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Abstract. Aerial infrared imaging has emerged as a
reliable, efficient and promising technology for detecting
electrical faults in photovoltaic modules. This is
attributed to its non-invasive nature and capability to
capture thermal signatures associated with defective
components in large solar farms, that can be inspected in
a fraction of the time required for ground-based methods.
Nevertheless, the effectiveness of aerial infrared imaging
in fault detection encounters complexities in the problem
data representativeness, attributed to diverse conditions,
such as module types and configurations, fault types,
and even the acquisition environment, such as ambient
temperature and humidity, irradiance levels, and wind
conditions. This work presents the use of deep
learning for electrical fault detection in photovoltaic
modules while analyzing the inherent data complexity.
This study explore the role of data complexity in
influencing the performance of fault detection algorithms,
highlighting the need for representative, consistent and
balanced datasets encompassing diverse and real word
fault scenarios.

Keywords. Deep Learning, infrared-imaging,
photovoltaic module, data complexity.

1 Introduction

Photovoltaic (PV) technology has emerged as
an excellent alternative for power generation
due to its widespread availability, decreasing
installation costs, and minimal environmental

impact [9]. However, the operation of this
technology requires continuous monitoring to
guarantee good performance, efficiency, reliability,
availability, and profitability [14].

Monitoring PV modules involves various
methods, from manual inspection to measurement
of electrical parameters, electroluminescence,
and aerial thermography [16]. Among these,
aerial thermography stands out as a particularly
relevant technique.

By using thermal cameras mounted on
unmanned aircraft systems, aerial thermography
not only reduces inspection time but also proves to
be a reliable and accurate tool for detecting faults
in PV modules since a module in good condition
will display a uniform thermal distribution.

In contrast, a defective module will manifest
areas of heightened temperature that may not be
readily discernible to the human eye [3, 4].

In the given context, the scientific community
has worked on developing vision systems for the
analysis of infrared images, also known as thermal
images. The primary objective is to identify thermal
distribution patterns that facilitate the classification
of faults within the PV module.

Deep learning-based approaches, particularly
Convolutional Neural Networks (CNNs), have been
used as an effective alternative to address the
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Fig. 1. Distribution of instances per class of the electric faults present in the dataset [11]

fault classification problem of PV modules using
thermal imaging, such as the work conducted by
Akram et al. [1] and Hwang et al. [15]. These
studies yielded an accuracy rate of over 93% in
identifying faulty modules. However, the authors
have utilized their own datasets in these works,
which, unfortunately, are not public.

Currently, few public datasets exist for PV
module fault classification. The most used
public dataset with the largest number of labeled
multiclass thermal images (20,000), is the
one reported by Millendor et al. [11]. This
dataset has been used for fault classification,
for instance, the work of Alves et al. [2], which
reported a classification accuracy of 78.85% using
a custom CNN model.

Also, Le et al. [7] improved the classification by
implementing an ensemble of CNNs, resulting in
an accuracy of 85.9%. Subsequently, Korkmaz et
al. [5] proposed the utilization of a multiscale CNN
and data augmentation, resulting in an accuracy
of 93.51% through the generation of augmented
images during the train and test stages. In contrast,
Pamungkas et al. [13] suggested combining
two CNNs and then evaluating the model’s
performance with and without data augmentation.

They obtained an accuracy of 96.65% with
data augmentation and 65.9% without it, illustrating
that data augmentation before partitioning into
training and testing subsets leads to overfitting,

resulting in elevated classification results that
lack generalizability.

Although infrared image analysis is a
valuable tool for PV fault classification, it
presents challenges due to the lack of clear
visual distinctions caused by low contrast,
similar temperature patterns, and sensitivity
to environmental factors [12].

Labeling a dataset of PV faults in thermal
images poses difficulties even for experts, as
thermal anomalies can be subtle and subject
to interpretation.

Additionally, given the nature of some failures, it
is common for a dataset to contain more examples
of some failures than others, which may result
in a dataset containing an unequal distribution of
examples, with a larger representation of one type
of failure over another.

This instance imbalance poses an additional
challenge for classification algorithms. In this
work, a study of the inherent complexity of the
most widely used infrared images dataset for PV
faults and its impact on accurate classification
is presented.

