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3 Tecnológico Nacional de México/Campus Tuxtla Gutiérrez,
Mexico

fernando.pech@cinvestav.mx, xe1aom@ucol.mx, german.rt@tuxtla.tecnm.mx

Abstract. Natural disasters are inevitable phenomena
that occur more frequently around the world. They often
cause severe damage to populations, infrastructure and
economic activities. Floods are the most common
occurrences due to extreme meteorological events such
as intense rainfall, tropical storms and hurricanes. In
Mexico, floods happen every year in different states of
the country. The state of Tabasco is one of the most
affected due to its numerous water bodies. In the state,
floods impact agriculture, livestock and other economic
sectors, causing significant damage to the population.
This has led to efforts to develop strategies to reduce
the impact on populations. In recent years, various
studies have been conducted to detect floods. Most of
these studies rely on the use of satellite images and
deep learning algorithms with the purpose of mapping
areas affected by floods. The combination of these
technologies is becoming one of the most effective
methods. This paper presents a methodology for flood
mapping in the Rı́os zone of Tabasco State using
Sentinel-1 SAR, Sentinel-2, and U-Net deep learning
architecture. The study period was from 2019 to 2023.
The results obtained show that with more data and
training periods, accuracy in detecting floods improves.

Keywords. Deep flood mapping, sentinel-1 to flood
mapping, flood detection with U-Net.

1 Introduction

Natural disasters are phenomena that cause
significant damage worldwide. The most common
ones are droughts, earthquakes, hurricanes, forest

fires and floods (see Figure 1). According to the
United Nations report [42], there has been a 50%
increase in global floods and extreme precipitation
associated with climate change. This report states
that they occur four times more frequently than in
the year 1980.

Center for Research on the Epidemiology of
Disasters (CRED) indicate that floods are the most
frequent and devastating natural disaster [12]. In
2021, 432 disasters occurred, causing almost
11,000 deaths; 222 were floods (see Figure 1). In
2022, there were 387 disasters and nearly 31,000
deaths; 177 were floods. The latter have the most
significant impact of these catastrophes, affecting
more than 45% of the world’s population [13].
In 2023, 414 natural disasters were recorded, of
which 163 were floods, leaving more than 7,500
deaths [14]. As of October 2024, 120 floods have
been recorded.

In Mexico, there have been several floods that
have caused severe damage. Among the most
serious ones are those that occurred in the
state of Tabasco in 2007 and 2020; causing a
large percentage of its territorial extension to be
completely covered by water. This generated
impacts in different sectors, such as agriculture,
livestock and infrastructure [32]. According to
official data from ECLAC [10], the damage caused
in 2007 was USD 3,000,000.00: 31.77% in
the productive sector, 26.9% in agriculture, and
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Fig. 1. Occurrence of the five most common natural disasters in the world from 2005 to 2024: Floods, Storms,
Earthquakes, Droughts and Wildfires

0.5% in the environment. In 2020, more than
800,000 people were affected, 200,400 homes
damaged, 2000 km of land lost and more than USD
1,000,000.00 in damages.

Due to the increase and danger of floods,
various research centres have taken on the task of
developing different strategies to reduce the impact
of these types of disasters. As a consequence,
specialized techniques and technological tools
are required to propose solutions that effectively
respond to the crisis and mitigate the effects
caused by flooding. Research in this field
will not only contribute to improving preparation
and mitigation capabilities, but it also lays the
groundwork for a more sustainable approach to
managing future flood-related disasters.

Remote sensing has seen significant growth
due to its ability to obtain terrestrial data through
sensors and cameras installed on satellites or
satellite programs [38, 15, 28, 21]. Satellite
programs typically feature two types of sensors:
passive, which capture optical images, and active,
focused on capturing radar images:

— Optical images are high-resolution
multispectral and correlated with the open
water surface. However, they can be affected
by cloud presence during precipitation,
making it impossible to acquire completely
clean images.

