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Juan Muñoz, Benito Rojas∗

Instituto Tecnológico y de Estudios Superiores de Occidente,
Departamento de Matemáticas y Fı́sica,
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Abstract. The decentralized nature of the Bitcoin
blockchain is a cornerstone of its success, yet measuring
true decentralization remains a significant challenge.
Moreover, with the institutional participants entering the
space, there is an increasing necessity for compliance
with global financial regulations, to perform forensic
analysis for fraud-activity, etc., and yet, ensuring the
integrity of a transaction with high probability of it being
validated in a truly decentralized way is not as straight
forward as the media and industry reports communicate.
Our approach consists of two key components. First,
we present an open-source Extract, Transform, Load
(ETL) process tailored for blockchain data, which fosters
improved analytical transparency and aids regulatory
and forensic analysis. Secondly, we apply a graph-based
data structure approach that employs GATs to classify
Bitcoin addresses. This method is chosen for its
robustness in handling relational data and its ability to
focus selectively on informative parts of the transaction
graph. The efficacy of our approach is demonstrated
through controlled experiments, yielding: 10 years of
historical transactions, narrowed to a subset of the
year 2022 thanks to temporal and informational-based
comparisons, producing a classification of wallet
addresses (Exchange, Gambling, Mining, Service) with
accuracy of 92.87%, precision of 89.35%, and recall of
92.87%. As well the accompanying centrality metrics.
Our findings have significant implications for financial
technology, enabling more informed policy decisions and
driving innovation in the field.

Keywords. Graph attention networks, graph machine
learning, blockchain.

1 Introduction

In the evolving landscape of digital finance,
cryptocurrencies represent a paradigm shift,

reshaping traditional monetary exchange and
financial privacy frameworks. Among these,
Bitcoin, as the progenitor, symbolizes the dawn
of decentralized finance with its blockchain
technology. However, the transparency of
Bitcoin’s ledger—while facilitating transaction
traceability—also obscures the identities of
participants, posing a dual-edged sword.

This paper endeavors to penetrate this veil of
anonymity by applying data science techniques,
thereby unveiling transactional behaviors within the
network. This research focuses on the utilization
of Graph Neural Networks (GNNs), which merge
graph theory with machine learning to effectively
interpret complex data structures.

Specifically, Graph Attention Networks (GATs)
are employed to classify Bitcoin addresses by
analyzing the transaction history encapsulated
within a graph structure, thereby allowing the
identification of patterns and address classification.

To address the problem, this study limits the
transaction graph to data solely from 2022, justified
by a comparative analysis over a decade, which
shows that recent data more effectively reflects
the dynamic nature of the network and improves
classification performance.

This limitation points to a broader discussion
on the adaptability of GNNs to evolving data
landscapes and their capacity to capture
nuanced transactional behaviors in Bitcoin’s
rapidly changing environment.

In terms of industry standards and metrics,
the model’s performance is quantified through
accuracy, precision, recall, and F1 score—metrics
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Table 1. Source dataset descriptions

FILE(S) COLUMN DATA TYPE

blocks.parquet block hash object

768,333 rows height int32

1 file (44.28 MB) time int32

tx count int32

transactions parquets txid object

789’789,238 rows block hash object

60 files (48.64 GB) is coinbase bool

vin parquets txid object

2,082’564,677 rows vin txid object

140 files (175.99 GB) vout int32

vout parquets txid object

2,161’264,786 rows value float64

134 files (134.14 GB) n int32

addresses object

Table 2. Base dataset for graph construction

Column Data Type Definition

txid object Unique transaction
identifier

from address object Input address calculated
from previous output

label x object from address label from
labeled dataset

to address object Output address taken from
current txid

label y object to address label from
labeled dataset

value float32 Transaction value

date datetime64 Transaction date

widely recognized in data science for evaluating
classification models.

This paper also introduces an innovative
Extract, Transform, Load (ETL) process using
Bitcoin Core software, significantly enhancing the

practicality and accessibility of blockchain data
analysis for cryptocurrency analytics.

