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Abstract. The ever-evolving data landscape presents
significant challenges, such as concept drift, where shifts
in statistical distributions within data streams pose critical
cybersecurity threats. Traditional machine learning,
which relies on static models, struggles with concept
drift, underscoring the necessity for adaptive approaches
specifically designed for streaming data. This paper
investigates methodologies aimed at enhancing security
in dynamic data environments. A hybrid concept drift
detection method that combines error rate analysis with
data distribution monitoring is proposed. Additionally,
to update the training dataset, the approach employs
a combination of sliding window-based data capture
and drift analysis, along with K-Means clustering and
a Random Forest classifier. This includes the use
of two types of sliding windows: fixed and adaptive.
Adaptive Random Forest classifier is used to anomaly
detection and retraining the model. Experiments
were conducted on the NSL-KDD dataset to detect
and quantify the severity of concept drift, utilizing
techniques such as Principal Component Analysis and
Spearman’s Correlation Coefficient. Consequently, the
performance of the Intrusion Detection System to adapt
to these changes was also evaluated. The proposed
adaptive model demonstrates significant enhancements,
with Adaptive Random Forest achieving a classification
accuracy of 98.66%. Furthermore, precision, detection
rate, and F1-score rates of 99.52%, 97.74%, and
99.78%, respectively, are achieved. All this while
maintaining a low false alarm rate of 1.14%.

Keywords. Adaptive IDS, concept drift, hybrid
approach, clustering, classification.

1 Introduction

In today’s interconnected world, cybersecurity is
crucial for protecting digital infrastructure and
sensitive information. In 2023, Kaspersky
[10] reported detecting approximately 411,000
malicious files, marking an increase of nearly 3%
compared to the previous year.

Among the identified malicious files were DDoS
botnets, ransomware, miners, DNS changers, and
proxy bots, which are notorious for compromising
computer systems.

Furthermore, Kaspersky’s honeypots revealed
that 97.91% of brute-force password attempts were
focused on Telnet, with only 2.09% targeting SSH.
Therefore, to effectively navigate the continually
evolving cybersecurity landscape and mitigate
emerging threats, it is essential to implement
advanced security measures [19].

In addressing this need, Intrusion Detection
Systems (IDS) stand out as fundamental tools. In
particular, anomaly-based IDS employing machine
learning models actively monitor network traffic
for abnormal activities or suspicious behavior
patterns indicative of potential intrusion attempts or
cyberattacks [3].

Upon detecting unusual activity, the IDS
promptly generates alerts, enabling network
administrators to swiftly implement corrective
measures [16].
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Fig. 1. Data distribution for normal, DDoS attacks, and firmware updates

This proactive approach is crucial for early
threat detection, enhancing network security, and
protecting an organization’s digital assets.

However, the phenomenon of concept drift,
which involves shifts in the statistical properties
of input features and/or the target variable over
time, can significantly impact predictive model
performance by altering the relationship between
input features and the target variable, potentially
leading to decreased accuracy [12, 19].

Traditional IDS relying on static models, where
a predictive model is established to forecast new
instances, face significant challenges in effectively
mitigating emerging cyber threats and attacks due
to the evolving patterns and behaviors that IDS are
designed to detect [16].

This phenomenon can be illustrated in Fig. 1,
which shows the typical learned distribution of
an IDS for detecting Distributed Denial-of-Service
(DDoS) attacks [17]. Fig. 1 reveals fluctuations
in time, energy, traffic level, and irregular patterns,
characteristics typically associated with attacks.

However, this distribution may not always
remain constant. For instance, a firmware
update could alter the data distribution, causing
it to resemble that of a DDoS attack and
potentially leading to misclassification. This
decrease in detection accuracy compels
network administrators to explore alternative
tools and solutions.

Therefore, it is crucial to develop adaptive
models capable of adjusting to emerging patterns
and variations in dynamic stream data [16].
In this context, incremental learning algorithms,
which continuously update models with new data
without requiring complete retraining, along with
concept drift detection methods, are essential for
maintaining model performance [19].

Additionally, models that do not rely exclusively
on labeled datasets are needed, ensuring
effective detection even in environments where
labeled data availability is limited or nonexistent
[9]. This approach ensures that IDS can
maintain their sensitivity to the ever-changing
cybersecurity landscape.

