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Abstract. Image processing techniques frequently
employ contrast enhancement to emphasize lighting,
brightness, and finer details, facilitating better
visualization and rendering of images suitable for
various applications and research endeavors. The
effectiveness of these techniques significantly influences
task performance in fields reliant on image analysis,
with disciplines like computer vision particularly reliant
on precise feature detection. This paper introduces an
innovative approach to contrast enhancement using
a dual-gamma correction function, their parameters
optimized through metaheuristics. By examining
the interplay between the dual-gamma correction
function and prominent metaheuristic algorithms such
as a Genetic Algorithm (GA), a Differential Evolution
(DE) algorithm, and a Particle Swarm Optimization
(PSO) algorithm, the goal is to refine pixel values and
accentuate features in low-contrast images. The method
is subjected to a comprehensive evaluation using a
publicly available dataset and established performance
metrics, ensuring the reliability and validity of the
results. The results of this study are promising and
have significant practical implications. The dual-gamma
correction function enhances image contrast and adapts
swiftly to various metaheuristics. This research is a
crucial step towards advancing contrast enhancement
methodologies, offering a practical and effective solution
for improving image quality across multiple applications.

Keywords. Image contrast enhancement, gamma
correction function, metaheuristics.

1 Introduction

Enhancing contrast is important across multiple
domains, including image processing, pattern
recognition, and computer vision.

This process enables us to enhance image
clarity, rendering them more apt for subsequent
analysis and manipulation. In recent years,
advanced optimization techniques utilizing
metaheuristics have emerged for efficiently
configuring transformation function parameters in
image contrast enhancement.

Hoseini et al. [12] proposed a hybrid algorithm
integrating Genetic Algorithm (GA) [10], Ant
Colony Optimization (ACO) [9], and Simulated
Annealing (SA) [18], enhancing image contrast
while preserving natural appearance.

Kallel et al. [14] enhanced dark Computed
Tomography scans using a Discrete Wavelet
Transform-Singular Value Decomposition
(DWT-SVD) approach followed by Adaptive
Gamma Correction (AGC), suitable for low-contrast
images. Applied the Artificial Bee Colony (ABC)
algorithm, Chen et al. [6] introduced a novel
objective function to evaluate enhanced image
quality, resulting in enhanced image contrast.

Kanmani and Narasimhan [16], enhanced
grayscale image contrast with Particle Swarm
Optimization (PSO), revealing hidden details, ideal
for nighttime imagery. Kamoona et al. [15]
proposed an enhanced cuckoo search algorithm
for automatic contrast enhancement, targeting
Local/Global Enhancement transformation (LGE).

Other studies have introduced contrast
enhancement techniques with automated
parameterization. For instance, Surya et al. [27]
utilized a GA and a fuzzy intensification operator,
while Guraksin et al. [11] employed wavelet
transform and the Differential Evolution (DE)
algorithm. Malik et al. [20] enhanced images using
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the sigmoid function and PSO for maximizing
information content while preserving intensity
through gamma correction. Rao et al. [23]
enhanced magnetic resonance imaging contrast
using modified histogram equalization with
Fuzzy-Improved PSO (FIPSO), achieving notable
improvements in brightness and contrast. Ahmed
et al. [2] presented a method to enhance grayscale
images using the Barnacles Mating Optimizer
(BMO) [26] algorithm, aiming to achieve optimally
equalized histograms.

Wang et al. [28] introduced a correction method
inspired by the illumination reflection model,
employing adaptive local gamma transformation
and color compensation to enhance image
brightness, especially beneficial for low-light
images. Acharya et al. [1] proposed an adaptive
image enhancement technique using a GA,
employing a novel histogram subdivision approach
with exposure and optimal thresholds to preserve
brightness and minimize information loss.

