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Abstract. Cancer immunotherapy approaches are
based on the interaction between cancer cells (CC) and
immune cells in a microenvironment that determines
the survival of one or the other cell type. Within this
context, macrophages play a critical role, as they can
directly destroy CCs by processes such as phagocytosis.
Additionally, hypoxia in the tumor microenvironment is
crucial, as altered oxygen levels can induce CC necrosis.
Performing these studies in vitro presents temporal
limitations, highlighting the relevance of computational
simulations. This study explores how variations in
oxygen levels affect tumor growth in an immunotherapy
model using the PhysiCell simulation environment. We
systematically modified oxygen (02) levels and observed
their impact on CC proliferation over 25 days. The
results reveal distinctive growth patterns: model y1
showed an initial progressive growth until day 13,
followed by a marked decrease due to the activation
of immune responses with a medium oxygen level.
Model y2, with a 2 % increase in oxygen, exhibited
more rapid and sustained growth, indicating increased
tumor resistance. The model y3, with a 1 % decrease
in oxygen, also showed an increase in tumor growth
but with distinct peaks at approximately day 14. The
correlation coefficients between y1 and y2 (0.926), y1
and y3 (0.921), and finally, y2 and y3 (0.994) support the
consistency and interdependence between the models,
suggesting that modifications in one factor will similarly
affect the other models. This study underscores the
importance of oxygen in tumor growth dynamics and how
its manipulation may be key to developing more effective
immunotherapy strategies for cancer treatment, saving
valuable time through computational simulations.
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1 Introduction

Immunotherapy has emerged as a promising study
in cancer treatment, focusing on the dynamic
interaction between cancer cells and the immune
system in a tumor microenvironment. Within
this context, hypoxia, a common phenomenon in
tumors, has been shown to have a significant
impact on tumor growth dynamics and response to
therapy [9]. Macrophages, immune system cells
that can phagocytize cancer cells, play a crucial
role in the immune response against cancer.

However, their function can be influenced by
the tumor environment, including oxygen levels
[13]. There are limitations when performing
in vitro clinical trials on immunotherapy and
hypoxia, so it is important to rely on computational
simulation [4]. Computational simulation has
become an invaluable tool for understanding
the complexity of these interactions and their
therapeutic implications in immunotherapy [3].
This technology allows researchers to model and
analyze various aspects of the immune system’s
behavior and its response to different treatments.

The advantages of simulation include saving
money and time and the absence of contamination
of in vitro [7] cultures. Another significant benefit is
the ability to run multiple scenarios and variations
in a controlled environment. In this context, this
study explores how alterations in oxygen (O2)
levels in the tumor microenvironment affect tumor
growth in immunotherapy.
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Table 1. Effects of intermittent and acute/chronic hypoxia in in vitro models of breast cancer

Article Cell line Hypoxia Conduction Intermittent Hypoxia (IH) Acute Hypoxia (AH) or
Chronic Hypoxia (CH).

[8] Liu, L. (2017) MDA-MB-231 Hypoxia chamber 12 h (21 %O2) followed by 12 h
of hypoxia (1 %O2) for 5-20 cycles 1 % O2 for 48 h

[6] Han J. (2017) (1) MDA-MB-231.
(2) MCF-7 Hypoxia chamber 20 h (21 % O2) followed by 4 h

of hypoxia (1 % O2) 1 % O2 for 24 h.

[2] Chen (2018) (1) MMTV-PyMT.
(2) MCF-7 Hypoxia chamber 24 h (21 % O2) followed by 24 h

of hypoxia (1 % O2) for 9 days 1 % O2 for 9 days.

[1] Alhawarat FM. (2019) MCF-7 AnaecroGen System h (1 % O2), three times a week 1 % O2 for 72 h, once a week.

Table 2. Models incorporating immunotherapy

Article Model Cell type Image/Environment

[12] Salgia R. (2018) Deterministic and stochastic Cancerous 2D/Matlab.

[14] Hsiu-Chuan Wei (2022) EDO Cancer, T, B, and MK lymphocytes 2D/ Matlab.

