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Mexico
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Abstract. Cell analysis in image digital microscopy is
a relevant tool in modern cell biology since it allows
studying their behavior and morphology in different
tissues. Although there is a robust development
in microscope technology, cells like live neurons are
fragile due to simple factors such as illumination,
which could compromise their viability. Therefore,
neurons must be analyzed in a low-resolution condition.
Besides, the identification and selection of neurons in
images from a microscope are visually made, which
is time-consuming and increases the subjectivity of the
process and human error. Computer vision techniques
and Neuronal Networks help automate these tasks while
guaranteeing the application of constant criteria. This
work aimed to obtain automatic segmentation of neurons
in low-resolution images from an inverse microscopy
used to study and test live neurons. The proposed
methodology allows for separating the neuron from
the background despite the high noise generated by
reflectance and distortion when observing the sample
through the liquid solution and the petri dish. The
results of traditional methods and Convolutional Neural
Networks (U-Net) are compared, showing that, despite
the high image noise condition, it is possible to reach a
Dice index of 0.73±0.07 in segmentation.

Keywords. Semantic segmentation, live cells, low
resolution, computer vision, u-net.

1 Introduction

According to reports in 2019, one in eight people
(≈970 million) suffered from a mental disorder [19].

Although studies are being conducted to
develop pharmacological treatments, gaps remain
in our understanding of neuron physiology. It
is crucial to comprehend physiology to grasp
normal brain function and mental illness. One
technique to comprehend neural physiology is
electrophysiology, which requires an experimental
protocol to visually analyze and select neurons
under a microscope [7, 5].

Currently, microscope images can be observed
through the lens and digitized by a camera for
analysis on a computer and further process.
Nevertheless, the quality of microscope images
is affected by factors such as the experimental
environment, inherent sample characteristics, and
illumination, in which live neurons are particularly
sensitive [2, 11]. Also, observing live neurons
requires them to be set in a liquid solution,
interfering with the definition of acquired images.

The type of microscope is also essential
in acquisition. While using advanced devices,
such as immersion microscopes, fluorescence
microscopes, focused ion beam/scanning electron
microscopy (FIB/SEM), confocal microscopes, and
bright-field microscopes, among others [17, 16,
6], offer a potential solution, they increase costs
significantly, and few laboratories have one. Light
microscopes are commonly employed because of
their low cost, but their limited resolution makes
it challenging to visualize individual neurons and
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Fig. 1. a) Example of a cell image with low resolution
and b) Their ground truth edge with red color

their fine structures. Since neurons are the
basic units of the nervous system, it is essential
to study characteristics such as morphology to
understand their function in trees (sets) and
isolation [30]; electrophysiological characteristics,
synaptic connectivity, and the ability to process
information are also of interest [31].

One of the main challenges in studying neurons
is the variability of biological samples (images)
and the need for available databases [29]. For
this reason, computational tools are relevant to
carry out a neuroanatomy analysis that allows
investigation of the effects of local geometry on the
neuroanatomy [1].

In addition, low-resolution is a relevant
factor when automatizing tasks such as neuron
segmentation, mainly because of their sensitivity
to the noise in the samples. Automatic analysis
could also help with misinterpretation of structures,
e.g., artifacts caused by the staining process and
bias due to subjective interpretation when trying to
differentiate among neuron types.

Several works that automate neuron analysis
in microscopy images have been reported.
Radojevic et al. focused on developing a method
for detecting and characterizing critical points, such
as junctions and terminations, in fluorescence
microscopy images of neurons. The proposed
method was developed for the purpose of digital
reconstruction of neuronal cell morphology.

This process is crucial for understanding the
functionality of neuronal networks [25]. Liu et
al. [13] analyze cell images that a lens-free imaging
system captures. The obtained images have
lower resolution than those collected by traditional
light microscopes.

They propose an approach based on
a convolutional neural network (CNN) that
effectively segmented the cells without requiring
manual parameter adjustments, reaching an
accuracy of 96%.

Another approach uses the Baysor algorithm,
which optimizes cell segmentation based on
multiple sources of information that complement
information about cell boundaries, such as
the spatial density of molecules within the
cell, the transcriptional composition of local
molecular neighborhoods, and additional
information from stainings for nuclei, cell bodies,
or cellular membranes.

Even the use of CNNs such as U-Net++
has been proposed for counting neurons in
HE-stained histopathological samples [32].
Obtained segmentation allows individual cells in a
tissue to be accurately identified and delineated,
essential for analyzing gene expression at
the cellular level and understanding cellular
heterogeneity in a spatial context [23].