This paper aims, as its major contribution,
to introduce an adaptive model for IDS that
incorporates incremental learning through a hybrid
unsupervised approach and a concept drift
detection method based on distribution and
error analysis.

Additionally, it presents an adaptive sliding
window method for retraining the model, allowing
it to accommodate emerging concepts or changes
in data distribution. This approach autonomously
identifies shifts in data patterns, enhancing the
system’s ability to respond to emerging threats
without relying on predefined knowledge. The
remainder of this paper is structured as follows.
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Algorithm 1 Concept drift manager

Input: Testing Data,
Threshold : Thresh DR,
Threshold : Thresh FAR

Output: Update adaptive random forest model.

1: procedure Adaptive Sliding Window(Testing data)
2: Divide the testing data into fixed sliding windows of size n, forming a set S = {SW1, SW2, SW3, · · · , SWn}.
3: for each sliding window SWi in the set S do
4: if Drift Detection(SWi, SWi+1) == True then ▷ Algorithm 2
5: Add SWi+1 to the Adaptive Sliding Window (ASW).
6: else
7: Predict on SWi+1.
8: end if
9: end for

10: return ASW
11: end procedure

12: procedure Scenario Identification(Thresh DR, Thresh FAR)
13: Perform Random Forest classifier on SWi

14: (DR, FAR)← PredictWithCurrentModel(SWi+1)
15: if DR < Thresh DR then
16: scenario← 1
17: else if FAR > Thresh FAR then
18: scenario← 2
19: end if
20: return scenarios
21: end procedure

22: procedure Handling Concept Drift(Testing Data, Thresh DR, Thresh FAR)
23: scenario← SCENARIO IDENTIFICATION(Thresh DR, Thresh FAR)
24: ASW← ADAPTIVE SLIDING WINDOW(Testing Data)
25: X ← PairwiseDistanceCalculation(ASW)
26: (cx = {c1, c2, c3, c4, c5})← KMeans(X, k = 5)
27: kx ← Lowest Variance(cx)
28: (normal, attacks)← PredictWithCurrentModel(kx)
29: if scenario == 1 then
30: new attack instances← normal
31: current model← UpdateRandomForestModel(new attack instances)
32: else if scenario == 2 then
33: new normal instances← attacks
34: current model← UpdateRandomForestModel(new normal instances)
35: end if
36: end procedure

Section 2 presents the background and
motivation of this research and the concept drift
phenomenon. Section 3 describes the proposed
adaptive model and the concept drift detection
method. Section 4 presents and discusses the
experimental results in different settings. Section
5 outlines the conclusions and future work.

2 Background

In dynamic data environments, the challenge of
concept drift becomes increasingly significant. As
data distributions shift over time, predictive models
can struggle to maintain their accuracy, as they are
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Algorithm 2 Concept drift detection method

Input: Sliding windows: SWi, SWi+1.
Threshold : threshold.

Output: Concept drift detection (Boolean).
1: procedure PCA(SWi, SWi+1)
2: pcsi ← PCA(SWi)
3: pcsi+1 ← PCA(SWi+1)
4: d1 ← pcsi[1]
5: d2 ← pcsi[2]
6: d3 ← pcsi+1[1]
7: d4 ← pcsi+1[2]
8: return (d1, d2, d3, d4)
9: end procedure

10: procedure Spearman Calculation(pc1i, pc2i, pc1i+1, pc2i+1)
11: ρ1 ← SpearmanCorr(d1, d2)
12: ρ2 ← SpearmanCorr(d3, d4)
13: return (ρ1, ρ2)
14: end procedure

15: procedure Drift Detection(SWi, SWi+1, threshold)
16: (d1, d2, d3, d4)← PCA(SWi,SWi+1)
17: (ρ1, ρ2)← Spearman Calculation(d1, d2, d3, d4)
18: if (δ ← (ρ1 − ρ2) < threshold) then
19: Concept drift
20: else
21: Concept drift not detected
22: end if
23: end procedure

often trained on static datasets that do not account
for evolving patterns [19].

Concept drift presents substantial difficulties
for traditional systems that rely on static models,
making it essential to develop adaptive models
that can adjust to these changes in real-time
[16]. Addressing these challenges is crucial
for ensuring the robustness and effectiveness of
predictive models in the face of evolving data
patterns [9]. There are two primary approaches to
identifying concept drift within data streams:
1. Data distribution-based methods.
2. Error rate-based methods [9].

