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Enrique Quezada-Próspero1, Dante Mújica-Vargas1,*, Luis A. Cruz-Próspero1,
Christian Garcı́a-Aquino2, Ángel A. Rendón-Castro1

1 Centro Nacional de Investigación y Desarrollo Tecnológico,
Computer Sciences,

Mexico

2 Universidad Politécnica de Tapachula,
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Abstract. This study introduces a novel approach for
atrial fibrillation classification using a deep autoencoder
stacked with a fully connected softmax layer. The
model is trained with spectral features extracted from
ECG signals through spectral and signal analysis.
The primary goal is to enhance existing algorithms in
the state-of-the-art by delivering superior results with
reduced computational cost. The PhysioNet Challenge
2017 database was used, which contains normal and
atrial fibrillation rhythms. The signals were normalized
before spectral feature extraction. These features were
used to train the autoencoder, which performed
additional feature extraction and dimensionality
reduction. The resulting features were then used to train
the fully connected layer responsible for classification.
Performance was evaluated through quality metrics
mentioned in the state-of-the-art using cross-validation
to ensure robustness. The best median results obtained
were: 99.7% Accuracy, 99.8% Precision, 99.5% Recall,
99.8% Specificity, 99.7% F1-score, 99.3% Matthews
Correlation, and 99.3% Kappa.

Keywords. Autoencoder, spectral features, ECG
signals, signal analysis, feature extraction.

1 Introduction

Cardiac arrhythmias (CAs) are irregularities in the
heart’s contraction and relaxation cycles. Among

the most common types are Atrial Fibrillation
(AF), Ventricular Fibrillation (VF), Atrial Flutter
(AFL), Paroxysmal Supraventricular Tachycardias
(PSVT), and Atrioventricular Block (AB). According
to the World Health Organization (WHO), CAs
are a leading cause of death worldwide, with
a prevalence affecting approximately 3% of the
global population [13].

The automatic classification of cardiac
arrhythmias has garnered significant interest
due to the severity of this condition. In the field of
machine learning, detection techniques have been
developed to support specialists.

These techniques are based on convolutional
neural networks (CNN) [15], recurrent neural
networks (RNN) [16], and support vector machines
(SVM) [8], among others. Hybrid architectures
combining these algorithms have also been
employed to enhance model performance [1].

However, these models require large amounts
of data and numerous hidden layers to extract and
analyze features, leading to significant processing
time and computational cost. This issue becomes
problematic for real-world applications that
necessitate dedicated components like GPUs to
achieve satisfactory results [11]. Training these
models is time-consuming and computationally
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Fig. 1. Samples of the physionet CinC 2017 database

expensive, limiting their implementation in
embedded systems.

Additionally, preprocessing of the signals is
crucial for training these models, requiring the
transformation of raw signals into a domain where
more significant features can be extracted and
analyzed [12]. State-of-the-art preprocessing
techniques include the application of signal filters
to emphasize specific features and remove noise
[2], time-frequency feature extraction to compress
signals while preserving important features [16],
and dimensionality reduction techniques like
principal components analysis (PCA) [9].

The choice of technique varies depending
on the approach. In this study, ECG signals
were transformed into the spectral domain, as
spectral representations provide more significant
information than other domains, thus improving
model processing effectiveness [17].

This study presents an architecture based on
a deep autoencoder trained with normalized and
preprocessed ECG signals using different spectral
representations. The proposed architecture offers
lower computational cost and better results than
state-of-the-art architectures due to:

1. Fewer hidden layers, resulting in reduced
processing time.

2. No need for large amounts of data.

3. Compatibility with less powerful hardware.
4. Applicability to other types of signals.

This paper is organized as follows: Section
2 explains preprocessing techniques and
provides a brief description of the autoencoder
architecture. Section 3 describes the proposed
method and hyperparameter tuning. Section 4
presents experimental results and a comparative
analysis with state-of-the-art techniques. Finally,
Section 5 provides conclusions and suggestions
for future work.

2 Background

This section provides a general overview of
the fundamental techniques, data, and concepts
used in the analysis and processing of ECG
signals. It covers the database used in this work
and various signal analysis methods, including
the application of different spectral estimation
techniques. Additionally, a brief description of the
model used for ECG classification is provided.