— Radar images are capable of penetrating
clouds and acquiring images in any weather
condition. This is due to the fact that the
sensors operate at longer wavelengths and
are independent of solar radiation. As a
result, this makes them ideal for monitoring
and mapping flooding events and estimating
the damage caused.

These satellite data have different properties
such as: 1) Spatial resolution, which determines
the area of the terrestrial surface covered by
each pixel in the image; 2) Spectral resolution,
which represents the electromagnetic spectrum
captured by the remote sensing sensor, including
the number and width of regions; 3) Temporal
resolution, which determines how long satellite
information can be obtained from the same
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location with the same satellite and radiometric
resolution [26].

Among the satellite programs are Copernicus
[21] and Landsat [15]. Copernicus, which
stands out for the acquisition of data with high
spatial and temporal resolution, is made up
of 6 satellites developed for different purposes:
Sentinel-1, provides Synthetic Aperture Radar
(SAR) images useful for the observation of land
and oceans; Sentinel-2, provides multispectral
optical terrestrial images; Sentinel-3 and 6, for
marine observation and Sentinel-4 and 5 for air
quality monitoring [45,11,42].

On the other hand, artificial intelligence
algorithms are being used in remote sensing
for the analysis of satellite data. Deep learning
(DL) algorithms have taken on a very important role
due to their ability to discriminate data, automate
and improve the accuracy of tasks such as image
classification, feature detection and the generation
of thematic cartographic representations [3].
They are capable of learning appropriate feature
representations for spatial learning classification
tasks using Convolutional Neural Networks (CNN)
[3] and sequential learning using Recurrent
Neural Networks (RNN) [20]. These approaches
have shown better results than other techniques,
however, they suffer from some problems. CNNs
suffer from inductive biases while RNNs suffer
from gradient disappearance [16]. In addition,
satisfactory results of DL algorithms require a
large dataset for training [5, 31]. Due to this need,
labeled image datasets have been used.

Both technologies are being used to study
climate change, precipitation, coal flow prediction,
drought forecasting, detection of land use change,
earthquakes, water bodies, floods, crops, etc.

2 Related Works

In the literature, there are different approaches to
analyzing water bodies and floods [18, 39, 45, 29].
Many studies use optical images, SAR (Synthetic
Aperture Radar) imagery, and some combine SAR
with optical data. Regardless of the approach
proposed, they all share a fundamental premise:
analyzing floods in various locations. Some map
flood extents to coordinate rescue efforts, while

others analyze flood extensions to mitigate and
predict their effects.

Traditional machine learning approaches
typically use optical images [17, 40, 33, 25].
Among the most commonly used algorithms
are: Support Vector Machines (SVM), Random
Forests (RF), and Classification and Regression
Trees (CART). Optical images are analyzed using
spectral indices, which are based on interactions
between vegetation and electromagnetic energy in
the short-wave infrared (SWIR) and near-infrared
(NIR) bands [2, 23]. To map water bodies and soil
vegetation, primarily the Normalized Difference
Vegetation Index (NDVI) [37] and the Normalized
Difference Water Index (NDWI) [7] are used.
Although optical sensors are highly correlated
with open water surfaces, they cannot penetrate
clouds, limiting their use in rainy or overcast
conditions.This makes cloud-free multispectral
image acquisition impossible.

Current approaches use DL, specifically CNNs.
These are based on reducing dimensionality to
reduce the number of parameters and preserve
relative pixel locations. By increasing the depth
of CNNs, their performance can improve because
deep networks incorporate multi-dimensional
features and classifiers in multiple end-to-end
layers. Consequently, the deeper the network
structure is, the richer the feature level gets.

However, the network may introduce problems
such as: 1) gradient disappearance, 2) gradient
explosion, and 3) network degradation. ResNet
[19] was proposed, effectively mitigating network
degradation and allowing more profound training of
DLs through residual blocks.