Data distribution-based methods monitor
changes in data distribution over time by analyzing
statistical properties [16]. For this, they rely on
windowing methods, particularly fixed sliding

windows, which serve as snapshots in time,
denoted as t0.

These snapshots facilitate the comparison of
distributions Pt0 and Pt1 , enabling the detection
of changes in data patterns, indicating concept
drift [19]. Qahtan et al. [14] proposed employing
Principal Component Analysis (PCA) alongside the
Kullback-Leibler change score to detect abrupt
changes and evaluate the severity of concept drift
between sliding windows.

Wahab [2] proposed using PCA to detect and
measure the degree of drift between two windows
by evaluating the angle of intersection between
their eigenvalues. If this angle is greater than or
equal to 60°, a drift is signaled.

Chu et al. [5] introduced an ensemble
approach to concept drift detection using
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Fig. 2. Hybrid approach: K-means and RF for effective concept drift handling

nonparametric statistical metrics, including the
Kolmogorov-Smirnov, Wilcoxon rank-sum, and
Mann-Kendall tests, to compare the cumulative
distribution functions of two windows.

Drift is detected by significant differences
(p-values below a threshold) between two
consecutive windows. However, despite their
utility, fixed sliding windows present notable
drawbacks: they may not effectively capture
gradual changes in data distribution and can be
inefficient due to their static nature [16, 19].

For instance, a window that is too large might
incorporate outdated information, while a smaller
window may lack sufficient context to accurately
reflect changes. In contrast, adaptive windowing
methods, such as Adaptive Windowing (ADWIN),
dynamically adjust the size of the data window
based on changes in data distribution.

ADWIN, for example, uses variance as its
primary criterion for adjusting the window, allowing
for a more flexible response to evolving data
patterns [16]. Error rate-based methods monitor
changes in predictive model performance by
measuring accuracy or error rates over time [8].

Examples include Drift Detection Method
(DDM) and Early Drift Detection Method (EDDM),
which determine concept drift by tracking
performance degradation [12]. Jain and Kaur
[8] proposed monitoring both accuracy and False
Alarm Rate (FAR), indicating drift when accuracy
falls below a specified threshold and FAR exceeds
another threshold.

Yang and Shami [19] proposed combining
sliding and adaptive window techniques with error

analysis. This method retains a significant amount
of data related to concept drift in the sliding window
when accuracy drops and uses an adaptive
window for model retraining.

Error rate-based methods are particularly
useful when labeled data is available, as they
directly assess model performance on known
outcomes [19]. After detecting drift, it’s crucial to
manage the changes effectively so the learning
model can adapt seamlessly to new data patterns.

To address the concept drift, various strategies
have been proposed to develop more robust
IDS. Supervised adaptive approaches are often
the most effective and quickest to adapt and
detect attacks [3]. Seth, Singh, and Chahal
[16] implemented an Adaptive Random Forest
(ARF) classifier with ADWIN for IDS, demonstrating
superior performance compared to Naive Bayes
and K-Nearest Neighbors in a comparative
analysis using streaming data. Chouchen
and Jemili [4] proposed an ensemble adaptive
approach combining ARF and Support Vector
Regression (SVR) with ADWIN to enhance
detection precision, employing a query strategy
to guide the supervised module in identifying
unknown attacks through expert intervention.

A Light Gradient Boosting Machine (LGBM)
combined with an Optimized Adaptive Sliding
Window (OASW) drift detector was proposed by
Yang and Shami [19], achieving high accuracy
while minimizing time and memory usage.
Supervised adaptive approaches are effective but
require labeled network traffic data, which is hard
to obtain, especially with large data volumes.
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Fig. 3. Overview of the proposed adaptive model with concept drift detection

Also, the constant emergence of new network
attack forms complicates maintaining an updated
label database, hindering supervised models from
effectively identifying and responding to emerging
threats in network security [18].