Within the structured framework of a graph,
we conceptualize the Bitcoin transaction
network as follows:

G = (V , E), (1)

where V represents the set of nodes, each
corresponding to a unique Bitcoin address, and
E denotes the set of edges, encapsulating
transactions between these addresses.

The main challenge lies in classifying each
node v ∈ V into predefined categories that
reflect their transactional behavior, based on
the complex and interconnected nature of the
transaction network.

Mathematically, the problem is defined by the
goal of learning a function f : V → C, where
C represents potential classes of transaction
behaviors. This function is modeled using a
Graph Attention Network (GAT), which employs
parameters θ to dynamically weigh the influence
of neighboring nodes, enhancing the precision of
classification. Key assumptions include:

– The graph G is a comprehensive yet static
representation of the Bitcoin network for
a specific time-frame, incorporating temporal
elements through transaction timestamps.

– Feature vectors xv are sufficiently informative
of the nodes’ transactional behaviors and are
presumed accurate.

– Class labels within Vtrain and Vtest are reliable and
reflective of true behaviors, ensuring the model’s
applicability and generalizability.

2 Related Work

Despite the potential for democratizing finance,
Bitcoin’s pseudo-anonymity has also made it a
favored medium for illicit activities. Bitcoin’s design,
which champions privacy and anonymity, has been
exploited for transactions that elude traditional law
enforcement and regulatory oversight.

High-profile cases like the Silk Road
marketplace highlighted the use of Bitcoin in
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Table 3. Statistical summary of dataset for
graph construction

Data Description Value Date
(dd/mm/yy hh:mm:ss)

count 24,165,278 24,165,278

min 0.00000000 08/01/2011 20:35:49

25% 0.00933270 11/04/2013 04:23:50

50% 0.21101490 16/12/2015 12:59:20

75% 1.23777479 31/08/2018 17:29:08

max 87,318.710937 21/12/2022 09:19:52

mean 8.07634491 NaN

std 104.65546417 NaN

Fig. 1. Counts of distinct label values

black markets, where it was used to obfuscate the
transfer of illicit goods [1].

Further complicating the regulatory landscape
are methods like ”mixing” or ”tumbling,” which
obscure the origins of Bitcoin to launder money
from criminal activities. These methodologies pose
significant challenges for financial regulators and
law enforcement agencies in tracing illicit funds.

The advent of graph theory applications in
blockchain analysis, as demonstrated by Fleder
et al. [1], provides a powerful tool for tracing
transactions and understanding the complex web
of transfers, enhancing the ability to track, monitor,
and regulate the flow of Bitcoin across the network.

The work of Weber et al. highlights the
application of Graph Convolutional Networks for
financial forensics, using the Elliptic Data Set to
distinguish between licit and illicit transactions [5].

This study exemplifies the practical applications
of advanced machine learning techniques in
regulatory frameworks, offering robust tools that

can significantly improve the transparency and
integrity of blockchain transactions.

Huang et al. [2]: Huang and colleagues
introduced the BAClassifier, a framework utilizing
GNNs to categorize Bitcoin addresses into
behavioral patterns such as exchanges, mining,
and gambling. Their research is particularly
noteworthy not only for its application of GNNs but
also for its open and extensive dataset of over 2
million real-world Bitcoin addresses.

This paper utilizes the same dataset, enhancing
the continuity and comparability of research
findings in this domain. However, unlike Huang
et al., who leverage a combination of GNNs
with Long Short-Term Memory (LSTM) networks
and Multilayer Perceptrons (MLP) for feature
extraction and classification, this work employs
a more streamlined model focusing solely on
GATs to harness the dynamic and interconnected
nature of transactional data, thus simplifying the
computational process.

Now, while their work is foundational, the
methodology in our paper extends their dataset’s
utility by integrating it into a novel ETL process
developed using Bitcoin Core software. This
approach not only ensures a more transparent
and reproducible data extraction process but also
enhances the accessibility and integrity of the data
used for analysis.

The ability to extract and process raw
transaction data directly from a synchronized node
presents a significant methodological improvement
that democratizes data access and mitigates
reliance on third-party data providers. Pocher et
al. [3]: This study explores the effectiveness of
GCNs and GATs in classifying Bitcoin transactions
for anti-money laundering and counter-financing of
terrorism (AML/CFT).