2.1 Data

To evaluate the proposed model, the PhysioNet
CinC 2017 database was used, containing ECG
lead II samples of normal rhythms (N) and atrial
fibrillation (AF) recorded at 300 Hz. The database
includes 5050 instances for class N and 738
instances for class AF, with samples of varying
lengths. To avoid class imbalance and preserve
the maximum number of instances, the length of
all signals was reduced to 2714 samples, which is
the minimum length in the dataset.

The N class was reduced to 738 instances to
match the AF class, instead of using any data
augmentation techniques [5], thereby preserving
the signals from the original database. This
preprocessing step resulted in 738 instances per
class, each with a length of 2714 samples. Figure
1 shows a sample of Normal Rhythm (N) and
Atrial Fibrillation (AF). Note that the N class has
an amplitude up to 1, whereas class AF exceeds
this value. These signals can be analyzed and
processed using signal analysis techniques for
better representation.
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Fig. 2. Spectral representation for an AF signal

2.2 Signal Analysis

Signals are entities that convey information and
can propagate through a medium, whether
material or vacuum.

The objective of signal analysis is to
characterize a signal and interpret data in different
domains such as time and frequency. Depending
on the purpose and properties of the signal, one
domain may be preferable over another.
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Among the methods used in signal analysis
are time-frequency methods, discrete wavelet
transform, and spectral estimation. The spectral
domain, in particular, offers an excellent
representation of signals, providing more
discriminating features [17].

2.3 Spectral Analysis

Spectral analysis is a signal processing method
aimed at representing the dynamic patterns of
signals in the frequency domain. It offers a
complementary perspective to the time domain,
often providing more useful information for the
characterization of biomedical signals [14]. This
study utilizes spectral representations that are
prevalent in the literature, including:

2.3.1 AR Burg Spectrum

This method is based on forward and backward
prediction errors and on direct estimation of the
reflection coefficients [14]. Assuming we have
data measurements {y(t)} for t = 1, 2, ...,N , the

forward and backward prediction errors for a oth
order model are:

α̂f ,o(n) = x(n) +

o∑
l=1

ξ̂o,l · x(n− l),

∀n = o+ 1, · · · ,N ,

(1)

α̂b,o(n) = x(n− o) +

o∑
l=1

ξ̂o,l · x(n− o+ l),

∀n = o+ 1, · · · ,N .

(2)

The autoregressive parameters are
calculated by:

ξ̂o,l =

 ξ̂o−1,l + κ̂o · ξ̂o−1,p−l, l = 1, · · · , o− 1,

κ̂o, l = o.
(3)

The Burg method reflects the recursive-in-order
estimation of kp given that the AR coefficients for
order p − 1 have been computed. The reflection
coefficient is estimated by:

κ̂o =

−2

N∑
n=o+1

α̂f ,o−1(n) · α̂b,o−1(n− 1)

N∑
n=o+1

[
|α̂f ,o−1(n)|2 + |α̂b,o−1(n− 1)|2

] . (4)
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Fig. 4. Proposed scheme for atrial fibrillation classification

The prediction errors in equations 1
and 2 satisfy the following recursive-
in-order expressions:

α̂f ,o(n) = α̂f ,o−1(n) + κ̂o · α̂b,o−1(n− 1) , (5)

α̂b,o(n) = α̂b,o−1(n− 1) + κ̂o · α̂f ,o−1(n) . (6)

Finally, from 5 and 6, the power spectral density
(PSD) estimation is formed by:

℘̂Burg(f) =
α̂o∣∣∣∣∣1 +

o∑
ı=1

ξ̂o(ı) · e−j2πfı

∣∣∣∣∣
2 , (7)

where α̂o = α̂f ,o + α̂b,o.