Zhao et al. [47] used SAR images to classify
buildings, vegetation, roads, and water bodies
using TerraSAR images [6].

Other approaches, such as those of Ziyao et
al. [46] and Tavus et al. [41], use the U-Net
architecture [36].

Katyar et al. [22] use the Sen1Floods11 dataset
with SegNet [30]. Notably, U-Net uses skip
connections between different blocks of each stage
to preserve the acquired feature maps. At the
same time, SegNet reuses the encoder’s pooling
indices for nonlinear upsampling, thus, improving
the results in flood detection.
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Fig. 2. Approach to flood mapping

Bai [4] improved on the work using BASNet
[35], an image segmentation network identical to
U-Net; they combined it with a hybrid loss function
(structural similarity loss), IoU loss, and focal loss.

3 Materials and Methods

The proposed strategy has three main phases.
Figure 2 shows the methodology with each of
the activities of each phase. Each stage is
explained below.

3.1 Study Area

The study area focused on the river region of the
state of Tabasco, Mexico. The region is composed
of 3 municipalities: Tenosique, Balancán and
Emiliano Zapata (see Figure 3). These entities are
prone to flooding due to the large number of bodies
of water that traverse the region. Additionally, it
is common for prolonged rainfall to cause river
overflows. The abundance of water and the impact
of dams on the hydrology of the region, by altering
the natural flow of rivers, cause flash floods and
floods, which affect drinking water, health, and the
livelihoods of thousands of Tabasco residents.

Fig. 3. Geographic location of study area. Rios
subregion, Tabasco, Mexico

The study period was from 2020 to 2023.
Three periods were established for the study:
the northern season (November-February),
the dry season (March-May) and the wet
season (June-October). Satellite images were
acquired from the Copernicus Open Access Hub
repository1. Sentinel-1 images, composed of tiles
covering the states of Campeche, Chiapas and
Tabasco (see Figure 4), were selected; they are
GRD (Ground Range Detected, focused SAR data
that has been detected, multi-looked and projected
to ground range using an Earth ellipsoid model)
type with dual polarization VV+VH with an IW
sensor.

a) b)

Fig. 4. Images acquired from the study area: a)
Sentinel-1 image tile and b) Sentinel-2 image shapefile

Table 1 displays the parameters of the Sentinel-1
and Sentinel-2 satellite images used in the study.
To avoid false positives, descending pass direction
images were utilized. SAR images used for the
study are shown in Figure 5. For optical images,
a shapefile was used to define the study area,

1https://scihub.copernicus.eu/dhus/#/home
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and the Google Earth Engine (GEE) platform was
employed to acquire the images [44].