The segmentation of images of live cells
presents complications in obtaining a high
segmentation precision. Even some studies
with dead cells previously prepared and fixed for
visualization have shown complications even when
using recent segmentation techniques.

In [14] proposed using CNNs based on the
U-net architecture to segment cells in light sheet
microscopy (LSM) images of mouse embryos. The
tissue segmentation achieved a macro-average
F1-score of 0.84, whereas the inter-observer value
was 0.89. The cell segmentation achieved a
DSC of 0.57 and 0.56 for nuclear-stained and
pHH3-stained images, respectively.

Recently, a method to segment live cells in
low-resolution images was reported [10] where
Automatic Enhancement Pre-processing (AEP)
with Automatic Weighted Ensemble Learning
(AWEL) was proposed to improve cell image
segmentation using deep learning techniques.

This work highlights the crucial effect that
image quality has on the obtained segmentation
accuracy. The AEP+AWEL method obtained an
SCD of 73.84% in mouse liver cell images obtained
by absorption microscopy.
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Fig. 2. Representation of Fig. 1 as a 3D surface with
a high contrasting color palette in a) Frontal and b)
Lateral view, where the high variations of value (noise)
in the image are observed and then c) attenuated with
a Gaussian filter. The color palette corresponds to a
mapping of gray levels

(a)

(b)

Fig. 3. a) Entropy map and the b) Its binarization

On the other hand, the U-NTCA approach,
which combines nnUNet and a nested transformer
with channel attention, was proposed for corneal
stromal cell segmentation [34] obtained by confocal
laser scanning microscopy (HRTIII).

These images present challenges in terms
of quality due to uneven illumination. The
segmentation results were a Dice of 86.42% for
normal cells, 79.33% for cells eroded by viruses,
and 73.57% for cells with keratoconus.

Light microscopy images present challenges
regarding image quality from various sources
related to the camera, the optical setup, and the
medium through which the neuron is observed.

In addition, illumination is a relevant factor since
live neurons are sensitive to high light levels;
therefore, low radiometric resolution and contrast
are common in this type of image.

This study comprises the generation of an initial
dataset of live neurons since no similar dataset was
found available. The aim is to obtain automatic
segmentation of a particular type of cell, live
pyramidal neurons, due to their crucial role in
the functioning of the cortex and their potential
implications for consciousness [26].

Edge detectors rely on mathematical operations
that are sensitive to data variations in an image,
including both real edges and unwanted noise [12].
Therefore, their application on highly noisy images
is not recommended.

Since this specific case of interest is addressed
over an initial low-resolution dataset, two
approaches were tested: a methodology with
traditional computer vision techniques and the
U-Net Convolutional Neural Network.

The results demonstrate that, despite the low
resolution and high noise levels, it is possible
to eliminate artifacts and segment the neuron
area. The evaluation was performed using the
Dice similarity coefficient, and the results were
competitive with the closest study reported.

2 Methods

In this section, two proposals are presented
to segment NP-CPF in low-resolution images.
The first one explores common computer vision
techniques, and the second one is a convolutional
neural network focused on medical images due to
its high precision.
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Fig. 4. a) Morphological opening and b) Filtering by area

Fig. 5. U-net architecture with dimensions 128 × 128
input patch

2.1 Classical Image Segmentation

The microscope images are often affected by
different noise sources, such as impurities from
the microscope, the sample preparation that may
contain residues of other neurons or elements
of the experimental setup. The latter since the
optical path to capture the image included a light
source, space (air), the petri dish, neurons fixed
to the bottom of the petri dish, the aqueous
medium where neurons are kept alive, and
the camera. All these factors interact in the
sample acquisition of an inverted light microscope
generating low-definition images (Fig. 1a). Then,
it was necessary to use image processing
techniques to obtain a neuron segmentation close
to the ground truth (Fig. 1b).

2.1.1 Noise Attenuation

The neuron covers a region of interest (ROI)
usually located in the center of the observation field
since it is a large cell type with a main body (soma)
from which thin elements (dendrites) extend. The
original images (Fig. 1) present a general intense
speckling noise that must be attenuated to get
more uniform regions that help segmentation.

Also, some artifacts corresponding to residues
of other cells or impurities of the microscope are
also presented. The noise level may not stand out
at first sight in the gray level image, but when it is
plotted with a high contrast color palette as a 3D
surface (Fig. 2a-b), it is observed how the noise is
affecting the ROI definition.