Their use of the Elliptic Data Set to classify
transactions based on their licitness provides a
valuable parallel to this paper. Both studies
underscore the enhanced capability of GATs over
traditional machine learning methods in identifying
complex relational patterns within transaction data.

This paper differentiates itself by conducting
a comparative year-over-year analysis, revealing
that data from 2022 offers a more centralized
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Table 4. Top 3 nodes by in-degree centrality

Address In-Degree
Centrality

12cgpFdJViXbwHbhrA3TuW1EGnL25Zqc3P 0.6515

17ac9tXHxu1nxdLgLu9WYk7vR8ggFN5GkH 0.0736

1FpTqAX7URD7akZcLvJQRRaXSm4NUbP7ng 0.0444

Table 5. Top 3 nodes by out-degree centrality

Address Out-Degree
Centrality

1HckjUpRGcrrRAtFaaCAUaGjsPx9oYmLaZ 0.0739

151zHjPneqsceawoDFf9sqDRBWU3pd4LgH 0.0466

1L1xSXttdsBAPVjVfyoyCg3RZbdHinT5G5 0.0422

Table 6. Top 3 nodes by betweenness centrality

Address Betweenness
Centrality

12cgpFdJViXbwHbhrA3TuW1EGnL25Zqc3P 0.0871

151zHjPneqsceawoDFf9sqDRBWU3pd4LgH 0.0842

1HckjUpRGcrrRAtFaaCAUaGjsPx9oYmLaZ 0.0080

and interconnected transaction network, which
significantly boosts the model’s performance.

The inclusion of a benchmark analysis
elucidates the reasons behind the varying
effectiveness of GATs across different temporal
datasets, a perspective not covered by Pocher et
al. This insight is crucial for understanding the
impact of network evolution on model efficacy and
can guide future applications of GNNs in financial
forensics. Veličković et al. [4]:

The introduction of Graph Attention Networks
by Veličković et al. provides the technical
foundation for both the aforementioned studies and
this paper. Their development of GATs introduced
a novel approach to node interaction within graphs,
enabling dynamic weighting of node importance,
which enhances the model’s sensitivity to the
subtleties of transactional relationships.

Building on Veličković et al.’s work, this
paper applies GATs specifically tailored to the
nuanced dynamics of the Bitcoin transaction
network. By leveraging a simpler yet highly
effective model configuration, this work achieves
performance metrics that are comparable to
the works referenced in this section, especially

when analyzing the more recent and structurally
distinct 2022 data.

3 Data and Methods

We built an end-to-end ETL process that will
provide us with free and full access to the desired
Bitcoin Blockchain data and set it up in the correct
format for a Data Science analysis. This process
is one of the main contributions of this work, it
leverages the Bitcoin Core v25.0.0 client, one of
the most popular clients, to synchronize a full node
of the Bitcoin network.

Then, through the client’s RPC API, we
extracted all the relevant information required
to generate a dataset representation of the
Bitcoin Blockchain; the complete ETL process is
thoroughly documented in the following GitHub
repository1. The final dataset, showed on Table 1,
built from the genesis of the blockchain up to the
cut-off date for this analysis (Decembrer-2022) has
the following structure:

– Blocks: The Blockchain contains a series
of cryptographically connected Blocks that in
turn contain a verified list of transactions.
These blocks will have two parts: the
header, containing general information about the
contents of the block, and the body, containing
the list of transactions. This table will contain
only the header.

– Transactions: Contains the aforementioned
body of the blocks, a list of the verified
transactions existing in the blockchain.

– Inputs: Nested into each transaction a list of
inputs will provide us with the reference of the
precedence of the bitcoins, which is the most
relevant characteristic of having an open ledger
such as the Bitcoin Blockchain. This table
will only contain non-coinbase transactions,
as coinbase blocks (newly mined blocks)
will have no inputs.