Table 1. Sentinel-1 and Sentinel-2 sensor parameters

Satellite Characteristics

Sentinel-1 Satellite: S1-A

Product type: GRD

Polarisation: VV + VH

Sensor model: IW

Sentinel-2 Satellite: S2-A

Product type: 1C

Cloudiness range: ¡10%

Bands: 2,3,4, and 8

Date Identifier

01/05/2020 S1A_IW_GRDH_1SDV_20200501T120132_20200501T120201_032371_03BF57_217F

13/05/2020 S1A_IW_GRDH_1SDV_20200513T120132_20200513T120202_032546_03C502_3168

01/06/2020 S1A_IW_GRDH_1SDV_20200601T115348_20200601T115413_032823_03CD4F_621A

01/06/2020 S1A_IW_GRDH_1SDV_20200601T115319_20200601T115348_032823_03CD4F_3FBA

01/09/2020 S1A_IW_GRDH_1SDV_20200901T001523_20200901T001548_034158_03F7BC_B5A0

22/09/2020 S1A_IW_GRDH_1SDV_20200922T120140_20200922T120209_034471_0402CF_5DE6

25/09/2020 S1A_IW_GRDH_1SDV_20200925T001524_20200925T001549_034508_040406_D222

04/10/2020 S1A_IW_GRDH_1SDV_20201004T120140_20201004T120209_034646_0408F2_3612

07/10/2020 S1A_IW_GRDH_1SDV_20201007T001525_20201007T001550_034683_040A31_8F93

16/10/2020 S1A_IW_GRDH_1SDV_20201016T120140_20201016T120209_034821_040F05_580F

09/11/2020 S1A_IW_GRDH_1SDV_20201109T120140_20201109T120209_035171_041B17_8D95

12/11/2020 S1A_IW_GRDH_1SDV_20201112T001524_20201112T001549_035208_041C65_0D7B

21/11/2020 S1A_IW_GRDH_1SDV_20201121T120140_20201121T120209_035346_042131_3140

24/11/2020 S1A_IW_GRDH_1SDV_20201124T001524_20201124T001549_035383_04226B_E7EF

Fig. 5. Sentinel-1 images used for the study. Pre-flood
(grey background) and post-flood

3.2 Preprocessing

3.2.1 Sentinel-1 Images

The SAR images were preprocessed using the
SNAP tool and the following were applied (see
Figure 7):

— Radiometric correction. Convert the
information from each pixel’s original image to

digital levels, and then translate these values
into reflected radiance captured by the sensor.
This process enables the minimization of
dispersion effects caused by atmospheric
particle presence [38].

— Speckle filter application. Reduce the noise
characterized by speckles or small spots found
in the images. A 5x5 Lee filter was employed
to standardize the images and eliminate this
type of noise [34].

— Geometric calibration. Correct any geometric
displacement or distortion that the image
presents. Distortions can be caused by sensor
tilt, relief influence, or systematic errors in the
image [27].

— Logarithmic scaling transformation. The
image bands undergo a logarithmic
scaling transformation, converting them
to decibels (dB).

— RGB layer generation. An RGB mask of
the SAR image was made to detect pixels
where bodies of water, vegetation and flooded
areas occur.

— RGB composition creation. A composition
RGB (Red, Green, Blue) is generated using
the image bands. Each band represents
one channel of the RGB spectrum, and their
combination contributes to the formation of a
colored image.

— Binary layer. A binary layer is applied to
segment the image, separating water and
land zones by analyzing the histogram of
the image’s texture coefficient. The different
classes of texture coefficients are identified,
and a threshold is set to separate values
associated with water and land.

3.2.2 Sentinel-2 Images

Sentinel-2 images at level 1C were obtained, and
a cloud and shadow mask were applied to them.
This mask automatically identifies and labels areas
covered by clouds and shadows in the images.
The mask results in cleaner images of the Earth’s
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a) b) c)

d) e) f)

g)

Fig. 6. SAR processing: (a) Without processing;
(b) radiometric processing; (c) Speckle filtering; (d)
logarithmic scaling; (e) geometric correction; (f) RGB
composition; and (g) binary layer

Fig. 7. Optical image before and after cloud masking
with a threshold below 40%

surface that facilitate the study of features such as
vegetation and water bodies.

Reflectance indices are dimensionless variables
that result from mathematical combinations
involving two or more spectral bands. The
reflectance indices are designed to maximize the
characteristics of vegetation and water resources
but reduce noise [11, 24]. This allows analyzing
the activity of vegetation and water bodies showing
their seasonal and spatial changes.

Normalized Difference Water Index (NDWI).
It is sensitive to changes in the content of
water resources and is less susceptible to the
atmospheric effects than affect NDVI, it is widely

used in the analysis of water bodies [8]. It is
calculated using the following formula:

NDWI =
(NIR− SWIR)

(NIR+ SWIR)
, (1)

where NIR corresponds to the near infrared band
and SWIR refers to the short wave infrared band.

In this stage, it is crucial to select relevant
images and apply corrections to eliminate errors
or deficiencies. Thanks to this, a precise and
detailed understanding of the flood situation can
be obtained. The final product of this phase
is the collection of corrected satellite images,
which provides a solid base for analysis and
decision-making.