Specifically, a methodology for analyzing and
quantifying this complexity, particularly within the
context of fault identification in PV modules, is
described. The assessment of complexity involves
the measurement of several criteria, including
linearity, data imbalance, and dimensionality,
among others. For experiments, six predefined
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Fig. 2. Representative and visually differentiable images of each type of electrical faults present in the dataset [11]

scenarios have been established by splitting the
dataset in different ways.

The complexity of each scenario is then
analyzed through a data complexity calculation
method. Some interesting results were found,
and some recommendations were derived from our
experimental results. The remainder of this work is
organized as follows.

In Section 2, the used dataset as well as
the proposed methodology for analyzing the
complexity and the influence in faults classification
is described. Section 3 shows and discusses
the obtained results. Finally, the conclusions are
presented in Section 4.

2 Data and Method

This section describes the dataset used.
The proposed methodology for analyzing the
complexity of the dataset and how it influences its
classification is also explained.

2.1 Dataset

Datasets become vital resources for developing
automated supervised learning systems, such as
supervised classification systems. In particular,
the dataset reported by Millendor et al. [11] is
one of the most used datasets for photovoltaic

fault classification based on infrared images. This
dataset comprises 20,000 infrared images with
dimensions of 24 × 40 pixels.

These images were obtained by unmanned
aerial vehicles equipped with medium and long
wave (3 to 13.5 µm) infrared cameras. Image
resolution varies from 3.0 to 15.0 cm/pixel.
Each dataset image only showcases photovoltaic
modules. Additionally, the dataset encompasses
12 classes, including 11 different types of failures,
eight electrical and three environmental, and one
non-anomaly class.

It is important to emphasize that within the
context of PV fault detection systems, electrical
faults take priority over environmental for a few
key reasons. Primarily, electrical faults directly
impact the efficiency and functionality of the
PV module. For instance, hot spots resulting
from malfunctioning components or improper
connections can notably diminish power output.

In contrast, even though environmental factors
may influence the overall thermal signature, these
faults do not induce permanent damage. Then,
this study is centered on classifying electrical faults
through infrared analysis and their associated
complexities. Fig. 1 shows the distribution of
images by class of the electrical faults present in
this dataset.
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Fig. 3. AlexNet architecture structure. This CNN architecture is made up of five convolutional layers (Conv1 to 5) to
extract features and three fully connected layers (FC6 to 8) for classification

As it may be observed, the No-Anomaly class
has the most instances, with 10,000 samples.
From Fig. 1, it may also be observed that
there is a significant imbalance in the number
of class instances, with multiple by-pass diodes
(Diode-Multi) having the fewest instances, with 175
samples. This imbalance can affect the perception
of predominant patterns and features.

Fig. 2 shows the characteristic patterns of
each type of electrical fault analyzed in this work.
From a visual analysis, it may be possible to
identify similarities within certain classes, as in
the case of the cracking and multiple hotspot
classes, which may share patterns that include
multiple white spots.

To analyze how complex the dataset is, the
images were encoded into feature vectors. These
feature vectors were extracted from the images
using the well-known CNN architecture AlexNet [6].

The AlexNet model has been chosen
because it efficiently balances performance
and computational requirements, enabling robust
feature extraction without demanding excessive
resources. Furthermore, its architecture facilitates
both implementation and optimization.

The feature vector extraction process involved
removing the final layers of AlexNet, specifically
the classification part, leaving only the essential
feature extraction functionality. The diagram
in Fig. 3 shows the AlexNet architecture,

highlighting the feature extraction and
classification components.

Furthermore, to “visualize” the dataset
complexity, the Uniform Manifold Approximation
and Projection (UMAP) method [10] was employed.
UMAP is a dimensionality reduction method
suitable for nonlinear data. This approach primarily
shows a low-dimensional visual representation of
the distribution of the feature vectors.

2.2 Complexity Analysis

In the context of supervised learning tasks, data
complexity denotes the inherent challenge posed
by a dataset in terms of enabling a model to discern
the underlying patterns [17].

This challenge may stem from high
dimensionality, imbalanced classes, or noisy
labels. Particularly in classification, assessing
data complexity through various measures allows
for estimating the difficulty involved in segregating
data into specific and predefined classes.