1github.com/benitotrm/database from Bitcoin Core
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Fig. 2. Subgraph visualization of top nodes by
in-degree centrality

– Outputs: The final destination of the bitcoins
to be transferred. Pay-to-public-key transactions
(P2PK) worked from the genesis of the
blockchain (January 3, 2009) up to January
16 of the same year, Pay-to-public-key-hash
transactions (P2PKH) and posterior protocols,
show the destination address as such.

Is important to note that going forward the input
information does not contain the origin address
of the bitcoins, which is a fundamental piece for
the graph that we will build, so this needs to be
discovered by generating a data cross with the
outputs table, as every input is the output of a
previous transaction.

This process will provide us with the correct
mapping of the ‘origin address’ and ‘destination
address’. With this completed mapping we use
the labeled dataset to safely add the labels to
both the origin and destination addresses of each
transaction and filter only the transactions of the 2
million labeled addresses.

3.1 Graph Construction

In the process of constructing the transaction
graph for analysis, several pivotal decisions and
pre-processing steps were taken:

– Temporal Scope Restriction: Given the
computational challenges associated with
processing the entire dataset and the observed
predictive value of recent transactions, the graph
G = (V ,E,W ) is constructed using transactions
from a specific, recent time-frame, specifically
between 2021-12-21 and 2022-12-21.

This approach ensures a focus on the most
relevant and manageable subset of data.

– Label Encoding: Let L be the set of all labels
corresponding to Bitcoin address behaviors, and
let ϕ : L → {0, 1, . . . , |L| − 1} be the label
encoding function that maps each label to a
unique integer.

– Graph Definition: The graph is defined
as follows:

– V is the set of nodes, each representing a
unique Bitcoin address (7,990 nodes for the
selected time-frame).

– E is the set of edges, each corresponding to a
transaction between addresses. An edge e ∈
E is a tuple (u, v) where u, v ∈ V and u ̸= v
(86,789 nodes for the selected time-frame).

– W is the set of edge weights, derived
from a time-decay function to emphasize
recent transactions, introducing a temporal
dimension to the graph.

– Time-decay Weighting: A key innovation in
our approach is the introduction of a time-decay
weight wuv for each edge (u, v), calculated as
wuv = e(−δ·t), where δ = 0.01 is the decay rate
and t is the time elapsed since the transaction.

This weighting scheme prioritizes recent
transactions, reflecting their greater relevance to
the address behaviors we seek to model.

– Node Feature Preparation: Each node
v ∈ V is associated with a feature vector
xv ∈ Rd, summarizing transactional attributes,
including the total value of all incoming and
outgoing transactions for each address,
providing a snapshot of the address’s
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transactional behavior.

– Node Label Assignment: A subset of nodes
V ′ ⊆ V with known behaviors are labeled
according to the encoding process, where for
each v ∈ V ′, a label yv is assigned such
that yv = ϕ(lv), with lv being the label from
the dataset.

– Graph Data Representation: The
finalized graph data structure G = (X, E,
W , Y ) incorporates:

– X ∈ R|V |×d as the matrix of node features.

– E ⊂ V × V as the set of transactional edges.

– W ∈ R|E| as the vector of time-decay
weighted edge weights.

– Y ∈ {0, 1, . . . , |L| − 1}|V ′| as the vector of
encoded node labels.

The graph representation should be extended
to tensor form to facilitate efficient computation in
the GNN model. For instance, the node feature
matrix X ∈ R|V |×d and the edge weight vector W ∈
R|E| can be encapsulated within a higher-order
tensor T ∈ R|V |×|V |×d, where each element T i, j, :

Represents the feature vector of the node i if
there is an edge from node i to node j, weighted
by the edge weight wij .

This tensorial representation is particularly
beneficial when extending the model to include
multiple types of relations or temporal dynamics
where a third dimension could represent time steps
or different relation types between nodes.

3.2 Centrality Metrics

We employed the following: In-Degree Centrality,
Out-Degree Centrality, and Betweenness
Centrality. These metrics are the most relevant for
a directed graph and our use case.