3.3 Dataset Creation

In this stage, the data is prepared for training a
DL model. For this study, a CNN was employed,
which is particularly well-suited for tasks related
to computer vision, such as image classification
and segmentation. As a result, it is necessary to
create an appropriate and well-crafted dataset to
provide the CNN with the necessary information to
learn to identify and delineate patterns accurately
and reliably, thereby achieving good performance
in flood detection.

For the labeling, ArcGIS Pro [1] was used, where
SAR and optical images corresponding to the
established span of time for the study were utilized.
The images correspond to the rı́os zone in the
state of Tabasco. To reduce erroneous samples,
a comparison of bands from pre and post-flood
images was used. All bands from both images
were then stacked to generate an RGB composite.
For channel R, a pre-flood image band was
assigned, while for channels G and B, post-flood
image bands were assigned (see Figure 8). Also,
the thresholding technique was used, analyzing the
histogram of the coherence coefficient to separate
pixels corresponding to water from SAR images.
This allowed distinguishing flooded areas and
water bodies (see Figure 9).

Manual samples were extracted from SAR and
optical images for training purposes. This process
was carried out by loading the images into ArcGIS
and utilizing the ”Training Samples Manager” tool.
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Fig. 8. Spectral band comparison and RGB composition

Fig. 9. Histogram analysis in SAR images

The result can be seen in Figure 10, where
polygons are drawn over a satellite image.

The training samples were exported by creating
a dataset with 256×256 pixel image chips. Two
separate datasets were created: one focused
on flood detection and the other on permanent
water bodies, utilizing SAR images and NDWI,
respectively (see Table 2).

3.4 Deep Learning Model and Training

The U-Net architecture is a CNN designed for
image segmentation. U-Net architecture is
characterized by its efficiency in memory and
computational time during inference, thanks to its

Fig. 10. Creating training samples

Table 2. Number of samples and times used in training
the flood classification model

Dataset name Images Features

Flood 1,315 8,309

Permanent water 1,215 7,965

smaller number of parameters. This allows the
network to perform well while minimizing resource
requirements. The U-shape structure enables
the capture of more details and preservation
of contextual information necessary for precise
segmentation (see Figure 11).

Additionally, it can handle small datasets
effectively, making it particularly useful in flood
mapping where dataset availability may be limited
or difficult to collect. Furthermore, the U-Net
architecture can benefit from techniques such as
data augmentation to improve its performance. It
consists of two branches: for encoding (left side)
and for decoding (right side).

The encoder follows a typical CNN architecture,
responsible for capturing and extracting features at
higher levels of the image.

The decoder constructs the semantic
segmentation map and includes convolutional
layers that perform upsampling, enabling the
capture of both local and contextual features.
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Fig. 11. U-Net architecture

This structure is beneficial for segmentation task,
allowing the network to handle both localized and
global information. The U-Net architecture uses
a soft-max activation function applied in the last
layer to indicate the probability of a pixel belonging
to a class. It also employs a cross-entropy
model to measure the discrepancy between the
predicted output by the network and the expected
segmentation mask or label.

The model was trained and validated using
the subsets for these purposes. A batch size
of 8 images per iteration was used during
training. Different training tests were performed
with different numbers of epochs (25, 50, 75, 100,
150, 200, 300, and 400) to evaluate performance
over time. This allowed us to determine with
how many epochs the best results are obtained
regarding loss and precision in the validation set.
Training was performed by iterating through the
training batches at each iteration. Model weights
are updated to minimize the loss function. Training
progress is monitored, and loss and accuracy are
recorded at each training and validation set epoch.

3.5 Validation

An inference test is performed to predict new
flood. In this phase, the knowledge acquired during
model training is applied to detect flooded areas
in real-world scenarios. The key components are
described below:

— Loading of the trained neural model: This
step loads a pre-trained neural network
model, which contains the learned weights

and architecture from the training process,
and is now ready to perform predictions on
new images.