This limitation highlights the need to explore
unsupervised adaptive approaches, which are
effective when labeled data is scarce or imperfect.
Clustering techniques, which group instances
based on similarities rather than labels, offer
valuable insights and improve the detection of
network attacks [3, 18]. However, clustering
online poses challenges, including computational
complexity in updating cluster centroids, sensitivity
to parameter settings, and difficulties in handling
concept drift [3]. Additionally, clustering methods
may struggle with the high-dimensional and
evolving nature of streaming data, potentially
leading to performance degradation [15, 18].

Recent studies demonstrate that hybrid
approaches, such as K-Means clustering
combined with a Support Vector Machine (SVM)
classifier [9] and K-Means clustering with Random
Forest and Logistic Regression classifiers [8],
effectively detect anomalies and concept drifts in
real-time data streams.

These combinations leverage the strengths of
each method, providing robust and accurate
detection, flexibility, and efficient resource
utilization by updating only when a concept

drift is detected. Despite these advantages,
reliance on unsupervised methods can lead to a
high rate of false alarms, which may hinder the
effective adaptation of IDS. Challenges such as
data noise and class imbalance further negatively
impact detection accuracy and overall system
performance [8, 9].

2.1 Summary

Supervised adaptive approaches effectively detect
and adapt to attacks, with the ARF classifier
excelling in complex datasets [4, 16]. Hybrid
approaches, which combine K-Means clustering
with supervised learning, enhance performance
by leveraging K-Means clustering’s efficiency
and its capability to operate without labeled
data [8, 9]. This approach updates models
only when concept drift is detected, which is
more resource-efficient compared to continuous
clustering methods [3, 18]. Nevertheless, since
these approaches utilize unsupervised learning
for model updates, they may experience reduced
performance due to data imbalance and the
presence of noisy data [8, 9].

Error rate-based concept drift detection
typically requires ground-truth labels for optimal
performance [19]. However, it can be adapted
to unsupervised methods by using K-Means
clustering for data labeling [8]. Combining
this approach with distribution-based methods
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Table 1. NSL-KDD dataset attack types

DoS Probe R2L U2R

apache2, back, land,
mailbomb, neptune, pod,

processtable, smurf,
teardrop, udpstorm

ipsweep, mscan, nmap,
portsweep, saint, satan

spy, warezclient, ftp write,
guesspasswd, httptunnel,

imap, multihop, named,
phf, sendmail,

snmpgetattack,
warezmaster,

xlock, xsnopp

bufferoverflow,
loadmodule, perl, ps,
rootkit, snmpguess,

sqlattack, worm, xterm

and sliding window techniques enhances
accuracy by effectively detecting data changes
and concept drift.

This approach effectively detects both gradual
and abrupt changes, even with limited labeled
data [9].

Additionally, while distribution-based methods
alone cannot quantify the severity of concept drift,
they can be integrated with statistical metrics to
achieve this [5, 14].

Finally, sliding windows enable continuous
monitoring and adaptation, while adaptive windows
retain extensive data patterns, thereby enhancing
the model’s performance and adaptability to new
trends [16, 19].

3 Proposed Approach

The proposed approach for managing and
detecting concept drift integrates two types of
sliding windows to handle dynamic data: A fixed
sliding window for stability in model performance
and an adaptive sliding window for retraining to
accommodate new data patterns. This adaptive
mechanism enables the system to continually
adapt and refine its understanding, ensuring
robustness and accuracy in handling evolving
data patterns.

The concept drift detection is founded upon
the analysis of data distribution and error rate
analysis, with a hybrid unsupervised approach
being employed for managing the concept
drift. Subsequent subsections detail the proposed
adaptive model with concept drift detection.

3.1 Concept Drift Detection Method

The proposed method for concept drift detection
harnesses PCA alongside Spearman’s Correlation
Coefficient (SCC). In data streams without
drifts, the monotonic relationship is strong.
The explanation is simple: during an attack,
certain features such as connection time, energy
consumption, and traffic level consistently rise on
the targeted device.

However, in a firmware update, while values
like connection time, energy consumption, and
traffic levels may rise, irregular patterns do not
necessarily follow suit. This alteration in the
monotonic relationship, when evaluated between
two sliding windows, may indicate the presence
of concept drift and, furthermore, allow for the
measurement of its severity.

SCC [1] is a statistical measure that evaluates
the strength and direction of the relationship
between two ordinal or quantitative variables.
Unlike Pearson’s correlation coefficient, which
assesses the linear relationship between variables,
Spearman evaluates the relationship based on the
ranks of variable values.