Khan et al. [17] utilized a metaheuristic
algorithm inspired by chimpanzee behavior
for contrast enhancement, integrating Bilateral
Gamma Correction (BGC) [4] to improve their
approach. Motivated by the limitations of the
traditional beta function in selecting image
enhancement parameters effectively, Braik
and Malik [4] introduced a hybrid approach,
combining the Whale Optimization Algorithm
(WOA) [21] with the Chameleon Swarm
Algorithm (CSA) [5, 4] to create the Hybrid
Whale Optimization Algorithm (HWOA).

This method adapts parameters of the
incomplete beta function for enhanced image
quality. Recently, Pérez et al. [22] introduced a
method for enhancing image contrast utilizing a
hyperbolic tangent sigmoid function. Integrated
with DE, GA, and PSO algorithms, this approach
aims to enhance pixel intensity in low-contrast
images through nature-inspired metaheuristics.

This study introduces a transformation function
based on the gamma correction function,
specifically tailored for contrast enhancement.
The function’s effectiveness is systematically
evaluated by integrating it into three prominent
bio-inspired metaheuristic algorithms:

GA, DE, and PSO. Experimental results
validate the practicality and efficiency of
this approach across diverse color images,
demonstrating its adaptability and versatility.
The successful integration of the proposed
dual-gamma correction function into established
algorithms highlights its potential for enhancing
contrast in real-world image processing tasks.

The paper is organized by Section 2 present
the general background to understand the study,
Section 3 describes the proposed transformation
function. Section 4 present the experimental study
conducted to evaluate the proposed transformation
function. Section 5 exposes an analysis of results.
Finally, Section 6 provides the conclusions and
possible paths for future investigations.

2 General Background

2.1 Contrast

The contrast of an image can be defined as
the discrepancy between the intensity values
of the pixels that compose it. An image
with more pronounced contrast exhibits abrupt
transitions between its different areas, which
is often preferable aesthetically or in terms of
comprehension. A high-contrast image tends to
stand out and create a dramatic effect, contributing
to its visual quality. On the other hand, a
low-contrast image tends to be smoother, with
minimal variations between its areas. In summary,
contrast is closely linked to the ability to perceive
details and variations in pixel intensity levels.

2.1.1 Sum Edge Intensity

The Sum of Edge Intensity (SEI) is employed
to gauge areas within images exhibiting abrupt
transitions between adjacent regions. This involves
summing the disparities among neighboring pixels
along the detected edges, a process facilitated
by edge detection algorithms such as Sobel or
Canny. The resulting value signifies the total
intensity change along the edges. A higher
SEI value indicates greater contrast within the
image, leading to enhanced visual perception of its
details and features.
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2.1.2 Count of Edge Pixels

Through Count of Edge Pixels (CEP), it’s possible
to identify and count the pixels that comprise the
edges in an image, providing a numerical measure
of the number of edges present.

This calculation can be performed using
edge detection techniques such as convolution
operators (such as Sobel or Roberts), thresholding
algorithms, or more advanced methods such as the
Canny algorithm. A higher number of edges and
intensity transitions in the image result in a higher
count of pixel edges. This metric is also used to
assess the quality and sharpness of an image.

2.1.3 Entropy of Image

Entropy provides a measure of the informational
content in an image to evaluate the distribution of
intensity levels present within it.

It describes the degree of uncertainty or
randomness in an image. The more information
the image contains, the higher its quality will be.
The entropy of an enhanced image is defined as:

EI =


−

255∑
j=0

hj log2(hj), if hj ̸= 0,

0, otherwise,

(1)

where, j is the number of gray levels and hj is the
probability of occurrence of the gray level j, which
is calculated as the frequency of the gray level j
divided by the total number of pixels in the image.

2.2 Quality Indicators in Digital Images

Certain metrics are essential for assessing the
quality of enhanced images. Most of these metrics
compare the original image with the processed
one based on various parameters detailed in
this section.

2.2.1 Peak Signal-to-noise ratio (PSNR) [3]

The PSNR is a quantitative metric used in
image enhancement to compare pixel information
between two images, and it is defined as:

PSNR = 20 log
255

RSME
. (2)

Such that:

RMSE =

√√√√ 1

Ro×Co

Ro∑
i=1

Co∑
j=1

(Io(i, j)− Ie(i, j)), (3)

where Ro and Co define the size of the image, Io is
the original image, and Ie is the enhanced image.