– In-degree Centrality quantifies the number
of incoming edges to a node, indicating its
popularity or receiver status within the network.
Mathematically, it is defined for a node v as:

Fig. 3. Training loss and test accuracy

Fig. 4. Precision, recall, and F1 score

Fig. 5. Average maximum probability over epochs
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Cin(v) =
|{u ∈ V : (u, v) ∈ E}|

|V | − 1
, (2)

where V is the set of nodes, and E is the set of
edges in the graph.

– Out-degree Centrality measures the number
of outgoing edges from a node, reflecting its
influence or broadcaster role. It is given by:

Cout(v) =
|{w ∈ V : (v,w) ∈ E}|

|V | − 1
. (3)

– Betweenness Centrality captures the extent to
which a node lies on the shortest paths between
other nodes, serving as a bridge within the
network. It is calculated as:

CB(v) =
∑
s,t∈V

σst(v)

σst
, (4)

where σst is the total number of shortest paths from
node s to node t and σst(v) is the number of those
paths passing through node v.

3.3 GNN Model Architecture

Velickovic et al. introduced Graph Attention
Networks (GATs), which are innovative
convolutional neural networks tailored for
graph-structured data, utilizing masked
self-attentional layers. These graph attentional
layers are designed to be computationally
efficient, avoiding expensive matrix operations
and enabling parallelization across all graph
nodes. This efficiency facilitates the implicit
assignment of varying importances to nodes within
a neighborhood, regardless of the neighborhood’s
size, and circumvents the need for complete graph
structure knowledge beforehand.

Such capabilities address several theoretical
limitations of prior spectral-based methods.
Furthermore, models incorporating these attention
mechanisms have demonstrated superior or
comparable performance to state-of-the-art results
in four well-known node classification benchmarks,
encompassing both transductive and inductive

tasks, and including scenarios with entirely unseen
graphs during testing [4].

The GAT includes an attention mechanism that
dynamically assigns significance to the features of
neighboring nodes, which enhances the model’s
capacity to discern relevant transactional patterns,
as show in Equation 5:

αij = softmaxj

(
LeakyReLU

(
aT [Whi||Whj ]

))
, (5)

h′
i = σ

 ∑
j∈N (i)

αijWhj

 , (6)

where:

– hi represents the feature vector of node i.

– αij denotes the attention coefficient between
node i and node j.

– a is a learnable weight vector.

– W is a transformation weight matrix.

– σ represents the activation function, and

– || represents concatenation.

The softmax function is applied across all
neighbors j of node i to ensure the comparability
of the coefficients. The inclusion of the LeakyReLU
nonlinearity, defined as:

LeakyReLU(x) =

x if x > 0,

αx if x ≤ 0,
(7)

where x is the input and α is a small constant,
serves multiple purposes. Primarily, it prevents the
occurrence of ’dead neurons’ by allowing a small,
non-zero gradient when the unit is inactive (x ≤ 0),
thus mitigating the dying ReLU problem.

This characteristic is crucial for maintaining
gradient flow during backpropagation, especially in
the computation of attention scores eij , which are
sensitive to the sign of their input.

Furthermore, the LeakyReLU ensures that the
attention mechanism remains responsive to both
positive and negative inputs, enriching the model’s
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Fig. 6. Evolution of the Bitcoin network size and average transaction values from 2013 to 2022

Fig. 7. Network metrics highlighting changes in average degree, path length, and density from 2013 to 2022
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ability to differentiate between various transactional
relationships. Softmax normalization, defined as:

αij =
exp(eij)∑

k∈Ni

exp(eik)
, (8)

Applies to the attention coefficients,
transforming them into a distribution over the
neighbors of each node. This process not
only makes the attention coefficients αij across
different nodes’ neighborhoods comparable but
also accentuates the model’s focus on the most
relevant features by amplifying the differences
among attention scores. Consequently, GATs can
prioritize information from neighbors deemed most
pertinent for the classification task at hand.

3.4 Model Training

The training and evaluation methodology entails
a structured sequence designed to optimize
the model’s performance on classifying Bitcoin
transactions. The process unfolds as follows:

1. The graph data is partitioned into training,
validation, and test subsets, adhering to a
specified ratio to balance learning efficacy and
evaluation integrity. This partitioning ensures
diverse representation across the subsets for
comprehensive learning and assessment.