This feature allows it to capture relationships
that do not necessarily follow a linear pattern. The
formula for SCC is given by Eq. 1:

ρ = 1−
6
∑

d2i

n(n2 − 1)
, (1)

where ρ is the SCC, di are the differences between
the ranks of the two variables, and n is the
number of observations. PCA [7] is a statistical
technique used to reduce the dimensionality of a
dataset while preserving most of its variability. It
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Table 2. Concept drift indicator between SW0 and subsequent windows

SW0 SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10

(δ) 0.0127 0.0584 0.0073 0.2550 0.2871 0.0274 0.0122 0.0059 0.2333 0.0284

achieves this by transforming the original variables
into a new set of variables, called principal
components, which are linear combinations of
the original variables.

These principal components are ordered in
terms of the amount of variability they explain in
the data, with the first component explaining the
most variability, followed by the second, and so
on. In the proposed method, PCA is applied to
each fixed sliding window SWi to extract the two
principal components PC1 and PC2.

These components represent the most
significant variance in the data. SCC is then
used to measure the monotonic relationship
between these two components. For each sliding
window SWi, PCA is performed to reduce the
dimensionality of the data to the two principal
components PC1 and PC2. SCC (ρi) is computed
between PC1 and PC2 within SWi.

SCC evaluates the monotonic relationship,
capturing both linear and non-linear correlations.
In data streams without changes in the underlying
concept, SCC is expected to remain constant
across different sliding windows (SWi,SWi+1).

A significant change (δ) in SCC between (ρ1)
and (ρ2) indicates potential concept drift. A
large (δ) may suggest an abrupt change, whereas
a small (δ) could represent a gradual change.
Therefore, (δ) can serve as an indicator of the
severity of the concept drift.

Algorithm 2 continuously monitors the data
stream, applies PCA for dimensionality reduction
(see lines 1-9 in Algoritm 2), and uses SCC
to evaluate the monotonic relationship between
the principal components (see lines 10-14 in
Algorithm 2). A significant change in SCC between
consecutive windows indicates concept drift (see
lines 18-19 in Algoritm 2).

For practical implementation, selecting the
sliding window size and the threshold (δ) for
detecting significant changes in SCC is crucial.
These parameters should be optimized based on

the specific characteristics of the data stream and
the application requirements.

3.2 Enhancing Drift Handling with K-means
and Random Forest

To address concept drift, the adaptability of
K-Means and Random Forest to evolving data
patterns over time is leveraged. A comprehensive
strategy for enhancing drift handling is outlined in
Algorithm 1, providing a detailed process. Firstly,
the data are divided into fixed sliding windows of
size n, forming a set:

S = (SW1,SW2,SW3, · · · ,SWn). (2)

Subsequently, Algorithm 2 is applied to
precisely detect concept drift between two
consecutive sliding windows (SWi, SWi+1).
To effectively manage potential concept drift
propagation to consecutive fixed sliding windows,
an adaptive sliding window is utilized to retain
these windows and extract the necessary
information (see lines 1-11 in Algorithm 1).

The proposed approach suggests using the
adaptive sliding window to identify clusters with
similar statistical distributions. To achieve
this, a pairwise similarity matrix is constructed
using the Manhattan distance (see line 25 in
Algorithm 1). This metric is selected for its strong
generalization to higher dimensions, efficiency in
parallel processing environments, and reduced
computation time [13], all of which are crucial
for the implementation of real-time adaptive IDS
models. K-Means clustering is used to partition
the pairwise distance matrix into k clusters, with
k being a user-defined parameter (see line 26
in Algorithm 1). This strategy ensures that the
clustering process not only organizes the data into
meaningful clusters but also captures the inherent
relationships between instances, leasing to more
accurate and insightful results [6].
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Table 3. Performance evaluation before drift handling (NSL-KDD dataset)