2.3.2 Covariance Spectrum

The covariance spectrum is a representation used
in signal analysis, including electrocardiogram

(ECG) signals. It is based on estimating the
signal’s autocovariance function, which describes
how signal values at different time points are
related [6]. For any complex time series, a similar
estimator can be found by minimizing the estimate
of the prediction error power by:

λ̂ =
1

N − o

N−1∑
n=o

∣∣∣∣∣x(n) +
o∑

l=1

γ(l) · x(n− l)

∣∣∣∣∣
2

. (8)

The complex gradient can affect the
minimization of 8 to achieve the AR parameter
estimates as the solution of the equations:

co + Co · γ̂ = 0, (9)

where:

c(i, j) =
1

N − o

N−1∑
n=o

x(n− i) · x(n− j) . (10)
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Fig. 5. Statistical values of cross-validation for the proposed model

From 9, the AR parameters estimates are
calculated by:

γ̂ = −coC
−1
o . (11)

The white noise variance is estimated as:

σ̂2 = c(0, 0) +

o∑
i=1

γ̂(i) · c(0, i). (12)

And then, from 11 and 12 the PSD can be
estimated by:

℘̂Cov(f) =
σ̂2∣∣∣∣∣1 +

o∑
ı=1

γ̂o(ı) · e−j2πfı

∣∣∣∣∣
2 . (13)

2.3.3 Yule-Walker Spectrum

This method is also called autocorrelation method,
fits an autoregressive model to the windowed input
data by minimizing the forward prediction error in
the least squares sense [18]:

λ̂ =
1

N

∞∑
n=−∞

∣∣∣∣∣x(n) +
o∑

l=1

γ(l) · x(n− l)

∣∣∣∣∣
2

. (14)

All the values of the x(n) process out of
the range 0 ≤ n ≤ N − 1 are equal to 0.
The complex gradient can help to minimize the
estimated prediction error power by diferentiating
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Fig. 6. Samples of the MIT-BIH arrhythmia database

the equation with respect to the real and imaginary
parts of γ(l)’s:

1

N

∞∑
n=−∞

(
x(n) +

o∑
l=1

γ(l) · x(o− l)

)
· x(n− ı),

∀ı = 0, · · · , o.

(15)

The matrix representation is defined by:

r̂o + R̂o · γ̂ = 0 , (16)

where:

r̂(k) =


1

N

N−1−k∑
n=0

Θ, k = 0, 1, · · · , o,

r̂(−k), k = (−m+ 1), · · · ,−1,

(17)

where Θ = x(n) · x(n + k). From 16, the AR
parameters are obtained by:

γ̂ = − r̂m

R̂m

. (18)

Then, the white noise variance σ̂2 is found as
ômin, which is given by:

σ̂2 = ômin =
1

N

∞∑
n=−∞

∣∣∣∣∣x(n) +
o∑

k=1

â(k)x(n− k)

∣∣∣∣∣
2

. (19)

And the final result is obtained by using 14:

σ̂2 = r̂(0) +

o∑
k=1

γ̂(k) · r̂(−k). (20)

Finally, from 19 and 20, the PSD is
estimated by:

℘̂YW (f) =
σ̂2∣∣∣∣∣1 +

o∑
ı=1

γ̂(ı) · e−j2πfı

∣∣∣∣∣
2 . (21)

Computación y Sistemas, Vol. 29, No. 1, 2025, pp. 15–28
doi: 10.13053/CyS-29-1-5527

Atrial Fibrillation Classification Using a Deep Spectral Autoencoder 21

ISSN 2007-9737



ARB COV FFT PER WELCH YW
0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

(a) Accuracy (A)
ARB COV FFT PER WELCH YW

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

(b) Precision (P)
ARB COV FFT PER WELCH YW

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

(c) Recall (R)

ARB COV FFT PER WELCH YW
0.988

0.99

0.992

0.994

0.996

0.998

1

(d) Specificity (S)
ARB COV FFT PER WELCH YW

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

(e) F1-score (F1)
ARB COV FFT PER WELCH YW

0.95

0.96

0.97

0.98

0.99

1

(f) Matthews (M)

ARB COV FFT PER WELCH YW
0.85

0.9

0.95

1

(g) Kappa (K)
ARB COV FFT PER WELCH YW

8

9

10

11

12

13

14

(h) Training Time (T)
ARB COV FFT PER WELCH YW

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.02

0.021

0.022

(i) Inference Time (I)

Fig. 7. Statistical values of cross-validation

2.3.4 Fast Fourier Transform Spectrum

Fast Fourier Transform is a very efficient algorithm
in computing Discrete fourier transform (DFT)
coefficients and can reduce a very large amount
of computational complexity evaluating the DFT
series [18]. The expression for the DFT is:

X(m) =

N−1∑
n=0

x(n) · e(−j2πmn/N) , (22)

where m is the family member or harmonic number,
and N is the length of the digital data.