[11] Rojas-Domı́nguez A. (2022) Ising Hamiltonian Cancerous, T 2D lymphocytes/ Netlogo.

[5] Golmankhaneh A. (2023) Sigmoids, Power Law and Exponential Cancer cells 2D/Matlab and WebPlotDigitizer.

[10] Polyakov M. (2023) Diffusion equation Cancerous tumors 2D-3D/C++ and Python.

Using a simulation environment based on
PhysiCell [3], oxygen levels were systematically
altered to observe their effect on cancer cell
proliferation over time, and immune response
was activated on day 13 of each simulation.
The results provide crucial information on how
hypoxia and immunotherapy interact in the
tumor microenvironment and how these findings
can inform the development of more effective
therapeutic strategies for cancer treatment.

2 Related Work

Some studies investigated how hypoxia may
affect the immune response and the efficacy of
immunotherapy in vitro. Table 1 summarizes
various studies on the effects of hypoxia
on different breast cancer cell lines. The
studies use different breast cancer cell lines,
including MDA-MB-231, MCF-7, and MMTVPyMT,
allowing comparison of the effects of hypoxia
in different breast cancer models. The use of
hypoxia chambers predominates, although the
AnaecroGen system is also mentioned, and they
vary considerably between studies, both in the
duration of intermittent hypoxia cycles and in the
periods of acute or chronic hypoxia.

All studies use 1 % O2 to induce hypoxia, but
exposure durations and frequencies vary. The
table provides a clear and comparative view of
how different hypoxia conditions can influence in
vitro studies of breast cancer, which is crucial
for understanding the underlying mechanisms and
developing potential treatments.

Performing these in vitro assays means that
if the appropriate protocol is not followed, the
cell cultures are sometimes no longer optimal for
use in research, so it is important to use other
alternatives, such as computational simulations.
Table 2 summarizes studies that developed models
for immunotherapy in cancer treatment.

These studies use a variety of simulation
approaches and tools. For example, Salgia (2018)
and Golmankhaneh (2023) employ deterministic
and stochastic models in MatLab to simulate the
behavior of cancer cells in 2D environments.

Wei (2022) uses ordinary differential equations
(ODEs) to model different types of immune and
cancer cells also in MatLab. Rojas-Domı́nguez
(2022) adopts an approach based on the
Ising Hamiltonian model using NetLogo to
study the interaction between cancer cells and
T lymphocytes.
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Fig. 1. Representation of a) Cancer cells b) Oncogene
for simulating c) Cancer cell proliferation

Fig. 2. Representation of the cells of the immune system

Polyakov (2023) applies diffusion equations in
2D and 3D environments using C++ and Python
to simulate the growth of cancerous tumors.
Although these models offer valuable insights
into the interaction between cancer cells and
immunotherapeutic treatments, they have certain
limitations compared to PhysiCell.

Many of these models are restricted to 2D
environments, which can limit the accuracy
of the simulations by not considering the 3D
complexity of tumors. While powerful, the
simulation environments, such as MatLab and
NetLogo, may not be as efficient or scalable as
PhysiCell, specifically optimized for large-scale 3D
multicellular simulation.

PhysiCell also provides more robust integration
with experimental biological data and is highly
adaptable to incorporate new biological features
and mechanisms, which is crucial for accurate and
up-to-date immunotherapy models.

In addition, oxygen levels can be altered in
PhysiCell, which is essential for studying the
tumor microenvironment and its impact on the
effectiveness of treatments.

3 Methods and Materials

3.1 Cancer Cells

Cancer cells are cells that have undergone
genetic transformations that alter their growth and
division cycle, allowing them to proliferate in an
uncontrolled manner. In that context, the code
provided describes the behavior of hanging tumor
spheroids in the simulation model, which are very
common in breast cancer.

The life cycle details include a continuous
growth cycle and two cell death pathways,
apoptosis, and necrosis, with specific rates and
durations for each process. The cell has a defined
total volume with specific proportions of biomass
and fluid, and its mechanical dynamics include
cell-cell adhesion and repulsion.