SW Id Accuracy Precision DR FAR F1-score Drift

(SW0,SW1) 0.9988 0.9985 0.9985 0.001 0.9985 No

(SW1,SW2) 0.9990 0.9995 0.9980 0.0003 0.9987 No

(SW2,SW3) 0.9990 1 0.9974 0 0.9987 No

(SW3,SW4) 0.4986 0.9596 0.4021 0.0748 0.5667 Yes

(SW4,SW5) 0.4904 0.9623 0.3930 0.0695 0.5580 Yes

(SW5,SW6) 0.9865 0.9953 0.9715 0.0031 0.9833 No

(SW6,SW7) 0.9832 0.9990 0.9608 0.00006 0.9795 No

(SW7,SW8) 0.9884 0.9979 0.9732 0.0013 0.9854 No

(SW8,SW9) 0.5136 0.9609 0.4216 0.0764 0.5861 Yes

(SW9,SW10) 0.9820 0.9924 0.9310 0.0050 0.9775 No

Average 0.8439 0.9865 0.8047 0.0231 0.8632 —

To determine the optimal value for k, Canopy
clustering is employed. This method evaluates
various potential values for k and suggests initial
cluster centers [9]. The proposed model addresses
two scenarios related to concept drift: (1) instances
previously classified as normal are now attack,
reducing the Detection Rate (DR) and indicating
new threats; (2) instances previously attack are
now normal, increasing the FAR and suggesting
changes in network behavior.

To effectively define these scenarios, a concept
drift detection method based on error rates,
specifically focusing on DR and FAR, is proposed
as outlined in Algorithm 1 (see lines 12-21 in
Algorithm 1). Given the absence of ground-truth
labels, clusters generated by the K-Means
clustering are utilized to assign labels [8, 9].

This approach facilitates the effective
determination of each scenario type, allowing
for a robust identification and response to evolving
data patterns.

If the DR metric decreases, it is crucial to
identify attack instances that the current model fails
to recognize. To address this, clusters with the
least variance are selected to focus on significant
examples according to their similarity, reducing
sample size and managing data imbalance.

Previous research shows that clustering
enhances model performance by focusing on
representative examples, effectively addressing
data imbalance [8, 9]. Analyzing these
low-variance clusters helps differentiate between
correctly and incorrectly classified distributions.

A Random Forest classifier is used to classify
these low-variance clusters into normal and attack
categories. When concept drift occurs, it reveals
new attacks classified as normal, allowing for
model refinement (see lines 29-31 in Algorithm 1).

When the FAR increases, previously classified
attack instances are reassessed to improve
normal instance classification (see lines 32-34 in
Algorithm 1). Fig. 2 illustrates the model’s handling
of concept drift in both scenarios.

3.3 Adaptive Random Forest Training
and Prediction

The primary aim of this study is to detect anomalies
in network traffic. For this purpose, an ARF
classifier was chosen due to its effectiveness
in detecting and adapting to attacks [11, 16].
Due to the presence of concept drift, a model
trained once cannot be reliably applied at all times,
necessitating retraining upon detecting drift.
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Fig. 4. Data distribution of principal components and SCC of SW3 and SW4

To ascertain drift in traffic, an SCC between
the principal components of consecutive sliding
windows is calculated over time. Fig. 3 provides an
overview of the proposed approach for managing
concept drift and detecting anomalies. The next
section provides the results obtained using the
proposed adaptive model.

4 Results and Discussions

In this research paper, an adaptive model for
IDS is proposed, utilizing a hybrid approach
based on k-Means clustering and Random Forest
classification with concept drift detection. To
validate the performance of the proposed adaptive
model, several experiments were conducted using
evaluation metrics such as accuracy, precision,
DR, FAR, and F1-score [9].

The primary aim of the experimental framework
is to evaluate the adaptive model’s ability to
adjust to evolving data and detect concept drifts.
The experiments were performed using hardware
resources, specifically an Intel® Xeon® CPU
@ 2.20GHz and 12.67 GB of RAM. K-Means
clustering was used to label the unlabeled dataset.

The resulting clusters served as input for a
Random Forest classifier to develop the initial

model, trained on the labeled training set from the
NSL-KDD dataset. The NSL-KDD dataset [17] is
the most widely preferred publicly available dataset
for researchers in IDS [8, 9, 19].