2.2.2 Structural Similarity Index Measure
(SSIM) [25]

The SSIM is a metric that evaluates image quality
by analyzing luminance, contrast, and structure. It
measures the resemblance between a reference
image and another one, providing insights into
perceptual quality and fidelity. The formulation of
this metric is described as follows:

SSIM = (2µIoµIe+C1)(2σIoIe+C2)
((µ2Io+µ2Ie)+C1)((σ2Io+σ2Ie)+C2)

. (4)

Such that:

σ(IoIe) =
1

Co−1

Co∑
i=1

(Ioi + µIo)(Ie + µIe), (5)

where C1 =(K1L)
2 and C2 = (K2L)

2 are two
variables used to stabilize the division with a
weak denominator, K1 and K2 are two arbitrary
constants with values 0.01 and 0.03 respectively.

µIo is sample mean of the pixels of the original
image Io and µIe is sample mean of the pixels of
the enhanced image Ie, µ2Io is the variance of
Io, and µ2Ie is the variance of Ie, σ(IoIe) is the
covariance of (IoIe).
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2.2.3 Relative Enhancement Contrast
(REC) [13]

The REC is a metric that measures the contrast
difference between an original image and its
enhanced version. It is calculated as the contrast
ratio in the original image to that in the enhanced
image. REC provides valuable numerical insight
into how the enhancement process alters or
intensifies visual distinctions within the image. This
metric is calculated as follows:

REC =
CIo

CIe

, (6)

where CIo and CIe is computed using Eq. 7:

CIo = 20 log

 1
RoCo

 Ro∑
i=1

Co∑
j=1

I2o (i, j)

 Ro∑
i=1

Co∑
j=1

Io(i, j)

2
 , (7)

where Ro and Co define the size of the image, Io is
the original image, and Ie is the enhanced image.

3 Proposed Approach

This section presents the proposed transformation
function, which relies on a dual-gamma correction
function for contrast enhancement, and the fitness
function utilized in our experimental study.

3.1 Transformation Function

In specialized literature, several researchers have
embraced a common practice involving the use of
a transformation function to adjust pixel intensity
levels in an original image to enhance its contrast.
Various methodologies employing a piecewise
linear transformation function have been applied,
as evidenced in studies conducted by Russo [24]
and Ling et al. [19].

Both approaches allow for the optimization of
parameters within the transformation functions
to enhance contrast in low-contrast images. The
altered pixels may exhibit increased prominence
upon applying the transformation function,
potentially exceeding the permissible range
of intensity levels or even taking on negative
values, if applicable.

Addressing this challenge necessitates
replacing the piecewise curve with a continuous
curve. Gamma correction can be used to improve
the visual quality of images by adjusting their
brightness and contrast. This nonlinear function
involves applying a power-law relationship to the
pixel values of an image. Considering images with
Λ intensity levels, the gamma correction function is
stated as follows:

f(x) = Λ
( x

Λ

)γ

, (8)

where x is the input pixel value before gamma
correction, and γ > 0 is the gamma value. Gamma
correction has the property of darkening images
when γ > 1 and lightening when 0 < γ < 1.
Furthermore, it is easy to notice that with γ = 1, the
transformation function corresponds to the identity
function. Fig. 1a illustrates the γ correction function
for different γ values.

This investigation introduces a transformation
function, the dual-gamma correction with adaptive
parameters, specifically designed for contrast
enhancement. The proposed function is
based on the gamma correction function and
considers the properties of darkening and
lightening images. These two properties are
utilized by defining the following dual-gamma
correction function:

f(x,α, γ1, γ2) =


α
(x

α

)γ1

, if x ≤ α,

(Λ− α)

(
x− α

Λ− α

)γ2

+ α , otherwise,

(9)

where α ∈ [0, Λ], γ1 > 1, 0 < γ2 < 1, and Λ denotes
the intensity levels. In this study α ∈ [ 13Λ,

2
3Λ],

γ1 ∈ (1, 10), and γ2 ∈ (0, 1). Fig. 1b shows curves
generated by the dual-gamma correction using
different values for γ1 and γ2. The abscissa axis
represents the α value, which defines the inflection
point where concavity or convexity changes.