From a computational point of view, X(m) must
be allowed to have both positive and negative
values for m,m = −N/2 − ...,N/2 − 1. Negative
values correspond to negative frequencies that
have no physical meaning.

Since X(m) is a function of m, this will need
to converted to the frequency domain f = fm =
mfT = m/NT ; ifm/N = fTS is substituted into
22, then the expression for the DFT becomes:

X(f) =

N−1∑
n=0

x(n) · e(−j2πnfTs) . (23)
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Table 1. Comparison of results between traditional techniques

Model A P R S F1 M K T (s) I (s)

RanFor 0.61 0.62 0.61 0.61 0.61 0.01 0.01 32 0.01

AdaB 0.63 0.64 0.63 0.64 0.63 0.02 0.02 30 0.07

NeuNet 0.67 0.75 0.67 0.70 0.64 0.02 0.02 35 0.02

NeaNei 0.81 0.81 0.81 0.81 0.81 0.84 0.83 33 1.95

BiLSTM 0.90 0.92 0.94 0.92 0.93 0.87 0.87 43 0.35

2.3.5 Periodogram Spectrum

The periodogram was introduced in searching for
hidden periodicities while studying sunspot data, it
is called a direct method because it directly uses
the time series to estimate the PSD , it provides
the critical link between quantities that you can
measure directly from the finite-length signal and
those that you can´t [10]. The original estimates
of PSD ℘(f) for discrete and continuous notations
were obtained by:

℘(f) =

∫ τ

0

χ(τ) · e−j2πfτdτ , (24)

where χ(τ) is the autocorrelation function. This
is a mirror symmetric function, and from 24 it is
possible to rewrite the equation in cosine terms:

℘(f) =

∫ τ

0

χ(τ) · cos(2πfτ)dτ . (25)

Since the energy of an analogue signal x(t)
is equal to the magnitude of the signal, a direct
method can be use using a integrated over time:

E =

∫ ∞

−∞
|x(t)|2 dt. (26)

Taking into account Parseval’s theorem, we can
assume the following:∫ ∞

−∞
|x(t)|2 dt =

∫ ∞

−∞
|X(f)|2 df , (27)

where |X(f)|2 represents the energy density
function over frequency which is also called PSD.
Then, the power spectrum is computed as the
magnitude squared of the FT of the waveform of
interest x(t):

℘S(f) = |X(f)|2 . (28)

2.3.6 Welch Spectrum

When it is necessary to average a periodogram,
a popular technique for this is the Welch’s method.
This method is based on the same idea as Barlett’s
approach of spliting the data into segments. Welch
method is basically a refinement of the Bartlett
method in two respects. First, the data segments
in the Welch method are allowed to overlap.

Second, each data segment is windowed prior
to computing the periodogram. This method uses
a sequence of random data x[n], which is divided
into M frames of lenght L with D overlapping
points. Each frame is multiplied by a window
WL[n] in the described way for averaged modified
periodogram [10]. The periodograms of each
frame are computed and averaged together to
form the Welch periodogram, it is obtained by
the means of:

℘w(ω,L,D,M) =

1

M

M−1∑
o=0

∣∣∣∣∣
L−1∑
n=0

Θ

∣∣∣∣∣
2


L−1∑
n=0

w2
L[n]

, (29)

where Θ = x[n + pD] · wL[n] · e−jωn. For
better understanding, Figure 2 shows a sample of
each transformation using an Atrial Fibrillation (AF)
signal of length 2714 taken at 300Hz.

As seen in Figure 2, preprocessing reduces
the signal dimension from 2714 to 1358,
corresponding to the frequency and features of
the original signal. These spectral representations
can then be used to train deep learning models for
improved results.

