
Designing Optimal CNNs Architectures Using Metaheuristic 

Algorithms Applied to the Classification 

of Alzheimer's Disease 

Claudia I. Gonzalez* 

TECNM/Tijuana Institute of Technology, 
Division of Graduate Studies and Research, 

Mexico 

cgonzalez@tectijuana.mx 

Abstract. Convolutional Neural Networks are 

extensively utilized across various industries, proving to 
be highly effective for tasks such as image or video 
processing, pattern recognition and classification. 
However, the design of CNN architectures presents 
significant challenges, particularly in determining the 
optimal CNN parameters. CNN architectures comprise 
numerous parameters, and their configurations can 
produce diverse classification results when applied to 
the same tasks. Typically, setting hyper-parameter 
values involves a complex search process, often relying 
on random search, extensive testing, or manual 
adjustment. To address this challenge, this study 
proposes the analysis and implementation of two meta-
heuristic approaches: Genetic Algorithm (GA) and 
Particle Swarm Optimization (PSO) algorithms. These 
approaches aim to automatically design optimal CNN 
architectures and enhance their performance. The 
optimized architectures are specifically employed in the 
classification of neurodegenerative diseases, with a 
focus on Alzheimer's image datasets. 

Keywords. PSO, GA, Alzheimer classification, optimal 

convolutional neural networks, CNN optimization. 

1 Introduction 

Artificial Intelligence (AI) encompasses a wide 
range of technologies intended to enable machines 
to perform tasks that typically require human 
intelligence. Within AI, deep neural networks 
represent a subset of algorithms inspired by the 
structure and function of the human brain. Among 
these networks, convolutional neural networks 
(CNNs) stand out, which comprise multiple 
convolutions; these networks are adept at learning 

complex patterns and relationships in data through 
layers of interconnected nodes. 

Their integration into AI systems has led to 
significant advancements in various domains, 
including robotics, computer vision, natural 
language processing and healthcare [1-2]. 
Although CNNs have wide application in industry, 
their architectural design presents challenges. 
These include managing high computational costs 
associated with information processing and 
determining optimal CNN parameters suitable for 
each individual problem [3]. Typically, setting 
hyper-parameter values involves a complex search 
process, often employing random searches, 
extensive testing, or manual adjustments. 

To address this challenge, researchers have 
proposed implementing evolutionary computation 
methods to automatically design optimal CNN 
architectures and enhance their performance [4-6]. 

In the literature, there exists a plethora of meta-
heuristic techniques utilized for optimizing CNN 
hyper-parameters, such as the ACO [7], FGSA [8], 
Whale optimization algorithm [9], Harris Hawks 
Optimization (HHO) [10], harmonic search (HS) 
[11], microcanonical optimization algorithm [12] 
and the differential evolution (DE) [13] to list a few. 

The genetic algorithms (GA) algorithm also has 
been employed to automatically design CNN 
architectures, achieving favorable results. In [14] 
GA is used to optimize the CNN parameters and 
this is applied to Arabic Text Classification 
improving the accuracy of 4 to 5%. 

In [15] the authors proposed a new GA for the 
CNN optimization architectures, the methodology 
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is applied in three classification problems, 
including the Caltech256, MNIST and CIFAR10 
datasets. In [16], an Optimizing CNN by Using GA 
is applied for COVID-19 Detection in Chest X - Ray 
Image. On the other hand, the PSO algorithms 
have been also applied to optimize CNN 
architectures and in a plethora of machine learning 
domains [17]. In [18] and [19], PSO is employed for 
the automatic design of CNN architectures; these 
strategies are evaluated on benchmark datasets, 
and the achieved results are comparable to state-
of-the-art approaches. 

In [20], a hybrid OLPSO (orthogonal learning 
PSO) algorithm is implemented to find the optimal 
number of CNN hyperparameters and it is applied 
to detect and diagnose plant diseases. In [21] and 
[22], the original PSO is used for optimizing CNNs 
architectures; in [21] is applied to the CIFAR100, 
ILSVRC-2012 and CIFAR-10 datasets, and in [22] 
CNNs are employed for identifying cancerous 
nodules in computed tomography scans of 
the lungs. 

The mentioned studies highlight the 
advantages offered by GA and PSO in the 
optimization process, enhancing performance 
across a variety of tasks. This research work 
contributes by implementing a hybrid methodology 
that employs both PSO and GA algorithms to 
discover the optimal parameters for CNN 
architectures. The parameters under consideration 
include the number of convolution layers, the filter 
size utilized in each convolutional layer, the 
number of convolution filters, and the batch size. 
Both approaches aim to explore more diverse 
architectures generated by GA and PSO through 
random searches. 