The shape of the dual-gamma correction
function is very similar to a sigmoid function, as
seen in the transformation functions presented
in references [20, 22]. However, a notable
advantage of the dual-gamma correction function
is its flexibility in controlling the curvature of the
concave and convex parts, which do not have to
be symmetrical as in a traditional sigmoid function.
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(a)

(b)

Fig. 1. Different configurations of gamma correction
functions: (a) Standard gamma correction function and
(b) Dual-gamma correction function

3.2 Fitness Function

This section presents the fitness evaluation
function used as a strategic measure to
assess enhanced image quality. Specialized
literature shows that researchers leverage various
image-related factors when employing optimization
algorithms to gauge the effectiveness of image
enhancements. In this study, we have defined
the fitness function considering different common
aspects of the image, which contribute to the
overall evaluation of the enhanced image quality.
For a detailed understanding of these indicators,
refer to Section 2.2.

Below, we detail the main image-related factors
that are integrated into the fitness function:

– Sum Edge Intensity (SEI) Levels of Pixels.
This factor includes the sum of the intensity
levels of the pixels that are related to the edges.

– Count of Edge Pixels (CEP). This factor
measures the number of pixels involved in
defining the edges.

– Entropy of Image (EI). In the context of
images, entropy serves to assess the amount of
overall information or uncertainty present in the
distribution of intensity levels.

These meticulously chosen characteristics
encompass fundamental aspects of image
quality, and their inclusion in the fitness
function establishes a comprehensive method
for evaluating the effectiveness of image
enhancement strategies.

By systematically analyzing these factors, the
aim of the proposed methodology is to capture
and measure various elements that collectively
contribute to the visual fidelity and richness of
the enhanced image. These considerations
collectively contribute to defining the following
fitness function [22]:

F (IE) = log(log(SEI))× CEP×EI, (10)

where IE is the enhanced image. It is noteworthy
that this versatile fitness function can be adopted
by any bioinspired metaheuristic. In the following,
the performance of the proposed transformation
function is examined, highlighting its benefits in
enhancing contrast in digital images.

4 Experimental Study

This section details the experiments conducted
and the visual and numerical outcomes obtained
by implementing three optimization algorithms:
Genetic Algorithm (GA), Differential Evolution
(DE), and Particle Swarm Optimizer (PSO), for
enhancing image contrast.
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Original image GA DE PSO

kodim08

kodim13

kodim16

kodim19

kodim22

kodim23

kodim24

Fig. 2. Comparison of reference and enhanced images obtained by applying the optimization algorithms: GA, DE, and
PSO to the images kodim08, kodim13, kodim16, kodim19, kodim22, kodim23, and kodim24

1. Experimental setup: The study tested the
proposed transformation function on color
images from the Kodak dataset [7], which
have a resolution of 756×512 pixels. Three

performance metrics were used to assess
the algorithms: Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index (SSIM), and
Relative Enhancement Contrast (REC).
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Table 1. Results of the PSNR, SSIM, and REC metrics obtained by applying the GA, DE, and PSO algorithms. The
best results for each image for each metric are in bold

Image
GA DE PSO

PSNR SSIM REC PSNR SSIM REC PSNR SSIM REC

Kd1 16.8572 (0.1905) 0.7163 (0.0117) 0.9992 (0.0027) 16.8764 (0.1004) 0.7170 (0.0079) 0.9978 (0.0013) 16.8816 (0.1542) 0.7183 (0.0098) 0.9995 (0.0021)

Kd2 18.8682 (0.1568) 0.5431 (0.0150) 1.2961 (0.0153) 18.8755 (0.0199) 0.5433 (0.0009) 1.2959 (0.0002) 18.9142 (0.1610) 0.5490 (0.0199) 1.2893 (0.0216)