Computación y Sistemas, Vol. 29, No. 1, 2025, pp. 15–28
doi: 10.13053/CyS-29-1-5527

Atrial Fibrillation Classification Using a Deep Spectral Autoencoder 23

ISSN 2007-9737



2.4 Autoencoder

Autoencoders are a feedforward and non-recurrent
neural network which is unsupervised learning,
meaning it can learn from itself. The objective
of Autoencoders is to reduce the dimension and
minimize the differences between the encoded
and decoded data [4]. The process of encoding
and decoding is shown in Figure 3. From a
mathematical point of view, the autoencoding is
formalized as:

z = σ(W · x+ b) , (30)
x̂ = σ′(W ′ · z + b′) , (31)

where z is de encoded data, x̂ is the decoded
data, σ and σ′ are activation functions, W and
W ′ are the weights of the input and output, b
and b′ the biases of the encoded and decoded
data. As mentioned before, the Autoencoder
is an unsupervised network, in this sense, the
equation 32 must be considered for minimizing the
error of reconstruction:

ℓ(x, x̂) =∥ x− σ′(W ′ · σ(W · x+ b) + b′) ∥2 . (32)

In addition to this theory, the base architecture
of an Autoencoder can be modified depending on
the task to be performed, other models can be
stacked on their central layer to take advantage of
the encoder’s feature extraction.

3 Proposed Scheme

This section outlines the deep autoencoder
architecture and the hyperparameter tuning used
to optimize the model’s performance. The
proposed method for the classification of atrial
fibrillation is divided into two sections: the encoding
process and the classification process. The
proposed architecture is illustrated in Figure 4.

3.1 Encoding

This part corresponds to the basic process of the
autoencoder and to the first part of the proposed
methodology. In this section, the autoencoder
is trained, and the input signals are encoded in
an abstract representation, extracting features and
reducing dimensionality.

3.2 Classification

Once the autoencoder is trained and the signals
are encoded, the abstract representations are
used to feed the classification model. This
model consists of training a simple fully connected
layer, which analyzes the features and makes the
classification through a softmax activation function.

3.3 Hyperparameters Tuning

Hyperparameter tuning plays a crucial role in
optimizing the performance of the proposed model
for ECG classification [3]. This process includes
the careful selection of the learning rate, the
number of training epochs, the mini-batch size, and
L2 weight regularization.

These parameters are fine-tuned to find the
optimal balance between model accuracy and
training time, ensuring that the model neither
overfits nor underfits the training data. Extensive
experimentation was conducted with different
hyperparameter configurations to achieve the
best test accuracy. From the above, the best
tuning for classifying ECG classes using the
autoencoder is as follows:

Encoding and decoding layer with 1358
neurons, corresponding to the input length of 1358
samples, this is represented as: x = {xi|i =
0, · · · , 1358} and x̂ = {x̂j |j = 0, · · · , 1358};
a hidden layer of 10 neurons, represented as:
z = {zι|ι = 1, · · · , 10}; 1000 epochs for
training; L2 weight regularization of 0.001; sparsity
regularization of 4, sparsity proportion of 0.04 and
a linear transfer function for encode and decode.

Due to the nature of the autoencoder, the
features extracted in the encoding layer are
used to reconstruct the signal. However, this
reconstruction process is not directly relevant to the
classification task, as the classification occurs in
the central layer.

For the classification model with a softmax
function, the following hyperparameters were
selected: learning rate of 0.01, minibatch of 256,
L2 weight regularization of 0.001 and 200 epochs
for training. To infer the classes and perform the
classification, a softmax function was used.
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For binary classification, the output of the
softmax function is defined as [7]:

σ(z) =
ex

ex + e0
, (33)

where σ(z) is the output vector of the softmax
function, z is the input vector, it contains 2 values 0
and 1, e is the mathematical constant and x is the
index of the class, in this case, 0 or 1.

4 Experimental Results

4.1 Proposed Model

Once preprocessing was completed, the spectral
representations of the signals were obtained. Due
to the limited size of the dataset, a cross-validation
approach was employed, dividing the dataset into
10 folds to ensure variability and an 90/10 split
between training and testing data.

A training session was conducted for each of
the six spectra obtained to compare results. All
trainings were performed using MATLAB 2023b,
and the results were validated using standard
metrics from the literature, including Accuracy,
Recall, Specificity, Precision, F1 score, Matthews
Correlation Coefficient, Kappa, and processing
and inference time.

Figure 5 shows statistical results of cross
validation for all spectral representations. The
results indicate that the Welch and Periodogram
methods are the most effective and consistent
for atrial fibrillation classification using a
deep autoencoder.

These methods exhibit high medians in
all quality metrics, with low variance and no
significant outliers. This ensures superior and
stable performance, essential for real-time
applications or critical environments where
precision is paramount.