In this work, six experimental cases (named
Case I to VI) have been designed to assess
the dataset’s complexity. Case I, serving as
the baseline, involves the human expert’s manual
selection of representative images from each
category of electrical faults.

These images are chosen based on clearly
identifiable class characteristics. Specifically, only
50 images from each class can be unambiguously
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Fig. 4. Image distribution for each class across all cases

identified as belonging to one and only one class.
In Cases II and III, the number of images with
respect to Case I has been augmented.

Specifically, in Case II, the number of images is
less than in Case III; however, both cases have the
same number of images per class, which means
no data imbalance is found in them. This data
balance is maintained until the number of images
in the minority class (175 images) is reached.

As a result, Case II has 113 images per
class, while Case III contains 175 images per
class. In cases IV to VI, the remaining images of
each class were uniformly and randomly sampled
and subsequently added to the already selected
images. In particular, a third of the total remaining
images were added for each case.

If N denotes the original number of images by
class; then, Case IV will have a total of (175 +
((N-175)· 0.33)) images, Case V will be made up
of (175 + ((N-175)· 0.66)) images, and Case VI will
have N images. Fig. 4 shows the general image
distribution across all cases.

To illustrate, consider the “Cell” class, which
initially comprised N=1,877 images. In Case I,
50 representative images of the “Cell” class were
selected. In Case II, 63 additional randomly
selected images were added to the Case I images.

In Case III, 62 more images, also randomly
selected, were incorporated to reach the limit of
minority class images. Note that in Case III,
175 images were already selected, leaving 1,702
(N-175) images for addition. These 1,702 images
were then divided into three parts: two sets of 562
images each and one set of 578.

Consequently, for Case IV, 562 ((N-175)· 0.33)
images were combined with the 175 images

from Case III; therefore, Case IV will have a
total of 737 images (175+(N-175)· 0.33). For
Case V, an additional 562 images were included;
then, the resulting number of images is 1,299
((175+(N-175)· 0.66)).

Finally, for Case VI, the remaining 578 images
were incorporated. The augmentation process is
executed for each class. Note that, for cases IV to
VI, the number of images augmented by classes
differs due to the initial dataset imbalance despite
the consistent proportion of images used.

To evaluate the complexity of each dataset’s
case, the set of six complexity categories proposed
by Lorena et al. [8] is used. The description of each
category is the following:

– Feature-based. Assesses the discriminative
capability of features in a classification task
by employing metrics such as the Maximum
Fisher’s Discriminant Ratio, the vector of
the Fisher Discriminant Ratio, the volume
of overlapping regions, and the efficiency of
individual and collective features.

– Linearity. Evaluate the level of the problem to
separate the classes by a hyperplane employing
a Linear Support Vector Machine classifier.

– Neighborhood. Examine the decision boundary
and analyze local neighborhoods of the
data points by employing a fraction of the
borderline point, the ratio of intra/extra class,
error rate, and non-linearity of the Nearest
Neighborhood classifier.

– Network. This category considers the instances
as the vertices of the graph and evaluates
its relations employing the density, clustering
coefficient, and Hubs metrics.
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Fig. 5. UMAP projection of the feature vectors of Case I, IV, and VI

– Class Imbalance. Evaluates the dataset
based on the degree of data imbalance using
the entropy of class proportions and the
imbalance ratio.

– Dimensionality. Analyze the relation between
the number of features and the number of
instances in the dataset. Employing the average
number of features per dimension, the Average
number of Principal component analysis (PCA)
dimensions per point, and the ratio of the PCA
dimension to the original dimension.

It is pertinent to highlight that each category
encompasses various “metrics”. Nonetheless,
an average value derived from these metrics
adequately conveys the level of complexity
associated with each category.

2.3 Classification Performance

For the purpose of illustrating the impact of
complexity on the classification task using a
CNN, the AlexNet architecture was trained and
tested with subsets from each of the six
proposed cases. It is worth mentioning that this
architecture has been retrained from the model
that was previously trained on the ImageNet
dataset [6]. Additionally, in all six cases, a
5-fold cross-validation is implemented during the
training model stage to assess how well the model
performs on unseen data. Furthermore, for all six

cases, the best-performing model from the 5-fold
cross-validation was tested on the test subset.
The overall performance of the models has been
evaluated using the classical metrics: Accuracy,
Precision, Recall, and F1-score [18].