Kd3 17.1827 (0.3300) 0.7527 (0.0101) 0.9779 (0.0020) 17.1719 (0.1316) 0.7579 (0.0097) 0.9800 (0.0018) 17.1709 (0.2997) 0.7534 (0.0104) 0.9787 (0.0027)

Kd4 17.1640 (0.6314) 0.6294 (0.0410) 1.0382 (0.0118) 17.1949 (0.6740) 0.6347 (0.0431) 1.0355 (0.0109) 16.9465 (0.7188) 0.6160 (0.0472) 1.0421 (0.0131)

Kd5 17.8152 (0.2043) 0.8332 (0.0068) 0.9643 (0.0011) 17.9333 (0.0195) 0.8392 (0.0024) 0.9640 (0.0004) 17.8614 (0.1361) 0.8330 (0.0032) 0.9649 (0.0009)

Kd6 21.0320 (0.4501) 0.8409 (0.0125) 1.0220 (0.0015) 20.8272 (0.4662) 0.8353 (0.0131) 1.0227 (0.0015) 20.9671 (0.0337) 0.8387 (0.0019) 1.0228 (0.0001)

Kd7 16.4192 (0.2633) 0.7374 (0.0094) 1.0057 (0.0028) 16.4762 (0.2519) 0.7402 (0.0095) 1.0056 (0.0020) 16.4901 (0.2377) 0.7434 (0.0116) 1.0046 (0.0026)

Kd8 21.3445 (0.5724) 0.8923 (0.0082) 0.9870 (0.0017) 21.8180 (0.5349) 0.8993 (0.0066) 0.9884 (0.0018) 21.1042 (0.2993) 0.8882 (0.0035) 0.9865 (0.0011)

Kd9 17.3415 (0.1500) 0.7664 (0.0058) 1.0153 (0.0051) 17.3000 (0.0911) 0.7647 (0.0031) 1.0158 (0.0051) 17.3156 (0.1731) 0.7648 (0.0061) 1.0159 (0.0048)

Kd10 17.4971 (0.3275) 0.7749 (0.0139) 1.0065 (0.0031) 17.3092 (0.2557) 0.7679 (0.0111) 1.0072 (0.0026) 17.4651 (0.3551) 0.7744 (0.0147) 1.0066 (0.0027)

Kd11 16.8146 (0.1360) 0.8106 (0.0045) 0.9645 (0.0008) 16.8827 (0.0762) 0.8121 (0.0013) 0.9648 (0.0005) 16.8046 (0.0565) 0.8159 (0.0029) 0.9621 (0.0014)

Kd12 17.5359 (0.1528) 0.7720 (0.0054) 1.0193 (0.0007) 17.2299 (0.2548) 0.7605 (0.0094) 1.0206 (0.0012) 17.0592 (0.3415) 0.7543 (0.0125) 1.0219 (0.0017)

Kd13 18.4690 (0.2950) 0.8041 (0.0059) 0.9823 (0.0017) 18.2290 (0.1151) 0.7992 (0.0016) 0.9812 (0.0007) 18.7616 (0.0000) 0.8109 (0.0000) 0.9836 (0.0000)

Kd14 16.9455 (0.4362) 0.8447 (0.0100) 0.9604 (0.0022) 16.9697 (0.3566) 0.8451 (0.0063) 0.9605 (0.0026) 16.7480 (0.3698) 0.8417 (0.0080) 0.9584 (0.0027)

Kd15 36.2734 (3.5692) 0.9816 (0.0140) 1.0059 (0.0025) 33.8334 (1.7601) 0.9763 (0.0069) 1.0075 (0.0013) 32.8756 (1.6239) 0.9682 (0.0067) 1.0082 (0.0012)

Kd16 19.0342 (0.4507) 0.8749 (0.0101) 0.9842 (0.0025) 19.1408 (0.1485) 0.8820 (0.0057) 0.9830 (0.0013) 19.0946 (0.3325) 0.8737 (0.0095) 0.9852 (0.0025)