It contains 148,517 records, each with 41
features plus a label class as the 42nd feature. Of
these 41 features, 32 are continuous, while 9 are
categorical. The NSL-KDD dataset is divided into
training and test sets. The training set includes 22
attack types, categorized into four classes:

Denial of Service (DoS), User to Root (U2R),
Remote to Local (R2L), and Probe. Additionally,
17 more attacks in the same classes are included
in the test set. Table 1 shows the attack types in the
test and training sets; bold text denotes the attacks
introduced in the test set, while italic text denotes
those exclusive to the training set.

Hence, a notable occurrence is the sudden
drift observed from the training set to the test
set within the NSL-KDD dataset [19]. This
phenomenon arises from the absence of certain
unknown attacks in the training set, leading to
misclassification of such attacks in the test set as
normal traffic.

The presence of categorical attributes
required the use of label encoding to convert
these attributes into numerical values suitable
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Fig. 5. Classifier accuracy before and after concept drift
on NSL-KDD dataset

for analysis. Additionally, the range of all
feature values was normalized using min-max
normalization to ensure that all features contribute
equally to the model’s performance and improve
convergence during training.

This preprocessing step is crucial for
maintaining data integrity and enhancing the
overall effectiveness of the proposed adaptive
model. Furthermore, given the windowed nature
of the data streaming concept, the integration of
the two sets involved merging them into a unified
dataset through the random selection of windows
from each set.

For this study, a downsized NSL-KDD dataset
comprising 5.0 × 103 instances was selected after
testing various sliding window sizes to determine
the optimal window size. It is important to note that
larger windows might dilute concept drifts, while
excessively small windows could compromise the
effective detection of these drifts.

Therefore, selecting an appropriate window size
is crucial for balancing detection sensitivity and
maintaining model performance. After randomly
merging the windows from the two sets, the
objective is to detect concept drift between the
sliding windows. This involves monitoring changes
in the data distribution over time to identify shifts in
patterns or relationships.

Table 2 presents the results obtained after
employing the proposed concept drift detection
method described in Subsection 3.1. As observed

in Table 2, there are no significant changes (δ)
in the SCC across sliding windows SW0 through
SW3. However, this pattern is disrupted between
windows SW3 and SW4, where a sudden change
becomes noticeable.

This suggests a significant abrupt conceptual
change, which persists in the subsequent window
SW5, and finally reappears in window SW9.
Additionally, as shown in Table 2, the value of (δ)
in SW9 is lower than in SW4 and SW5, which is
reflected in the accuracy shown in Table 3. This
indicates that the method is capable of detecting
gradual changes.

Fig. 4 illustrates the data distribution of the
two principal components within sliding windows
SW3 and SW4, along with their SCC. In SW3,
a consistent pattern is evident, with points
following a uniform trajectory, indicating a coherent
relationship between the variables. However, in the
presence of a concept drift in SW4, this pattern
diminishes, suggesting increased randomness or
less predictability in the trajectory of the points.

This confirms the effectiveness of the proposed
method for detecting concept drift. Tables 3
and 4 present the accuracy, precision, DR, FAR,
and F1-score before and after drift handling in
the NSL-KDD dataset. These results are then
fed into the K-Means clustering, leading to the
identification of five clusters based on the canopy
clustering outcomes.

Table 3 highlights a significant decline in
anomaly detection performance for (SW3,SW4),
(SW4,SW5), and (SW8,SW9). This underscores
the rationale for the proposed method in identifying
the scenario based on the concept drift approach
using error rates.

As observed, there is a decrease in the
DR, highlighting its inability to recognize new
attacks. Consequently, the prediction of the
subsequent windowed data relied on the newly
adapted model. Enhanced accuracy, precision,
DR, FAR, and F1-score are evident in Table 4.
These improvements observed further validate
the method’s capability in mitigating drift-induced
performance degradation.

Furthermore, the columns Adaptation Time
and Inference Time in Table 4 showcase the
adaptation and inference times, respectively. It
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Table 4. Performance evaluation after drift handling (NSL-KDD dataset)