3 Results

In this section, the results of the complexity
analysis, as well as the model classification
performance, are shown. The implementation was
carried out in Python 3.8 and PyTorch framework
1.13.1. In all six cases, the AlexNet model was
trained using the Adam optimizer on 60 epochs
with a learning rate of 0.00005, a batch size of 32,
and categorical cross-entropy as a loss function.
All the parameter values were set experimentally.

3.1 Complexity Analysis Results

A low-dimensional data projection is used to
first approach the dataset’s complex analysis.
As described in Section 2.1, this projection is
implemented using the UMAP method [10].

This method tries to preserve the
high-dimensional topological structure in a
low-dimensional representation, which proves
beneficial in evaluating data complexity, particularly
in terms of class separability.

Then, to qualitatively evaluate the dataset
complexity as the amount of information increases,
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Table 1. Mean values of complexity categories

Case

I II III IV V VI

Feature-based 0.017 0.102 0.138 0.171 0.173 0.191

Linearity 0.000 0.000 0.000 0.000 0.000 0.000

Neighborhood 0.306 0.399 0.414 0.406 0.400 0.404

Network 0.804 0.896 0.930 0.879 0.911 0.897

Class imbalance 0.000 0.000 0.000 0.313 0.393 0.395

Average 0.2255 0.2796 0.2963 0.3536 0.3753 0.3774

Dimensionality 17.329 7.867 5.130 3.344 2.560 1.276

the feature vectors of Case I (base case),
Case IV (first unbalanced case), and Case VI
(fully dataset) have been projected into a low
dimensional representation. These projections are
depicted in Fig. 5.

As it may be observed, in Case I, the
feature vector projections unambiguously delineate
“clusters”, exhibiting a spatial data distribution that
implies a distinct separation between the groups.
Conversely, discerning a clear separation of the
data pertaining to the nine different classes in
Cases IV and VI is visually challenging.

However, although qualitative analysis provides
valuable insights into the relationship between
complexity and the number of instances, the
establishment of a series of quantifiable values
is preferable for a more precise understanding
of complexity. Thus, as previously mentioned,
multiple categories have been implemented to
measure complexity from various perspectives.

Table 1 shows the values from all categories
from the six cases of study. As may be observed,
Feature-based, Linearity, Neighborhood, Network,
and Class imbalance categories have been
grouped together. This is because the mean values
of these categories range from 0 to 1, signifying
that lower values indicate lower complexity while
higher values suggest higher complexity.

However, it should be noted that the
“Dimensionality” category does not conform

to this range. From Table 1 may be observed,
as expected, that Case I exhibited the lowest
average complexity. Furthermore, it is noteworthy
that all cases can be linearly separated, as
indicated by the minimal complexity value in the
“Linearity” category.

Conversely, a higher complexity value was
observed across all cases when evaluating the
Network category, suggesting a lack of structural
information for graph modeling within the dataset.

On the other hand, considering that a
classification problem is also addressed, the
“Feature-based”, “Neighborhood”, and “Class
imbalance” categories become relevant. Notably,
under the “Feature-based” category, relatively
low complexity values are observed, suggesting
that the features of the classes may exhibit
sufficient distinctiveness. Nevertheless, within
the “Neighborhood” category, defining clear data
separation becomes increasingly challenging as
the data sets become denser.

Conversely, and as expected, for the “Class
imbalance” category, Cases I, II, and III, cases
with the same number of instances per class, an
imbalance value of 0 is obtained, whereas for
Cases IV, V, and VI, where a significant imbalance
in the data is presented, a values of 0.313, 0.393,
and 0.395, respectively, were observed.

Regarding the “Dimensionality” category, where
the number of features concerning the number
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Table 2. Classification results of each case

Case

I II III IV V VI

Accuracy 0.980 0.720 0.730 0.940 0.930 0.880

Precision 0.978 0.727 0.727 0.743 0.774 0.783

Recall 0.978 0.721 0.727 0.676 0.710 0.753

F1-score 0.978 0.718 0.722 0.703 0.733 0.766

Number of images 90 204 315 1351 2387 3420

of instances is analyzed, it was observed that a
higher value is attained when there are only a
few instances.