The optimized architectures are tested in the 
Alzheimer MRI Dataset [23]. Alzheimer's disease 
is a progressive neurodegenerative disease that 
causes between 60 and 80 percent of dementia 
cases in the world; it is suffered by elderly people 
and is an increasing problem with the aging of the 
population. MRI can help us find duplicates in the 
brain that are related to mild cognitive impairment 
and can provide information about patients with 
mild cognitive impairment could develop 
Alzheimer's disease. Despite being a disease that 
has no cure, early diagnosis and treatment can be 
of great help in stopping the progressive advance 
of the disease. 

The importance of this work lies in developing a 
tool that can support specialists in the health area 
in making decisions for the identification of this 
disease and its classification or level of 
advancement according to the analysis of medical 
resonance images magnetic. 

The structure of this paper is as follows: Section 
2 provides an overview of convolutional neural 
networks and introduces the theories behind GA 
and PSO, covering the main definitions. Section 3 
outlines the methodology for developing two 
optimization approaches, GA-CNN and PSO-CNN. 
Section 4 discusses the analysis of experimental 
results obtained from the optimized architectures. 
Lastly, Section 5 presents significant conclusions 
and outlines future works for research. 

2 Background 

2.1  Convolutional Neural Networks 

These types of neural networks represent a 
specialized category of deep learning architectures 
specifically designed for computer vision 
applications, such as pattern recognition in images 
and videos, object detection, image classification, 
and among others.  Inspired by the structure and 
function of the human visual system, CNNs prove 
highly effective for processing images by 
autonomously extracting hierarchical and pertinent 
features from images, making them exceptionally 
effective in this domain. 

Several pre-designed CNN architectures have 
been proposed and achieved state-of-the-art 
performance in various computer vision tasks. In 
[24] the first successful CNN architecture was 
introduced (LeNet-5), which was primarily used for 
handwritten digit recognition tasks. LeNet-5 
demonstrated the effectiveness of convolutional 
layers, pooling layers, and fully connected layers in 
learning hierarchical representations of visual data. 
AlexNet, introduced in [25], marked a breakthrough 
for CNNs when researchers won the ImageNet 
Large Scale Visual Recognition Challenge 
(ILSVRC) by a significant margin. 

This success sparked a resurgence of interest 
in deep learning and CNNs, leading to rapid 
advances in the field. In subsequent years, 
numerous advancements and CNN architectures 
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were introduced, including VGGNet [26], 
GoogLeNet (Inception) [27], ResNet [28], and 
more. These architectures varied in terms of depth, 
parameter efficiency, computational complexity, 
and performance on various computer vision tasks. 

The fundamental CNN architecture illustrated in 
Fig. 1 includes the following layers: input layer, 
convolutional layers, activation layer, pooling layer, 
and fully connected (dense) Layer. Additional 
layers or modifications can be introduced based on 
specific requirements or variations in 
network designs. 

CNNs are considered powerful tools for visual 
data analysis, exhibiting remarkable performance 
in various real-world applications. Their capacity to 
autonomously learn hierarchical features from raw 
data has become indispensable in the field of 
computer vision, with ongoing research aimed at 
further enhancing their capabilities and 
efficiency.The hyperparameters of a CNN are of 
great relevance since the performance and 
effectiveness of the model depends on them. 
Experimenting with various combinations of 
hyperparameters can result in significant 
computational costs, requiring extensive 

computational resources and time for training and 
evaluation. CNNs often have high-dimensional 
parameter spaces, exploring this high-dimensional 
space to find the optimal architecture can be 
challenging and requires sophisticated 
optimization techniques. 

In this sense an optimization approach using 
GA and PSO is presented to improve the 
classification accuracy and reduce the 
computational cost. The most relevant parameters 
that can be optimized in each CNN layer are 
presented in Fig. 2, including some others 
parameters such as the learning rate used to 
determine the step size of the optimization 
algorithm during training, the optimizer algorithm 
(Adam, stochastic gradient descent (SGD), and 
RMSprop) and the dropout which is a 
regularization technique implemented to prevent 
overfitting by randomly dropping neurons from the 
network during training [4]. 

2.2 Particle Swarm Optimization (PSO) 

PSO, introduced by Eberhart and Kennedy in 1995 
[29], is a robust optimization method known for its 

 

Fig. 1. Basic CNN architecture 

 

Fig. 2. Hyper-parameters of a CNN 
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simplicity and efficiency in exploring solution 
spaces. This stochastic algorithm, inspired by 
swarm intelligence and the collective movements 
of birds and fish, involves individuals (particles) 
exploring a multi-dimensional search space to 
discover the best possible solutions. 

