not have a noticeable
waiting time when this condition happens. We
can see that this happens in all the workers. It is
essential to notice that worker 21 takes a swarm,
but this swarm is never pushed back into the
output-queue. This could be because of an error
in the swarm configuration or a bug in the code. For
instance, we do not have a fault-tolerant solution to
restart a worker if the work is not returned after a
specific time. However, in any case, the nature of
the event-driven solution still works well. The extra
work needed to reach the number of evaluations
required to complete the experiment is distributed

among all the other workers. Fig. 5 shows when
we have more swarms than workers; consequently,
swarms are not always processed by the same
worker as in the previous case.

We need to assess in a future work if this
behavior benefits the search algorithm. The
drawback of this case is that the work takes more
time because we have fewer resources to do the
computation. Finally, Fig. 6 shows the case where
we have spare workers. The problem with this
approach is that the workers must wait until a new
population is available. For example, worker 5
needs to wait until a swarm is available. In this
case, population PSO-11 is received by worker 5
after worker 16 finished working on the swarm.
Nevertheless, even if we have more computing
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Fig. 4. Execution of 36 workers and 36 swarms, The timeline at the bottom marks the progression in seconds, indicating
the duration of each PSO instance’s activity inside a particular worker container

resources, because of the additional idle time of
the workers, the overall time is not the best.

5.2 Cost per Run

When running our experiments in a cloud
environment, we can use a certain amount of
resources for free. Still, these are limited
resources, so the cost of each run is an essential
factor in deciding the configuration we use. The
first configuration is less expensive and offers more
evaluations per second, finishing an experiment
in about fourteen minutes. On the other hand,

the faster configuration gives us 57% more
evaluations but costs almost three times more
(293.90% increase).

When comparing against the local execution,
results indicate that we needed about 2.25 times
the number of workers to match the time-to-finish
performance of a local execution. Several factors
could have an impact on this difference. The
communication time for a local container and the
network is faster than in a cloud environment; the
M1 chip with a fast memory bandwidth (800GB/s)
is more rapid than a vCPU. Moreover, there could
be differences in the virtualization environment
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Fig. 5. Execution of 36 workers and 40 swarms. The timeline at the bottom marks the progression in seconds, indicating
the duration of each PSO instance’s activity inside a particular worker container

where the docker host runs; the Docker engine
used in Mac Studio is optimized for the M1 chip.
On the other hand, running these experiments
in a cloud environment does not incur an initial
investment on a workstation computer.

6 Conclusion and Future Work

This paper details the cloud-native design
and deployment options for a multi-swarm
PSO algorithm. The algorithm addresses the
computationally demanding optimization problem
of tuning the membership functions of a fuzzy

controller applied to rear-wheel path tracking. We
deployed the algorithm on Amazon’s container
platform and compared this solution against a local
docker-based deployment. We compared the four
configurations to highlight the differences between
worker and swarm ratios.

We found that the most efficient configuration is
to have the same number of workers, threads, and
swarms.

We found also that for specific use cases, it is
necessary to increase the number of workers when
deploying the algorithm on a cloud provider, as we
observed in the fourth configuration, where having
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Fig. 6. Execution of 40 workers and 36 swarms.The timeline at the bottom marks the progression in seconds, indicating
the duration of each PSO instance’s activity inside a particular worker container

more workers than swarms resulted in a higher
number of evaluations per second.

For future research, we aim to expand upon
the design options on both the algorithmic and
deployment sides. We can dynamically change the
swarm size or the number of swarms (and workers)
to ascertain potential performance gains.

When implementing these options, we can test
the auto-scaling features of the cloud platform with
the intent to optimize resource utilization without
degrading the algorithm’s exploratory capacities.
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