Kd17 20.2732 (0.3743) 0.9273 (0.0043) 0.9646 (0.0015) 20.0042 (0.3447) 0.9244 (0.0040) 0.9636 (0.0013) 20.8274 (0.0000) 0.9364 (0.0000) 0.9656 (0.0000)

Kd18 17.0024 (0.1752) 0.7783 (0.0039) 0.9818 (0.0009) 16.9565 (0.1747) 0.7773 (0.0039) 0.9815 (0.0009) 16.9955 (0.1607) 0.7778 (0.0033) 0.9819 (0.0009)

Kd19 18.5745 (0.2793) 0.7903 (0.0057) 0.9983 (0.0016) 18.7050 (0.0026) 0.7915 (0.0001) 0.9992 (0.0000) 18.4790 (0.2820) 0.7884 (0.0071) 0.9980 (0.0013)

Kd20 31.2692 (0.5440) 0.9663 (0.0042) 1.0037 (0.0002) 31.2247 (0.2119) 0.9665 (0.0020) 1.0037 (0.0001) 31.2197 (3.8982) 0.9614 (0.0073) 1.0040 (0.0007)

Kd21 17.5537 (0.6488) 0.8136 (0.0162) 0.9951 (0.0081) 17.2701 (0.0084) 0.8205 (0.0005) 0.9914 (0.0001) 18.0753 (0.9235) 0.8089 (0.0191) 0.9998 (0.0101)

Kd22 18.4110 (0.3396) 0.7488 (0.0188) 1.0102 (0.0022) 18.2402 (0.2036) 0.7405 (0.0115) 1.0110 (0.0013) 18.4090 (0.1609) 0.7493 (0.0098) 1.0101 (0.0018)

Kd23 18.5391 (0.3745) 0.7628 (0.0157) 1.0045 (0.0029) 18.9329 (0.1260) 0.7769 (0.0019) 1.0055 (0.0007) 18.5644 (0.3896) 0.7596 (0.0258) 1.0050 (0.0035)

Kd24 17.5558 (0.2629) 0.7858 (0.0071) 0.9824 (0.0020) 17.5020 (0.2662) 0.7828 (0.0080) 0.9827 (0.0015) 17.2672 (0.2639) 0.7814 (0.0094) 0.9785 (0.0024)

The GA utilized SBX and PBM operators [8],
with the (µ + λ) selection scheme for survival
selection. GA parameters included a crossover
probability (Pc) of 0.9 and a mutation probability
(Pm) of 0.5. The DE algorithm was executed
with a differential weight F of 0.9 and a
crossover probability Cr of 0.5.

The PSO algorithm used acceleration
coefficients c1 and c2 both set to 1.7, and an
inertia weight w of 0.7289. All algorithms were
tested with a population size of N = 100 and a
maximum of Gmax = 500 iterations.

2. Performance evaluation: The performance
comparison of the three bioinspired algorithms
using the dual-gamma function is thoroughly
detailed in Table 1.

This table provides a comprehensive
overview of each image performance indicator’s
average and standard deviation (indicated in
parentheses). These indicators are crucial
for evaluating the efficiency and effectiveness
of the algorithms. The results presented in
the table are derived from 30 independent
runs for each algorithm on the images from
the Kodak dataset.

This extensive testing ensures a robust
and reliable assessment of each algorithm’s
performance. By analyzing both the average
performance and the variability (as indicated by
the standard deviation), we gain valuable
insights into how well each algorithm
performs on average and how consistent
their performance is across different runs.
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This detailed comparison helps in
understanding the strengths and potential
limitations of each bioinspired algorithm when
applied to image contrast enhancement using the
dual-gamma correction function.

5 Analysis of Results

This section analyzes the results from the three
metaheuristics by comparing three performance
indicators that evaluate the quality of image
enhancement. The adopted metaheuristics aim
to improve image-related factors attributed to high
contrast by optimizing Eq. (10). The performance
indicators PSNR, SSIM, and REC are employed in
order to ensure that the transformation function,
i.e., the dual-gamma correction, preserves the
main features of the original images.