In contrast, the dimensionality value decreases
as the data volume increases. Consequently, Case
I is the most complex under this category, whereas
Case VI is the least complex.

3.2 Classification Results of Each Study Case

Data complexity and classification tasks are
intricately linked. Complex data may significantly
challenge the ability of a classification model to
distinguish between classes accurately. Then,
to analyze this relation, the best AlexNet model
obtained by 5-folds cross validation on the test
subset for each case is used. In Table 2, the
classification results are shown.

In particular, in Case I, the best results in
terms of Accuracy, Precision, Recall, and F1-score,
with values of 0.98, 0.978, 0.978, and 0.978,
respectively, are obtained. In contrast, the case
with the worst results was Case II, with values
below 0.73 in all metrics.

For Cases IV, V, and VI, high accuracy
values above 0.88 were reached. This success
was attributed to the model’s proficiency in
accurately discerning the “No anomaly” class,
which comprises a substantial number of instances
compared to the other classes. However,
considering the presence of an unbalanced dataset
in Cases IV, V, and VI, it is advisable to focus on the
F1-score metrics rather than accuracy.

F1-score provides a better reflection of model
performance when dealing with unbalanced
datasets. Then, in Cases IV to VI results lower

than 0.79 were obtained for F1-score. From the
obtained results, it can be concluded that adding
non-representative class images in Cases II and
III has a greater impact on the classification since
the number of images is lower. In addition, adding
non-representative images to a large number
of instances, which additionally has an easily
distinguishable class such as the “No anomaly”
class, may bias the results, generating apparently
better results as in Cases IV, V, and VI.

Another way to visualize the impact of dataset
complexity on the classification task involves
observing how often a trained model accurately
classifies or confuses a never-before-seen input
data, in this case, an image.

Confusion matrices, a “matrix” that organizes
and shows the number of correct and incorrect
predictions for each class, can be used to
perform this visualization. By analyzing the
confusion matrices shown in Fig. 6, the classes
that are complex to differentiate from each other
can be identified. As may be observed, the CNN
model in Case I demonstrates a high capability to
classify most data.

This outcome is consistent with the results
obtained in the complex analysis, in which Case
I registers as the least complex case. In
contrast, in cases II and III, where the datasets
remain balanced, the model begins to encounter
challenges with classification.

Conversely, a higher frequency of misclassified
instances in cases IV, V, and VI looks evident.
Nevertheless, despite Case VI being the most
complex based on complexity assessments, its
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Fig. 6. Confusion matrices from Case I to VI. The classes are defined as HS: Hotspot, HSM: Multiple Hotspot, C: Cell,
CM: Multiple cells, Cr: Cracking, D: Diode by pass, DM: Multiple Diode By-pass, NA: No anomaly, and Of: Offline module

corresponding confusion matrix indicates superior
model performance compared to cases IV and V.

This behavior may be attributed to a larger
volume of instances available for training,
potentially facilitating more effective weight
adjustments within the convolution layers and,
consequently, improved feature extraction
capabilities. Nonetheless, regardless of the case
study, several classes are hard to differentiate due
to the image characteristics, making them more
complex to classify.

For instance, “Cracking” and “Multiple cells”
faults are the most difficult to differentiate in
all cases. Furthermore, the presence of
classes characterized by highly similar patterns,
such as “cell” and “multiple cells”, as well
as “hotspots” and “multiple hotspots”, presents
another notable issue.

4 Conclusions

In this work, a study of the inherent complexity of
the most widely used infrared image dataset for
PV faults and its impact on the fault classification
task has been presented. From the study, it is

concluded that the complexity of the dataset is
related to the quality of the data.

Particularly, based on the complexity analysis
factor, such as the balance of the class instances,
the linearity of the data, and the representativeness
of the instances must be taken into account mainly
to perform tasks such as classification.

Therefore, it is recommended that the
complexity of the training data be analyzed
before proposing solutions for classification tasks.
In future work, the generation of a high-quality
solar module dataset will be considered.
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