In the algorithm, each particle denotes a 
potential solution and has a defined position and 
velocity within the search space. The main 
parameters of PSO are presented in Fig. 3. 
Additionally, other key concepts involved in the 
implementation include: 

– Global best (gbest): it is the best solution found 
by any particle in the entire swarm. The swarm 
is a collection of particles, each of which 
explores the search space to find 
optimal solutions. 

– Personal best (pbest): it is the best solution 
found by an individual particle in its 
own history. 

– Fitness function: based on predefined criteria, 
this evaluates the quality of a solution. 

– Inertia weight: it is a parameter to control the 
impact of a particle's velocity on its movement.  

 

Fig. 3. PSO parameters 

 

Fig. 3. Steps to optimize the CNN using GA and PSO algorithms 
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– Social and cognitive components: these 
parameters influence how the speed of a 
particle is updated based on its personal best 
and its global best. 

2.3 Genetic Algorithms 

In recent decades, Genetic Algorithms have gone 
from abstract theories to effective tools for problem 
solving. Their capacity to effectively navigate 
solution spaces and identify near-optimal solutions 
has made them indispensable across various 
domains. It is a search heuristic inspired by the 
process of natural evolution, which was proposed 
by the computer scientist John Holland in [30]. 

The more recent applications are focusing in 1) 
Parameter Tuning, where the research implements 
GA for tuning parameters to different problem 
domains and improve performance [14-16]. 2) 
Deep Learning Integration, to explore synergies 
between GAs and deep learning techniques for 
solving complex optimization and search 
problems.  The principal concepts manage in the 
GA are the following:  

– Chromosome: A potential solution represented 

in the form of a string of genes. Each gene 

typically represents a parameter of the 

problem being solved. 

– Population: A collection of chromosomes 

representing potential solutions to the problem 

at hand. 

– Fitness Function: A function that evaluates 

how good or bad a particular solution 

(chromosome) is. It quantifies the quality of the 

solution relative to other solutions. 

– Selection: it is a process of selecting 

individuals from the population for 

reproduction based on their fitness. Those with 

higher fitness are prioritized for selection  

– Crossover: it is a genetic operator utilized to 

combine the genetic information of two parent 

chromosomes, producing one or 

more offspring. 

– Mutation: this operator is applied to introduce 

genetic diversity by altering one or more genes 

in a chromosome randomly. 

3 CNN Architecture Optimized Using 
GA and PSO 

This section introduces two optimization strategies, 
PSO-CNN and GA-CNN, which apply the PSO and 
GA algorithms to optimize the parameters of CNN 
architectures. As previously mentioned, varying 
CNN parameter values can lead to different results 
for the same task, underscoring the importance of 
finding optimal architectures. 

The parameters selected for optimization in this 
work include the number of convolutional layers, 
the filter size for each convolutional layer, the filters 
number and the batch size. All of these parameters 
are important and impact the results, apart from the 
fact that it is a challenge for researchers or 
developers in these areas how to determine them, 
since they depend on the type of problem or 
application to be solved. 

Figure 4 illustrates the general steps to optimize 
the CNN using GA and PSO algorithms; the 
procedure is explained below: 

– Input the image dataset. This step involves 
choosing the dataset that will be processed 
and classified by CNN. 

– Select the optimization algorithm to be used 
(GA or PSO). 

a) In the case of GA, generate the population 
for GA algorithm. The GA parameters are 
set to include the generations number, the 
number of populations, crossover and 
mutation values. The structure of the 
chromosome is presented in Fig. 5, and the 
parameters to execute the GA in Table 4. 

b) In the case of PSO, the parameters are 
setting with the values presented in Table 
5, and the algorithm is ready to generate 
the particle population; each particle takes 
the structure presented in Fig. 5 and the 
properties of Tables 1 and 2. 

– Setting the CNN architecture. The CNN is 
initialized with the parameters presented in 
Table 3 in conjunction with the parameter 
obtained by the GA or PSO in the optimization 
process. In this step, the CNN is ready for the 
training phase. 

– CNN training and validation involves the CNN 
analyzing the Alzheimer's dataset using 
images for training, validation, and testing 
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purposes. The CNN then returns the accuracy 
to PSO and GA as the objective function that 
both algorithms evaluate. 

– Evaluate the objective function. The GA or 
PSO algorithms process the function 
expressed in (1) to obtain the best value. 

– Update GA or PSO parameters. 

a) In the case of GA, in each generation, apply 
the crossover and mutation. 

b) In the case of PSO, this step consists of 
updating the velocity and position of each 
particle in each iteration. 