SW Id Accuracy Precision DR FAR F1-score Adaptation Time Inference Time

(SW3, SW4) 0.9832 0.9918 0.9874 0.0357 0.9896
25.04s 0.0590s

(SW4, SW5) 0.9662 0.9863 0.9721 0.0607 0.9792

(SW8, SW9) 0.9806 0.9913 0.9848 0.0382 0.9880 14.41s 0.0863s

Table 5. Comparison of proposed model with existing approaches

Reference, Year Method Accuracy Precision DR F1-Score FAR Approach

Bigdeli et al. [3], 2018 Incremental GMM - - 85% - 7% Unsupervised

Roshan et al. [15], 2018 ELM - - 77% - 3.05% Unsupervised

Yang and Shami [19], 2021 LGBM 98.31% 98.57% 98.30% 98.43% - Supervised

Jain and Kaur [8], 2021 RF, LR, and K-Means 93% 96% 94% 94% 9.60% Hybrid U

Jain, Kaur, and Saxena [9], 2022 K-Means+SVM 91.33% 88.3% 91.7% 89.6% 2.11% Hybrid U

Xiaolan et al. [18], 2022 EADNSD 91.80% - 90.10% - 7.60% Unsupervised

Proposed K-Means+ARF 98.66% 99.52% 97.74% 99.78% 1.14% Hybrid U

is noteworthy that for (SW3, SW4) and (SW4,
SW5), both adaptation and inference times exhibit
identical values owing to the window retention
by the adaptive sliding window. Experimental
findings suggest that adaptation time for 1 ×
104 instances exceeds prediction time for 5 ×
103 instances, indicating the system’s potential to
process approximately 166.885 windows before
real-time adaptation. Fig. 5 shows the
evolution of accuracy over time. The graph
shows accuracy fluctuations over time, with
notable increases at specific intervals. For
instance, a significant rise in accuracy occurs
between the 4th and 5th data points, attributed
to concept drift management. Table 5 provides
a comparative analysis of the proposed adaptive
model against various approaches found in
the literature, utilizing the NSL-KDD dataset.
The results demonstrate consistently superior
performance across multiple metrics, underscoring
the adaptive model’s effectiveness and robustness
in tackling intrusion detection challenges.

4.1 Discussion

Section 2 emphasizes the challenges faced by
adaptive models for IDS, particularly in relying

on supervised learning and labeled datasets for
attack detection. The proposed adaptive model
aims to mitigate this issue by demonstrating robust
detection capabilities that are comparable to those
of supervised methods, as demonstrated by the
work of Yang and Shami [19].

Unlike unsupervised approaches, such as
those proposed by Roshan et al. [15], Xiaolan et
al. [18], and Bigdeli et al. [3], which continuously
cluster real-time data, the proposed adaptive
model identifies and manages concept drift only
when necessary. This approach optimizes
processing time, resource usage, and adaptability.

Hybrid approaches, such as those introduced
by Jain, Kaur, and Saxena [9] and Jain and
Kaur [8], integrate supervised and unsupervised
methods to enhance detection performance while
maintaining a low FAR.

In contrast, the proposed adaptive model focus
on identifying patterns through clustering on the
similarity matrix rather than directly analyzing raw
data. This methodology facilitates the grouping
of data distributions based on their similarities,
allowing the detection of distributions familiar to the
current model using Random Forest.

By applying a concept drift detection method
based on DR and FAR, it becomes possible
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to identify distributions that the model fails to
recognize, enabling timely model updates and
enhancing overall performance. Additionally,
employing an adaptive window helps retain critical
information and manage the propagation of
concept drift, enhancing pattern recognition and
facilitating model updates.

The proposed concept drift method, based
on distribution data, accurately identifies both
abrupt and gradual changes by dynamically
adjusting the threshold (δ). In contrast, traditional
methods like ADWIN and PCA+Kullback-Leibler,
as proposed by Qahtan et al. [14], are limited
to detecting only abrupt changes and may miss
subtler, gradual shifts.

5 Conclusion and Future Work

The concept drift detection method proposed in
this research effectively identifies and quantifies
the severity of concept drift, detecting both gradual
and abrupt changes. This enhances the system’s
ability to recognize and adapt to evolving data
patterns in real-time. Moreover, the adaptive IDS
model described in this study effectively manages
concept drift, leading to enhanced attack detection
while maintaining a low FAR.

However, the experiments conducted indicate
that a high adaptation time could potentially hinder
the real-time implementation of these systems,
representing a significant challenge. This is
because it is crucial for the inference or prediction
time to be very close to the adaptation time.

Future work will focus on optimizing the model
at the algorithmic level and exploring hardware
acceleration techniques to improve adaptation time
while ensuring real-time detection capabilities.
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