2. Utilizing the GAT model, node features
propagate through the network, leveraging
the attention mechanism to dynamically weight
the importance of neighboring nodes. This
process is instrumental in refining the output
predictions for each node, focusing on relevant
transactional patterns.

3. The loss for nodes in the training subset is
calculated using the negative log-likelihood loss
function, formulated as:

L = −
∑

i∈train indices

yi log(pi), (9)

where yi denotes the true labels, and pi represents
the predicted probabilities for the nodes in the
training set.

Table 7. Performance comparison between different
graph representation models

Method Model Precision Recall F1-score

GNNs

GFN (Huang et al.) 0.9815 0.9725 0.9769

Diffpool 0.9218 0.9315 0.9299

GCN 0.9534 0.9461 0.9514

GAT (ours) 0.8935 0.9287 0.9017

MLs

LR 0.2208 0.3477 0.2684

MLP 0.1011 0.2500 0.1440

SVM 0.8787 0.5503 0.5574

Bernoulli NB 0.5078 0.3434 0.3047

Gaussian NB 0.5342 0.4418 0.3999

KNN 0.8661 0.8553 0.8598

Decision Tree 0.9298 0.9178 0.9236

GBDT 0.9596 0.9575 0.9585

XGBoost 0.9340 0.9321 0.9329

4. Backpropagation is employed to update
the model parameters (θ), aiming to
minimize the loss and enhance the model’s
predictive accuracy.

5. The model’s efficacy is evaluated on the test
subset by determining the accuracy, defined as
the ratio of correctly predicted labels to the total
number of test nodes:

Accuracy =

∑
j∈test indices

1(ŷj = yj)

|test indices|
, (10)

where ŷj is the predicted label, yj is the true label,
and 1 is the indicator function.

Additionally, the integration of the Optuna
framework for hyperparameter optimization
plays a pivotal role in fine-tuning the GAT
model’s configuration.

This process involves defining a search space
for key parameters, such as the number of hidden
units, dropout rate, learning rate, and weight decay,
and iteratively evaluating the model’s performance
across a range of trials to identify the optimal
parameter set.

The objective function, centered around
maximizing the accuracy on a validation
subset, guides the selection of hyperparameters
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Fig. 8. Performance metrics of the GAT model applied to yearly Bitcoin transaction networks

that contribute to the model’s generalizability
and effectiveness.

4 Results and Discussion

4.1 Centrality Metrics

The tables below enumerate the top three nodes
according to each centrality metric. The focus on
the top three nodes is due to their significantly
higher centrality values, indicating a dominant role
in the network’s transaction dynamics. Specifically,
Figure 2 incorporates the top 100 nodes based
on In-Degree centrality to produce a coherent and
manageable graph visualization.

This approach avoids over-saturation of the
visual representation, which is a standard practice
in graph theory when dealing with large and
interconnected networks.

4.2 Model Performance

The model’s training was conducted using
hyperparameters optimized via Optuna, resulting
in the following configuration: 64 hidden units, a
dropout rate of 0.1478, a learning rate of 0.0835,
and a weight decay of 0.000156. The outcomes
after training for 500 epochs are encapsulated in
the images shown in Figures 3, 4, and 5.

– Final Training Loss: 0.3273.

– Test Accuracy: 0.9287.

– Precision: 0.8935.

– Recall: 0.9287.

– F1 Score: 0.9017.

– Average Maximum Probability: 0.92.

These metrics are visualized in mentioned
Figures, which depicts the training loss and test
accuracy (3), precision, recall, and F1 score (4),
and the average maximum probability over epochs
on (5). Each graph represents the progression of
the respective metrics over the training period.
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4.3 Ten-year Benchmark

This section illustrates a decade-long analysis of
the Bitcoin transaction network through various
graphical representations. Each figure is detailed
below to guide interpretation without drawing any
conclusions. Figure 6 displays three key metrics:
the number of nodes and edges within the Bitcoin
network over the years, and the average value of
transactions per year.