In addition, the cell’s motility is disabled,
reflecting its inability to move autonomously. The
rates of secretion and uptake of substances such
as oxygen, essential for their survival and growth,
are also specified. In Fig. 1, the way cancer cells
interact with their environment and respond to the
oncogene to proliferate uncontrollably is presented.

3.2 Macrophages

A macrophage is a type of white blood cell
essential in the immune system, responsible for
detecting, engulfing, and destroying pathogens
and dead or damaged cells by a process known
as phagocytosis. This cell plays a crucial role in
the immune response alongside B cells (see Fig.
2). B cells are a type of lymphocyte originating in
the bone marrow and playing a crucial role in the
humoral immune response.

They produce and secrete antibodies, proteins
that bind to antigens to neutralize or mark them
for destruction by macrophages. Macrophages
in simulation have a phenotype that initially
disables their motility capabilities, with the speed
of movement set at 1 micron per minute and
a persistence time of 10 minutes. Migration is
partially biased (0.5).
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Table 3. Generality of microenvironment parameters

Description Parameter

Diffusion coefficient oxygen: 100000 micron2/min.

Decay rate oxygen: 0.1 1/min.

Initial condition oxygen: 38 mmHg.

Dirichlet boundary
condition

oxygen: 38 mmHg
True/False activated.

3.3 Multi-agent Simulation

PhysiCell is designed to investigate the dynamics
and interactions of thousands or millions of
cells in three-dimensional microenvironments with
environment-dependent phenotypes. It employs a
physical, lattice-free approach to minimize artifacts
associated with grids.

After initializing the microenvironment using
BioFVM [5] and cells, as well as the current
simulation time t = 0, PhysiCell internally tracks
tmech (the next time at which cell mechanics
functions are executed), tcell (the next time at
which cellular processes are executed) and tsave
(the next simulation data output time), with an
output frequency tdelta, tsave. We initially set:

tmech = ∆tmech, tcells = ∆tcells. (1)

The software repeats the main program loop
until the maximum simulation time is reached. To
learn more about the loop, see [3].

3.4 Biochemical Microenvironment

The BioFVM environment for simulation of the
chemical microenvironment uses a vector of
reaction-diffusion partial differential equations
(PDE). The modeling of the biochemical
microenvironment (within a Ω computational
domain and its ∂Ω boundary, discretized as
a Cartesian grid to optimize computational
efficiency) as a vector of reaction-diffusion
PDEs applied to a vector of ρ chemical
substrates as follows:

∂p

∂t
= D∇2p− λp+ S(p∗ − p)−Up+∑

cells−k

δ(x− xk)Wk[sk(p
∗
k − p)Ukp] in(Ω),

(2)

where:

– D∇2p is the diffusion.

– λp decay.

– S(p∗ − p) mass source.

– Up mass uptake.

–
∑

cells−k

δ(x − xk)Wk[sk(p
∗
k − p)Ukp] inΩ sources

and uptake by cells.

With null flow conditions in ∂Ω. In this
context, δ(x) represents the Dirac delta function,
xk indicates the position of cell number k, Wk

its volume, sk the vector detailing its secretion
rates, Uk the vector listing its uptake rates, and P ∗

the vector of saturation densities (density levels at
which cells cease secretion).

In addition, D and λ correspond to the vectors
of diffusion coefficients and degradation rates,
respectively. S is the supply rate, and U
is the uptake function. All products between
ab vectors are performed element by element
(Hadamard product).

Numerically, we solve the solution in time
t + ∆t by a first-order operator decomposition:
first, the bulk source/sink terms are solved over
the entire domain (and the stored solution is
overwritten), then the cell-centered source/sink
terms are solved (and the solution is overwritten),
and finally the reaction-diffusion terms (again, the
stored solutions are overwritten) [5].

We mention the parameters for the
microenvironment, which are presented in the
Table 3. These parameters are associated
with the development of cancer cells and can
affect their tumor proliferation, specifically in the
oxygenation cycle.