– The process iterates, considering the 
evaluation of all solutions until the stopping 
criteria are met. For PSO, the stopping 
criterion is determined by the iterations 
number, and for GA, it is given by the number 
of generations. 

– In the last step, the process obtains the optimal 
solution represented by Gbest which contains 
the optimal parameters to generate the 
CNN architecture. 

3.1 GA-CNN and PSO-CNN Optimization 
Process 

The Chromosome of real-numbers used in the GA-
CNN approach and the particle structure of the 
PSO-CNN consists of eight positions; each one 
represents the parameter to be optimized, as 
shown in Fig. 5. Table 1 details the composition of 
the chromosomes or particles, describing the data 
that is controlled in each position and the 
corresponding search space. 

As indicated to Table 1, positions 𝑝4, 𝑝6 and 𝑝8 
are indices that can take integer values between 1 
to 4. According on the values generated by the GA 
or PSO algorithm, a mapping is performed using 
the values expressed in Table 2. 

In this approach, based on the values to be 
optimized, the 𝑝1 position is applied to control the 

batch size used in the training phase.  The 𝑝2 
position determines the deep of the CNN in this 
case represented by the number of convolution 
layers; this is also used to control the activation of 
the positions 𝑝3 to 𝑝8. 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (1) 

 

Fig. 5. Structure of the particle (PSO-CNN) and the chromosome (GA-CNN) 

Table 1. Search space compositions for the chromosome and particle structure 

Coordinate Layer Hyper-Parameter Search Space 

𝑝1 -- Batch size in the training [32, 256] 

𝑝2 -- Convolutional layer number [1, 3] 

𝑝3 Layer 1 Number of filters  [32, 128] 

𝑝4 Layer 1 Filter size  [1, 4] 

𝑝5 Layer 2 Number of filters  [32, 128] 

𝑝6 Layer 2 Filter size  [1, 4] 

𝑝7 Layer 3 Number of filters  [32, 128] 

𝑝8 Layer 3 Filter size  [1, 4] 

Table 2. Filter size of the convolutional layer for the positions 𝑝4, 𝑝6, 𝑝8 

Value Range 

1 [3, 3] 

2 [5, 5] 

3 [7, 7] 

4 [9, 9] 
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In case of the algorithm result in a value of one 
for 𝑝2 position, only the 𝑝3 and 𝑝4 positions are 
activated; these positions determine the number of 
filters used in the first convolutional layer and the 
filter size. In case of the algorithm generates a 
value of three for the 𝑝2, the positions from 𝑝3 to 𝑝8 
will be activated. These positions will generate the 
number of filters for the layer 1, 2 and 3 
(𝑝3, 𝑝5 𝑎𝑛𝑑 𝑝7), the filter size of layer 1, 2 and 3 

(𝑝4, 𝑝6 𝑎𝑛𝑑 𝑝8). 

Each of these values is distinct, promoting the 
creation of more heterogeneous CNN 
architectures. This representation can grow and 
will be applied to any number of convolutional 
layers, generating deeper CNN. 

If position 𝑝2 takes a different value, the rest of 
the particle or chromosome can expand 
accordingly. The objective function used in the two 
optimizations process is expressed in (1) and this 
represents the classification accuracy returned by 

 

Fig. 6. Alzheimer MRI Dataset 

Table 3. CNN training parameters 

CNN parameters 

Epochs 20 

Learning function Adam 

Non-linearity activation function ReLU 

Activation function (classifying layer) Softmax 

Table 4. Initial parameters used for the GA algorithm 

GA parameters 

Population 15 

Genera tions 30 

Crossover 0.85 

Mutation 0.02 

Table 5. Initial parameters used for the PSO algorithm 

PSO parameters 

Particles (N) 15 

Inertial weight (W) 0.85 

Iterations 30 

Cognitive constant (C1) 2 

Social constant (C2) 2 
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the CNN after this is trained using the dynamical 
parameters obtained by the GA or PSO algorithms. 

4 Experiments 

This section outlines the database utilized in the 
case studies (Augmented Alzheimer MRI Dataset 
V2), the fixed parameters for configuring of the 
CNN, the GA and PSO algorithm; also, the results 
achieved through the two optimization methods 
employed (GA-CNN and PSO-CNN), and the 
comparative analysis with alternative approaches. 

4.1 Alzheimer MRI Dataset 

In this study the experiments were implemented 
with the database “Augmented Alzheimer MRI 
Dataset V2” [26], which is an extension of synthetic 
augmentation of another open-source database. 
The dataset contains 4 different classes of 
Alzheimer disease: Non-Demented, Moderate-
Demented, Mild-Demented, and Very-Mild-
Demented; an example of this dataset and the 
properties are illustrated in Fig. 6. 