In this regard, Table 1 shows the performance
indicator values obtained by the algorithms. The
best average values for each image are highlighted
in bold, with standard deviation values provided
in parentheses. Additionally, a performance
analysis for each indicator is conducted. For each
performance indicator, the algorithm achieving the
best average value for each image is highlighted
in bold. The visual results of the three contrast
enhancement methods are shown in Fig. 2.

From Fig. 2, it can be observed that the
algorithms significantly improve the contrast and
illumination of the original images, demonstrating
the excellent performance of the proposed gamma
function combined with the three metaheuristics
used: GA, DE, and PSO algorithms. The
following sections provide a comprehensive
discussion of the noteworthy results obtained
from the experimentation.

5.1 Peak Signal-to-noise Ratio

Table 1 displays the PSNR values obtained
for each image after applying the contrast
enhancement. The data indicate that the GA
algorithm achieved higher efficiency in enhancing
contrast for most images from the Kodak dataset
compared to the DE and PSO algorithms. Fig. 2
visually presents the contrast enhancement results
for the images.

The figure illustrates significant differences
in the contrast improvements achieved by each
algorithm. By comparing the enhanced images
with the original reference images, one can
more clearly appreciate the effectiveness of the
contrast enhancement and the benefits of the
proposed dual-gamma correction function. This
visual comparison highlights how each algorithm
modifies the contrast and maintains the
image quality.

5.2 Structural Similarity Index Measure

The results of the SSIM indicator for the DE, GA,
and PSO algorithms are presented in Table 1.
The data reflect the satisfactory performance of
each algorithm in terms of contrast enhancement,
with most images showing SSIM values above
0.70. This suggests a high structural similarity with
the original images.

Additionally, the visual effects of contrast
enhancement according to this indicator are
illustrated in Fig. 2. In this figure, the original
images are compared with those enhanced
by each algorithm, allowing for a clear visual
comparison of their effectiveness. The enhanced
images demonstrate significant improvements in
contrast while maintaining the structural integrity of
the originals.

5.3 Relative Enhancement

The REC indicator shows values ranging from
0.9584 to 1.2961 for each algorithm, indicating a
positive improvement in the overall contrast of the
images with the GA, DE, and PSO algorithms.
A closer look at the data in Table 1 reveals that
the PSO algorithm outperforms both the GA and
DE algorithms. Specifically, PSO demonstrates a
more noticeable enhancement in contrast across a
greater number of images.

Additionally, Fig. 2 provides a visual comparison
of the original images and the results achieved
by each algorithm. The figure clearly illustrates
the significant differences between the original and
enhanced images, highlighting the effectiveness of
each algorithm in improving contrast. This visual
evidence underscores the improvements made by
the PSO algorithm in contrast enhancement.
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6 Conclusion and Future Work

This study introduced a novel approach to
improve image contrast by combining the gamma
correction function with the GA, DE, and PSO
algorithms. This proposal focuses on enhancing
the intensity levels of pixels in low-contrast
images. By using bioinspired metaheuristics,
the parameters of the proposed dual-gamma
correction function are optimized, improving image
contrast. The dual-gamma correction function was
initially employed by three metaheuristics.

However, its potential can extend to include
other evolutionary approaches. The experimental
results demonstrated the effectiveness of the
dual-gamma correction function in enhancing the
contrast of low-clarity images. Notably, no
single algorithm outperformed the others in all
performance indicators.

Future research in this area is extensive and
poses several challenges that require further
investigation and experimentation. It is essential
to explore powerful bio-inspired metaheuristics
that can effectively address the issue of local
optima, which is currently influenced by image
luminosity characteristics.

Additionally, an exhaustive examination of
quality indicators is necessary to quantify image
contrast accurately. By doing so, new objective
functions can be developed to guide the behavior
of metaheuristics, leading to improved results
in terms of image contrast. Furthermore,
designing new transformation functions for contrast
enhancement that offer greater flexibility and
freedom in transforming images are also needed.
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