— Preprocess and postprocess: Preprocessing
functions are used to prepare the images
properly, including normalizing pixel values
and adjusting the size to match the model
input format. After obtaining model
predictions, post-processing functions are
used to improve and refine the outputs.
This could involve removing small groups
of unwanted pixels and improving the
consistency of segmented areas.

— New image classification: Once the image
has been preprocessed and the model loaded,
classification proceeds. The processed
image is fed into the model, generating
predictions on areas that may be flooded.
The model leverages its prior understanding
of patterns learned during training to make
these predictions.

— Visualization of results: The model’s
predictions can be visualized by overlaying
them on the original image. This allows for
a visual evaluation of how the model has
identified flooded areas in comparison to
reality. The overlay also provides an indication
of the quality of segmentation and potential
areas for improvement.

4 Obtained Results

The following metrics were selected to evaluate the
developed neural model: Recall, F1-Score, and
Accuracy [43].

— Recall: Measures the proportion of positive
instances (flooded areas) that the model
correctly identified compared to the total
number of real positive instances. A high recall
indicates the model’s ability to detect most of
the flooded areas in the SAR image.

— F1-Score. Metric that combines the precision
and recall of the model. It measures
the ratio between true and false positive
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predictions compared to the actual labels. It
is advantageous when there is an imbalance
between classes, such as in segmenting
flooded areas where non-flooded areas are
predominant.

— Accuracy. Evaluates the overall accuracy of a
classifier. Indicates the overall performance of
the model.

These metrics were evaluated in different
training epochs. The model’s improvement can
be observed throughout each epoch and the
equilibrium points where performance stabilizes. In
addition, it allows for identifying the stage where
the model achieves an optimal balance between
precision and recall.

4.1 Results in the Detection of Permanent
Water

NDWI facilitated the precise identification and
labeling of permanent water regions. With a
training cycle of 30 epochs and 10% validation,
an excellent level of evaluation metrics was
achieved: precision of 91.11%, recall of 90.32%
and F1-Score of 90.71%.

Figure 12.a shows the loss during training
and validation. The loss represents the model’s
adjustment to its predictions against real data.
A low loss in both phases indicates effective
learning. Figure 12.b displays samples of the
trained model, with the truth of the terrain on the
left and the model’s predictions on the right. Close
alignment between predicted areas and sample
inputs indicates precise and robust detection.

4.2 Results in Detecting Flooded Areas

For flood detection, SAR images were employed
due to their ability to penetrate atmospheric
conditions and provide surface terrain data, even
in darkness or cloudiness. These images are
ideal for this task because they can penetrate
weather conditions and provide precise data on the
surface terrain, even in dark or cloudy conditions.
To train the model, a progressive process was
used, with iterations of 25, 50, 75, 100, 150, 200,
300, and 400 epochs, at a validation rate of 10%.

Fig. 12. Water permanent training: a) Training loss and
validation loss; b) Comparison of training samples (left)
and model prediction (right)

This progressive approach enabled the model to
learn more effectively and improve its predictions
in flooded areas. In Figure 13, the model’s
predictions for flooded areas are displayed.

From epoch 150 onwards, a strategy was
implemented to increase the available dataset size
by implementing the rotation technique. The
rotation technique was chosen because it allows
for generating new samples that are not present
in the original dataset, which can help improve
the model’s accuracy. The new versions of
each natural image were generated by applying
90-degree rotations at specific intervals, resulting
in three different versions per original image. This
strategy significantly enriched the training dataset
(increasing from 1215 to 4860 images), introducing
a greater variety and number of samples. By
doing so, the model was able to learn more
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Fig. 13. Comparison of flooded areas: a) 25 epochs, b) 50 epochs, c) 75 epochs, d) 100 epochs, e) 150 epochs, f) 200
epochs, g) 300 epochs, and h) 400 epochs. Ground truth samples (left) and model prediction (right)

effectively and improve its precision in detecting
flooded areas.