To facilitate the use of the code, we have
provided a link on GitHub where models y1, y2, and
y3 are included, along with the specific parameter
modifications for each of them1.
1github.com/Alex241294/hipoxya-tumor/upload/main
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Fig. 3. Diagram of a) The interaction between cancer cells and the immune system that starts with the proliferation
of cancer cells in the microenvironment, there are B cells that identify the cancer cells and send an activation signal
to the macrophages to identify the cancer cells, and b) The interaction between these cells to perform phagocytosis
by the macrophages

4 Implementation

In this work, we define the microenvironment
for developing cancer cells with the conditions
specified in the section “Microenvironment”. The
domain for the visualization of the simulations
is in the second and third dimensions, and the
configuration for simulation time is in minutes; for
example, to simulate 25 days, it is necessary to
multiply the number of days by 24 (the number of
hours in a day), and then by 60 (minutes in an hour)
that is 36 000 minutes.

We initially define a set of cancer cells that will
proliferate according to the parameters mentioned
in section 3.3. Also, macrophages will activate and
start phagocytosis from day 13. Simulation y1 was
performed under average conditions without any
oxygen alteration.

For simulation y2, we applied the hypoxia effect,
which is 1 % of oxygen (02) for 25 days [8]. Finally,
in y3, we increased the oxygen level. Fig. 3 is
a general representation of the methodology, in
which there are cancer cells, oncogenes for cancer
cells, macrophages, and B cells. Fig. 3 is the
general representation of the methodology in which
there are, cancer cells, oncogene for cancer cells,
macrophages, and B cells.

The immune system activation in y1, y2, and y3
is on day 13. A specific number of macrophages
perform phagocytosis starting at day 13 and up
to day 25. For cell growth simulations, specific
parameters that were modified for y1, y2, and y3
are defined (see Table 4).

5 Results

Applying the methodology mentioned in section 4,
for y1, y2, and y3 we used for the model hanging
tumor spheroids, a macrophage activation on day
13, and a 25-day simulation in PhysiCell. The first
simulation was performed under average normal
conditions for y1. For y2, we increased the 2 %
of O2. On the other hand, for y3, we decreased the
1 % of O2 according to [2].

Cancer cells represent the blue color; yellow
represents an oncogene, black represents the
nucleus of each cancer cell, and green represents
macrophages. In Fig. 4, the result of y1 can
be seen, which, in the biological context [3], is a
simulation with average parameters.

For y2, to which the oncogene saturation
number and threshold were modified, as well as
increased oxygenation, differences are observed

Computación y Sistemas, Vol. 29, No. 1, 2025, pp. 43–52
doi: 10.13053/CyS-29-1-5529

Impact of Altered Oxygen Level on the Growth Dynamics of Hanging Tumor 47

ISSN 2007-9737



Fig. 4. Graphical representation of the simulation of model y1

Fig. 5. Graphical representation of the simulation of model y2

Fig. 6. Graphical representation of the simulation of model y3

concerning y1, at least in the increase of cells
(see Fig. 5). Finally, hypoxia was applied to
y3, and the simulation was obtained as shown in
Fig. 6. In Fig. 7 we show the behavior of the
simulations and we can observe that concerning
time in the three cases, there is an exponential
trend of cancer cell growth.

The pairwise correlation coefficient was
calculated for each combination obtaining: the
correlation coefficient between y1 and y2 = 0.926,
y1 and y3 = 0.921, finally y2 and y3 = 0.994. We
performed one-factor ANOVA for y1, y2 and y3 and
obtained that the test F = 38.87 and the test value
P= 3.5×10−12. So we performed pairwise ANOVA.
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Fig. 7. Tumor growth of each model

Fig. 8. CDIS representation obtained from a) dataset BreakHis 40x from [15] b) y1 c) y2 and d) y3 model

Comparison between the diameter of ductal
carcinoma in situ (DCIS) and the simulated
models reveals that DCIS, with a diameter of
1.511 ± 0.10 mm, differs from the models in
several aspects: Model y1 shows a diameter of

1.422±0.10 mm, which is slightly smaller than that
of DCIS; model y2 presents a diameter of 1.6±0.10
mm, which is larger, indicating an overestimation of
growth; and model y3 has the smallest diameter of
1.288± 0.10 mm.
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Table 4. Anova results for the 3 simulations

Simulation y1, y2 y1, y3 y2, y3

F-value 12.6206 2.7199 5.2164

P-value 0.0008 0.1053 0.0266

These discrepancies underscore the need to
adjust model y3. It should be noted that this
model includes hypoxia generation, suggesting
that the tumor in this model needs more time to
reach a diameter comparable to that of DCIS, as
illustrated in Fig. 8(a).