It seeks to reduce noise and homogenize
regions without significantly attenuating edges
defining the neuron region. Then, a Gaussian
filter [20] was applied as a pre-processing step.
In this way, the noise is reduced by the influence
of the surrounding pixels, allowing to have more
homogeneous areas.

2.1.2 Entropy Filter

The texture of an image quantifies the spatial
variation of intensity values in an image under
some descriptor. It was observed that neurons
tend to have a higher texture than the rest of the
image. The texture information can then be used
to obtain a raw segmentation of the ROI. Entropy
is a statistical measure related to the randomness
or disorder level of the elements. In digital images,
a higher variation (disorder) in values is associated
with higher texture in a region, while low variation
indicates more homogeneity.

Therefore, entropy can be used to describe
the texture in the image and is computed as
Eq. 1; where gi is the occurrence of a gray level
and P is the normalized probability of gi, ranging
between 0 and 1 [24, 28]. It is expected that
regions of edges have high entropy levels while
homogeneous regions have low entropy. Fig. 3a
shows the map resulting in computed local entropy
where high entropy (red) indicates strong value
change around the neuron and low entropy (blue)
corresponds to the background:

Entropy = −
N∑
i=1

P (gi) log2(P (gi)). (1)

Although that background is observed as noisy,
the difference among its pixels is not as large as
that among pixels in the edges of the neuron. As
observed in Fig. 3, the local entropy was higher in
the interior of the soma and inside dendrites.
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Fig. 6. Sample acquisition: a) Inverted microscope, b) The biological samples obtained after extraction from the brain
tissue, c) Isolated neurons in the petri dish, and d) Its digital acquisition

Therefore, an automatic threshold helps to
separate most of the neuron area from the rest
of the image [21, 18]. However, many small
regions around the neuron remain and must be
removed (Fig. 3b).

2.1.3 Mathematical Morphology

Mathematical morphology is a technique used to
analyze images through a specific shape called a
structural element. There are two basic operators:
erosion and dilation [8]. Erosion reduces the area
of an element in the image and can be used to
eliminate small elements or artifacts that are not
part of the ROI. However, the inner spaces in the
neuron (Fig. 3b) could be increased with erosion,
causing a separation of its regions.

A dilation was applied to avoid this effect, which
increased the area of the elements. In this case,
the combination of both operations results in a
composed operation called opening that restores
the erosion effect with a dilation, connecting some
edges and filling small spaces.

A circular structural element was used in both
operations. Fig. 4a shows that noise structures
were removed, remaining only the more significant
elements. Since the field of observation is centered
over the neuron, this is the largest remaining
element in most images. Thus, the area of all
elements in the image was calculated and filtered
to preserve only the larger one (Fig.4b).

In this way, the neuron was segmented by using
basic image processing techniques.

2.2 Convolutional Neural Network: U-Net

The U-Net architecture has proven highly effective
in medical image segmentation due to its ability
to capture context information and enable precise
localization [22]. The second approach to segment
low-resolution images was implementing a U-Net
architecture, a convolutional neural network (CNN)
widely utilized for image segmentation tasks.

As seen in Fig. 5, the model architecture
consists of an encoder comprising five
convolutional blocks with ascending filter sizes
(32, 64, 128, 256, 512) and max pooling layers
employing a stride of 2, each employing a 3×3
kernel, ReLU activation, and same padding; a
decoder, with four convolutional blocks employing
descending filter sizes (256, 128, 64, 32) and
upsampling layers using a stride of 2, similarly
configured to the encoder; an output layer
consisting of a final convolutional layer with
a 1x1 kernel, sigmoid activation, and same
padding, yielding a probability map with one
channel (binary image).

The model was compiled with the Adam
optimizer, sparse categorical cross-entropy loss
function, and accuracy metrics. A custom callback
was also introduced to halt training when the loss
value reached 0.01 or lower.
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Fig. 7. From left to right: Original neuron samples
from the dataset, their corresponding groundtruth,
segmentation with the traditional approach and
with u-net

Fig. 8. Image of high-precision laser point in a slide,
diameter is calculated and showed with the red circle

Overall, this architecture is tailored to address
image segmentation, aiming to predict class labels
for individual pixels in input images.