During the training process, it was observed that
there was a gradual improvement in the model’s
accuracy as the number of epochs increased. This
suggests that the model effectively adapted to the
greater volume of data and refined its parameters,
leading to improved performance.

4.3 Classification Accuracy

During the evaluation of our model, we observed
variations in the values of evaluation metrics.
These variations can be attributed to several
factors, including the complexity and diversity
of the training data, the suitability of the model
architecture or hyperparameter configuration.
Despite these variations, we achieved favorable
results for flood detection, particularly with
increased amounts of data and extended training
epochs. Table 3 presents the following evaluation
metric results for each trained model.

4.4 Map Generation

Flood Maps were created for the years 2019-2023.
These maps concentrate on the northern season,
spanning September, October, and November

each year. Figure 14 displays some generated
maps with water body extensions. The blue pixels
represent permanent bodies of water, while the
red pixels indicate temporary waters associated
with flooding events. Table 4 reveals the territorial
extent of inundated areas.

4.5 Model Comparison with Government Flood
Data

To compare the model’s performance with
government data, maps of flood inundations
provided by the National Center for Disaster
Prevention (CENAPRED) [9] were considered.
The June 2020 flood caused by Tropical Storm
Cristóbal was also considered in the validation
process. The comparison was carried out by
visualizing CENAPRED and model maps, and
quantifying flooded areas in each case. By
comparing the extent and location of the areas
detected by the model with those registered by
CENAPRED, the accuracy and reliability of the
model were verified.

CENAPRED detected 21,196.15 hectares (Ha)
of flooded areas, while our model estimated
15,002.72 Ha. This results in a margin of error
of 29.22% for the model, indicating that our
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Table 3. Comparison of the model DL’s evaluation metrics by epoch number

Class: Permanent water
Epochs

30
Accuracy 91.11%
Recall 90.32%
F1-Score 90.71%

Class: Floods
Epochs

25 50 75 100 150 200 300 400
Accuracy 54.76% 68.28% 71.63% 70.74% 80.49% 85.52% 92.12% 92.14%
Recall 35.83% 56.58% 72.06% 49.39% 77.07% 76.50% 88.42% 86.78%
F1-Score 43.32% 61.88% 71.85% 58.17% 78.74% 80.76% 90.23% 89.38%

a) b) c) d)

e) f) g) h)

Fig. 14. Flood maps: a) September 2019, b) October 2019, c) September 2020, d) October 2020, e) September 2021,
f) September 2022, g) October 2022 and h) November 2023

estimation was approximately 29.22% outside of
CENAPRED’s reported value.

5 Conclusions

The results demonstrate the significance of
satellite missions like Copernicus, which provides

free satellite data for use in various applications,
including environmental monitoring and disaster
prevention. The satellite images used in this
study present some differences: SAR images
can be obtained regardless of weather conditions,
unaffected by events such as rain, clouds, etc.

Optical images are sensitive to cloud cover
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Table 4. Territorial extension of floods (hectares):
2019-2023

Mes 2019 2020 2021 2022 2023

Sep 60.93 1,223.62 120.94 2,680.17 115.94

Oct 84.77 475.12 313.58 2,946.25 120.47

Nov 78.41 8,175.09 66.93 371.07 2,576.57

a)

b)

Fig. 15. Flood maps: a) flood layer provided by
CENAPRED, b) generated by the model

and require specialized techniques to obtain clear
images. Combining satellite images with deep
learning algorithms yields favorable results in flood
detection. The combination of these technologies
and tools enabled the identification of flooded
zones in new datasets. It is worth noting that
the lack of suitable hardware slows down model
training. To improve the model, it requires being
trained with a larger dataset and more epochs.
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