4.2 Static Parameters for the Configuration of 
PSO, GA and the CNN 

Table 3 presents the static parameters used to 
train the CNN. The dynamic parameters optimized 
by GA and PSO are the batch size, convolutional 
layers number, the filter size and the number of 
filters; these are represented in Tables 1 and 2. 

The fixed parameters considered for the GA are 
the population, generations, crossover and 
mutation; these are described in Table 4. The 
parameters considered in the PSO are presented 
in Table 5, which are given by the number of 
particles, the iterations, the inertial weight, and the 
cognitive and social constants. 

The parameters mentioned above were defined 
under experimentation and considering that these 
are limited because the time to evaluate each 
solution is too long considering the time it takes to 
train, test and calculate the accuracy of 
the network. 

4.3 Results after Application of the GA-CNN 
and PSO-CNN Approaches 

This Section presents the results of the GA-CNN 
and PSO-CNN approaches applied in the 
Alzheimer MRI Dataset; this last was distributed in 
70% for training phase and 30% for testing. The 
objective function is given by the accuracy, 
expressed in (1). The experimental results consist 
of 30 executions for each optimization model. 
Table 6 presents the best accuracy and 
architecture obtained by the GA-CNN and 
PSO- NN. 

The optimal architecture discovered through 
GA-CNN consists of three convolutional layers: the 
first layer employs 32 filters of size 3 × 3, the 
second layer employs 128 filters of size 9 × 9, and 
the third layer employs 128 filters of size 5 × 5. The 
batch size utilized is 256. This configuration 

Table 6. Results of the GA-CNN and PSO-CNN for the Alzheimer MRI dataset 

No. 
No. 

Layers 

Layer 1 Layer 2 Layer 3 
Batch 

Size 

(%) 

Recogn. 

Rate 

No. 

Filters 

Filter 

Size 

No. 

Filters 

Filter 

Size 

No. 

Filters 

Filter 

Size 

GA 3 32 [3 × 3] 128 [9 × 9] 128 [5 × 5] 256 99.35 

PSO 3 128 [3 × 3] 128 [3 × 3] 128 [5 × 5] 128 99.41 

Table 7. Summary of 30 experiments for GA-CNN and PSO-CNN 

Optimization approach Best Mean 

GA-CNN 99.35% 98.70% 

PSO-CNN 99.41% 99.22% 

Non-Optimized 98.43% 95.70% 
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achieved a classification accuracy of 99.35% and 
a mean accuracy of 98.70%. 

PSO-CNN results presented a three-layer CNN 
configuration. The first layer utilized 128 filters with 
a filter size of 3 × 3, the second layer also 
employed 128 filters with a filter size of 3 × 3, and 
the third layer utilized 128 filters with a filter size of 
5 × 5; the batch size employed was 128. PSO-CNN 
achieved a classification accuracy of 99.41% and 
a mean accuracy of 99.22%. 

Table 7 provides a summary of the 30 
executions obtained by applying the two 
approaches the non-optimized architecture is also 
considered. According to these results we can 

notice that the PSO-CNN optimization approach 

reaches the best accuracy with a value of 99.41% 
and a mean of 99.22%, this over the GA-CNN and 
the non- optimized architecture. 

5 Conclusions 

In general, this paper presents two approaches for 
optimizing CNN architectures using the GA and 
PSO algorithms, applied to the classification of 
Alzheimer's disease. The main contribution 
consists in providing an automatic and dynamic 
way to obtain some of the CNN hyperparameters, 
including the number of convolutional layers, the 
filter size for each convolutional layer, the number 
of convolutional filters, and the batch size. In the 
experiments were considered a maximum of three 
layers, but the approach can be extended to cover 
more complex structures and add 
other parameters. 

Based on the results obtained from the two 
optimization methodologies, we can conclude that 
accuracy improved in all case studies, 
demonstrating robust performance with minimal 
parameters. The results highlight the significance 
of using optimization algorithms to identify the 
optimal parameters for CNN architectures. 

For future work, it is important to implement 
these approaches on other datasets related with 
neurodegenerative disease to validate their 
robustness and advantages and to contribute with 
models in this important medical area. Additionally, 
the methodology can be extended or explored 
using different metaheuristic algorithms and 

consider other parameters of complex 
CNN architectures. 

Furthermore, in the evaluation of the objective 
function another objective could be considered 
where the depth and number of parameters 
obtained by the optimization algorithms can be 
penalized to achieve simpler CNN architectures. 
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