2.3 Dice Similarity Coefficient

The Dice similarity coefficient (DSC) computes the
overlapping ratio between the predicted result and
ground truth. It varies in the range [0,1], where 1
indicates a perfect overlap between the obtained
segmentation and the ground truth, and 0 indicates
no overlap at all. The formula to calculate the
DICE Index, also known as the Dice Coefficient,
is as follows:

DICE =
2× |A ∩B|
|A|+ |B|

, (2)

where |A ∩B| is the size of the intersection
between sets A and B. |A| is the size of set
A and |B| is the size of set B. The DICE
Index is a metric commonly used in medical
image segmentation tasks to evaluate the similarity
between the predicted and reference segmentation
(ground truth) [35].

3 Experimental Results

The digital images were acquired from an inverted
microscope with a magnification of 40x (Fig. 6a)
and saved in JPG format with dimensions 1280 ×
960 at 96 dpi and 24 bits deep. Brain slices
from 30-day-old male Wistar rats were extracted to
obtain electrophysiological recordings and images
of acutely dissociated neurons (Fig. 6b-c).

The Claude Bernard Biotery of the Benemérita
Universidad Autónoma de Puebla (BUAP,
México) provided de biological models and
performed the neuron extraction. All procedures
followed the Official Mexican Standard for
the care and use of laboratory animals
(NOM-062-ZOO-1999). Biological-infectious
hazardous waste was managed following the
NOM-087-ECOL-SSA1-200 standard.

The Neuromodulation Laboratory of the
BUAP-Institute of Physiology performed the
experiments, generating an initial database with
images of rat neurons of different types, such
as Pyramidal Neurons from the Prefrontal Cortex
(PN-PFC), Dopaminergic Neurons from the Ventral
Tegmental Area (DN-VTA), Medium Spiny Neurons
(MSN), Cholinergic Giant Neurons (CGN), and
Pyramidal Neurons from Hippocampus (PN-H)
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Table 1. Estimated measurements for neurons in Fig. 7 based on the obtained segmentation and their comparison with
the expert estimation

Reference Traditional Methods Predictions U-Net

Neuron Example Area (µm2) Radius (µm) Area (µm2) Radius (µm) Area (µm2) Radius(µm)

a) 435.40 11.77 555.53 13.41 412.41 11.45

b) 575.96 13.54 664.14 14.53 566.88 13.43

c) 484.36 12.41 612.03 13.95 463.77 12.15

d) 535.61 13.05 794.24 15.90 507.81 12.71

(Fig. 6d). For the purposes of this study our
database will contains only 150 NP-PFC images,
which were acquired from a microscope as
described above. Likewise, each image has its
own groundtruth. These ground truth was created
from a hand-drawn outline by the neuroscientific
team of the BUAP, who delimited the area of
interest in each image.

The result is a binary image, where white
represents an ideally segmented neuron and black
corresponds to the rest of the image. Fig. 6:
Sample acquisition: a) Inverted microscope, b)
The biological samples obtained after extraction
from the brain tissue, c) Isolated neurons in the
petridish, and d) its digital acquisition.

As previously outlined, this study focuses
on neuron segmentation to automatize the
process and help the expert to speed up
the identification and size estimation, which is
correlated with neuron diameter.

Such measurements are crucial in live
cell culture investigations, providing insights
into physiological and pathophysiological
phenomena [33]. Understanding the morphology
of individual neurons facilitates nuanced analyses
of their interactions and contributions within
biological neural networks [4].

The two presented approaches were tested
using a dataset of 150 images of PN-PFC
neurons without any preprocessing and their
corresponding groundtruth. The neurons span
almost the entirety of the images, prohibiting
dataset augmentation through cropping. An
experiment of 5-fold cross-validation approach was
adopted, allocating 70% of the images for training
and 30% for validation.

During training, images were resized to
128×128 pixels to facilitate U-Net training,
while traditional segmentation techniques were
conducted at the original image size. The Dice
coefficient of segmented images in the validation
sets was compared for both approaches.

Fig. 7 shows the obtained results and their
comparison. The first column contains some
examples of neurons in the dataset. As observed,
there are variations in the illumination due to the
expert’s attempt to improve image contrast without
reaching a level that affects them. Then, in general,
images do not have high contrast.

Also, the presence of remains of cellular
structures and noise around the neuron is
observed. The difference among types of dendrites
is that some are thick and clearly defined, and
some are thin and difficult to perceive. The
second column shows the corresponding ground
truth where the expert marked the relevant neuron
areas, which is used as a reference to evaluate the
obtained segmentation.

The segmentation results with a traditional
approach are shown in the third column. Most
of the neuron soma was correctly segmented,
although it presented limitations in dendrites.
Dendrite sizes are varied, and their connection with
the soma could be affected when opening or area
filtering is applied, causing the final segmentation
not to include part of them.