The lines indicate the growth or decline of
these metrics, with scales provided on the left and
right y-axes respectively. Figure 7 tracks three
network characteristics: average degree, average
path length, and density of the network each year.
These lines represent the connectivity, efficiency,
and compactness of the network respectively, with
detailed yearly metrics shown on the graph.

Figure 8 presents the annual performance
metrics—precision, recall, and F1 score—of the
GAT model when applied to the Bitcoin transaction
networks from 2013 to 2022. The graph
plots each metric’s progression over the years,
providing a visual representation of the model’s
performance trends.

The decision to limit the graph construction to
data from the year 2022 can be substantiated,
and the results better understood, by an analytical
study of the network’s evolution over the past
decade. The supporting evidence lies within the
structural dynamics of the Bitcoin network, as
revealed through a detailed analysis of network
size and metrics.

The performance of our Graph Attention
Network (GAT) model, as detailed in Table 7,
offers insightful comparisons with both traditional
ML models and advanced GNNs, reflecting its
capabilities within graph-based representations of
Bitcoin transactions. Our model’s architecture
and operational framework have been intentionally
simplified and focused on a single year of data.

This design choice contrasts with other GNNs
that may utilize more complex or multi-year
datasets. Despite its straightforward structure,
our model achieves a high recall of 0.9287
and an F1-score of 0.9017, demonstrating
effective transaction detection capabilities. This
performance is particularly notable given the

model’s streamlined nature, which not only
facilitates understanding and implementation but
also enhances the replicability of our research.

The high recall indicates that our model
effectively minimizes false negatives—critical for
applications requiring stringent security measures
such as financial transaction monitoring. Although
the precision of 0.8935 does not surpass all other
GNN models, it remains competitive, especially
when considering the model’s reduced complexity
and narrower data scope.

Moreover, the consistent high average
maximum probability across training epochs
reinforces the reliability of the model’s outputs.
This metric, crucial in a softmax output framework,
confirms that the model’s predictions are
statistically robust, not merely the result of
overfitting or underfitting.

Our approach prioritizes transparency and
ease of replication, from the comprehensive ETL
process to the clear delineation of the modeling
steps. This not only supports the scientific validity
of our findings but also provides a template for
future research, encouraging other scholars and
practitioners to replicate and extend our work.
The model’s adaptability, coupled with its robust
performance, offers significant insights into the
potential for using simplified GNN models in
complex transaction networks.

4.4 Temporal Scope

The decision to limit the graph construction to
data from the year 2022 can be substantiated,
and the results better understood, by an analytical
study of the network’s evolution over the past
decade. The supporting evidence lies within the
structural dynamics of the Bitcoin network, as
revealed through a detailed analysis of network
size and metrics. A descending trend in the
number of nodes and edges over the years was
observed (Figure 6), with the 2022 graph exhibiting
a smaller yet more value-concentrated network.

This trend indicates a move towards higher
transaction values being processed through a
reduced number of addresses, resulting in
a denser and more interconnected network
structure. The 2022 network demonstrates an
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increase in average degree and network density
(Figure 7), indicating a more interconnected
graph structure with nodes having more direct
connections on average.

This increased degree of interconnectivity
within a smaller network aligns with the observed
enhancement in model performance metrics,
suggesting that the more recent and concentrated
network structure provides a potent ground for
the application of GAT. The optimized model
performance in the 2022 network is further
corroborated by the re-training of the model
using all previous yearly graphs and plotting
precision, recall, and F1 score metrics. These
metrics collectively suggest that the GAT model
is particularly well-suited to a network that has
evolved to be more transactionally value-dense
and concentrated in influence.

The distilled analysis leads to a better
explanation for the selection and results of
the 2022 graph as the foundation for the
GAT model application within this study. The
pronounced concentration of transactional value
and connectivity in the latest graph provides an
enriched dataset that likely contributes to the
improved performance of the classification model.

Future research may delve into the implications
of these evolving network characteristics,
particularly examining the impact of increasing
concentration on the efficacy of transaction pattern
analysis tools and their utility in monitoring and
regulating digital currency flows.
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