Although their training times are not the
shortest, they remain reasonable compared
to Covariance, which, despite achieving good
results in several metrics, presents high variance
and prolonged training times, rendering it less
practical for implementation. Conversely, the FFT
method, with significantly lower training times and
competitive results in key metrics, emerges as an

excellent alternative when computational efficiency
is prioritized. For real applications, the FFT model
is suggested since it has the best balance between
quality metrics and processing time.

4.2 Generalization of the Model

To ensure the robustness and generalization of the
proposed method, it was evaluated with another
database, corresponding to the MIT-BIH database,
which contains 2546 instances for the classes
Normal Rhythm (N), Atrial Premature Contraction
(APC), Ventricular Premature Contraction (VPC),
Left Bundle Branch Block (LBBB), and Right
Bundle Branch Block (RBBB). All the signals are
the ECG lead II and they were taken at 360Hz.
Figure 6 shows a sample of each class.

For the training, the same hyperparameter
tuning and configuration for 10-fold cross-validation
were used. Figure 7 shows statistical values for
the MIT-BIH training. The results demonstrate
the effectiveness of the proposed model
across different datasets, maintaining high
performance in key metrics. The Welch and
Periodogram methods exhibit high accuracy and
specificity, close to 99%, and excellent precision
and recall, surpassing 98%.

These results indicate the model’s strong ability
to distinguish between normal heart rhythms and
various arrhythmias, with high sensitivity and
precision. Evaluating the model with the MIT-BIH
database confirms its generalization capacity and
robustness. The Welch and Periodogram methods
consistently deliver high accuracy and reliability,
while FFT offers an efficient training solution.
These findings suggest the model is well-suited
for clinical and real-time monitoring applications,
providing an effective tool for automatic cardiac
arrhythmia classification.

4.3 State of the Art Techniques

Additionally, Table 1 shows average test results
of other models used in the state of the art. On
the other hand, Table 1 highlights the comparative
performance of various state-of-the-art models
trained with spectral features.
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The proposed model surpasses these
traditional models in quality metrics, showcasing
the effectiveness of spectral features for ECG
signal classification. Models like Random Forest
and AdaBoost exhibit lower accuracy, indicating
their struggles with spectral features.

While BiLSTM achieves higher accuracy, it
comes with significant computational cost and
longer training times, making it less suitable for
real-time applications.

This comparison underscores the advantage of
using spectral features with deep autoencoders,
which offer a robust balance of high performance
and computational efficiency, essential for practical
and clinical deployments.

5 Conclusions and Future Work

This study presents the design and implementation
of a deep spectral autoencoder combined with
a fully connected softmax layer, trained using
spectral representations of ECG signals for atrial
fibrillation classification.

The proposed model achieves high
performance across various metrics due to
effective preprocessing, which normalizes ECG
signals to a consistent length and transforms them
into the spectral domain. Spectral representations
significantly enhance feature extraction and
dimensionality reduction, capturing critical
frequency-domain information, thereby improving
the model’s effectiveness.

Among the spectral methods used, Welch and
Periodogram provide the best results, exhibiting
high statistical values in quality metrics with low
variance and no significant outliers. Despite longer
training times, they are efficient compared to other
methods like Covariance.

The FFT method also performs well, offering
lower training times and competitive results,
making it suitable for computationally efficient
implementations, such as low-medium cost
embedded systems. The proposed model
outperforms traditional state-of-the-art models,
demonstrating the advantages of using spectral
features with deep autoencoders.

This combination of high performance and
computational efficiency makes the model highly
suitable for real-time applications and clinical use.

The evaluation with the MIT-BIH database
confirms the robustness and generalization
capacity of the proposed model. The Welch
and Periodogram methods consistently deliver
high accuracy and reliability, while the FFT
method provides an efficient solution in terms of
training time.

These findings suggest that the model
is highly applicable in clinical and real-time
monitoring environments, providing an effective
and efficient tool for the automatic classification of
cardiac arrhythmias.

Future work should explore integrating
additional models in the central layer to
enable deeper analysis and potentially enhance
performance. It is crucial to validate the proposed
approach with larger and more diverse datasets
to ensure the robustness and generalization of
the model. These efforts can improve model
performance and contribute to developing more
efficient and accessible tools for automatic cardiac
arrhythmia classification.
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