Also, when dendrites are close, they are
segmented as one. Low contrast generated
by dim lighting significantly affected dendrites
segmentation. On the other hand, the
segmentation with U-Net showed a more integral
segmentation even when the illumination varies.
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However, in some cases, a) segmented
dendrite disconnects from the soma, and b) if
some artifact is near enough to dendrite, it can
be segmented as part of the ROI. The DSC was
calculated to assess the results, obtaining an
average of 0.69±0.06 with the traditional approach
and 0.73±0.07 with U-Net in raw images.

Also, the experiment was done using as
input for U-Net the preprocessed images
with the Gaussian and entropy filters; for
this experiment, the result was 0.73±0.04,
showing that there was no significant change
by including the preprocessing. One of the
purposes of neuron segmentation was the
automatic estimation of the size. The size of
neurons is relevant in electrophysiology studies
because the study population must contain similar
morphological properties. It is possible to estimate
the area with the capacitance of the neuron thanks
to the physical constant that establishes that the
thickness of the lipid bilayer is 1µF for every cm2.

Nevertheless, this process of measure implies
direct contact with the neuron, which is a complex
process and sometimes kills the neuron before
obtaining a result. To estimate the neuron size,
the image of a circular mark engraved with a
high-precision laser in a slide was acquired at
the same magnification as the images from the
database (40x) and taken as a reference (Fig. 8).

The marked circle corresponds to an estimated
area of 70 µm comprising approximately 932 pixels
of diameter. Then, one pixel is equivalent to
0.076 µm per side. With this reference, the
radius and area from the segmented image can be
calculated. The measurements of neurons in Fig. 7
are shown in Table 1. To compute the radio, it was
considered that soma is sphere-shaped [15]. The
measurements in Table 1 show that the results
of U-Net allow estimating measures closer to
the expert’s estimation and consistent with the
type of neuron.

4 Discussion

Although the difference in DSC between the two
approaches was small, about 0.04, the evaluation
of measures for segmented neurons showed that
this difference goes beyond a match with the

ground truth. In the case of the traditional method,
the soma is correctly identified, and the whole
is extracted. However, dendrites are harder to
identify since they are finer structures, unlike the
U-Net, which correctly identified most identify most
of the dendrites. Even when most of the area
matches in both approaches, the fine parts of the
neuron make an important difference.

When estimations of a physical measure are
computed, this difference becomes relevant. Other
works reported, specifically for studying PN-PFC,
processed images taken from dead neurons
or with high-resolution microscopy [27, 9, 3].
Therefore, they are not comparable. Studying live
neurons is of interest to the experts since they
can test the neuron response under a stimulus
(electrical or pharmaceutical).

The closest report was made recently by Kato
and Hotta [10], analyzing live cells of mouse
liver and human iRPE cells. The study aims to
demonstrate the effectiveness of automatic image
pre-processing and machine-learning techniques
in improving cell segmentation accuracy for
microscopy low-quality images.

Their results achieve a DSC of 72.36 ± 0.73
in live cell segmentation experiments with U-Net,
close to our results. Although the comparison
between this report and our results is not direct
because their dataset is unavailable, it showed the
relevance of performing research in low-resolution
microscopy images.

5 Conclusions and Future Work

5.1 Conclusions

This work addressed the automatic segmentation
of live cells in low-resolution images taken from
an inverted optical microscope. Traditional and
CNN-based approaches were tested to deal with
high noise and low contrast conditions, showing
that they could segment the neurons suitably.
Regarding the traditional approach, it was able to
identify the main body of the neuron and eliminate
artifacts. However, it had limitations in segmenting
dendrites, reaching a DSC of 0.69±0.06. On the
other hand, the U-Net model yielded predictions
closer to the ground truth, reaching a higher
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DSC of 0.73±0.07; its main limitation was the
misinterpretation of artifacts or stains as part of
the neurons. It is worth noting that while the
U-Net outperforms the Dice index, it is limited
by a small sample number common in biological
datasets. This highlights the trade-off between
accuracy and data resources. Both approaches
have room for improvement and application, and
a hybrid approach could be explored in further
experiments aiming to increase the DSC. Currently,
the dataset is being extended to include other
types of neurons.

5.2 Future Work

For future work, we hope to evaluate other
U-Net-based methods for segmentation to better
recover details that have been lost in fine structures
such as dendrites. We are also working on the
documentation of the used database to make it
open access since we have not found a similar
database in the state of the art.
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