6 Discussion and Future Work

This research stands out for its interdisciplinary
approach, which combines elements of biology,
computational modeling, and immunotherapy,
a comprehensive understanding of the
interaction between the immune system and
the tumor microenvironment.

This approach not only offers innovative
perspectives on cancer treatment but also
underscores the importance of collaboration
between different scientific fields to advance the
development of more effective therapies.

The lack of significance in the combination
of y1 and y3 could reflect a lower relevance of
the interaction between these parameters in the
simulated context, or it could suggest the need
to explore other factors that may be influencing
tumor dynamics.

Overall, these results provide valuable
information for tuning models and designing
more effective treatments, highlighting the
need for a more detailed evaluation of how
different combinations of parameters affect cancer
progression. In biopsy images, cancer cells can
be seen to overlap each other, as shown in Fig.
8 making it difficult to fully visualize all cells, both
cancerous and noncancerous.

In our study, we performed 2D simulations,
which limits the accuracy in visualizing certain
patterns, such as the ellipsoid shape. Therefore,
we propose to perform 3D simulations in future
work to improve the accuracy of the representation
of these patterns.

Tumor growth patterns that experience hypoxia
can cause necrosis, and in some types of cancer,
such as ductal carcinoma in situ (DCIS), this can
lead to the formation of microcalcifications. These
microcalcifications in the mammary duct are
detectable by mammography and may allow early
detection of cancer.

A future approach is to develop models that
simulate the formation of microcalcifications from
tumor growth, to improve early detection of DCIS
on mammography.

Other future work is planned to extend the
duration of the simulation beyond 25 days to
obtain a complete picture of long-term tumor
dynamics and to evaluate how variable oxygen
levels sustainably influence cancer progression
and treatment effectiveness.

7 Conclusions

The y2 model had the highest number of cancer
cells during the 25 days, y1, and y3 had
close behaviors until day 13 of immune system
activation. Research has shown that sensitivity to
altered oxygen levels in the microenvironment, as
well as oncogene expression, have a significant
impact on cancer cell proliferation within an
immunotherapy model.

The high correlation between parameters y1,
y2, and y3 suggests that changes in these oxygen
parameters produce predictable and consistent
effects on tumor growth, indicating the robustness
of the models used.

Furthermore, the p-value significantly less
than 0.05 supports the existence of significant
differences between the means of models y1, y2,
and y3, reaffirming the influence of the studied
factors on tumor growth.

These findings underscore the importance of
understanding how oxygen levels and oncoprotein
expression affect cancer behavior. This knowledge
may guide future research and contribute to
developing more effective therapeutic strategies,
such as manipulating oxygen levels to control
tumor growth.

Computación y Sistemas, Vol. 29, No. 1, 2025, pp. 43–52
doi: 10.13053/CyS-29-1-5529

Alex Saul Salas-Tlapaya, Anabel Sanchez-Sanchez, et al.50

ISSN 2007-9737



References

1. Alhawarat, F. M., Hammad, H. M., Hijjawi,
M. S., Sharab, A. S., Abuarqoub, D. A.,
Al-Shhab, M. A., Zihlif, M. A. (2019).
The effect of cycling hypoxia on MCF-7
cancer stem cells and the impact of their
microenvironment on angiogenesis using
human umbilical vein endothelial cells
(HUVECs) as a model. PeerJ, Vol. 7,
pp. e5990. DOI: 10.7717/peerj.5990.

2. Chen, A., Sceneay, J., Gödde, N., Kinwel, T.,
Ham, S., Thompson, E. W., Humbert, P. O.,
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