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Abstract. This paper shows the study of two 

methodologies based on physiological models of the 
cochlea for the analysis of speech, music and other 
acoustic signals. The above with the objective to find 
equations that describe the distance where the cochlea 
is excited when a determined frequency is produced and 
perceived by the human ear according to the 
physiological models used. It’s very important to mention 
that cochlea behavior must to be studied to analyze how 
to construct new parameters to be used in Automatic 
Recognition in Speech Recognition (ASR) and Music 
Transcription (MT). In this paper we use two cochlear 
models to probe how it’s possible to find a set of 
parameters to be employed for the tasks to analyze and 
recognize of the audio signals. To obtain these set of 
parameters different computational algorithms were 
used, to mention some of them: electrical network 
solutions by partial fractions or successive 
approximations, resonance analysis, non-linear least 
squares; among others. The objective, independently of 
the cochlear model employed, it was to find an equation 
that related frequency values vs distance that describe 
the behavior of the cochlea. In consequence, different 
parameters that describe the behavior of the cochlea 
were used for Music Transcription (MT) and Automatic 
Speech Recognition (ASR) tasks. After that, our propose 
was compared with another equation founded in state of 
the art developed by Greenwood and we analyzed the 
results and difference between them. We obtained better 
results with our purpose in comparison with 
another used. 

Keywords. Cochlear mechanics model, non-linear 

regression, frequency-position function, music 
transcription and automatic speech recognition. 

1 Introduction 

Recently our work has been focused in analyze 
how the cochlea behavior can help to increase the 

recognition tasks for audio signals (speech 
recognition, music transcription; among others). 

This research began with the study of the cochlea 
mechanical models with the objective to find which 
model or models could be used for our work. 
Undoubtedly, a great amount of works has been 
proposed at respect. After that, we analyzed a great 
quantity of paper and then we decided to use [1] and 
[2] for our research because of they represent one 
of the most important results and near to the 
functionality of the cochlea. 

One time that the last cochlea models were 
selected the next challenge to reach was how to 
use these models to try to obtain o set of features 
or parameters that could be used in machine 
learning algorithms to obtain better results with 
respect to another proposed that are implemented 
actually.  

For example, for speech recognition, MFCC 
parameters have been used for a long time. For 
another side, in music transcription algorithms 
such as NMF (Non-Negative Matrix Factorization) 
the Fast Fourier Transform (spectrogram) has 
been employed. 

Specifically, NMF uses a spectral analysis of 
the audio signal based in Fourier Transform, 
obtaining spectrograms as the 
standard representation. 

Independently that the task could be speech 
recognition or music transcription mentioned above 
its possible to modify the spectral representations 
with our propose based in the cochlea models. 
Along of this paper we show how to use these 
cochlea models to obtain audio signal parameters 
and how they can be applied to recognition tasks 
or to modify the spectral representations that are 
used in NMF algorithm. 
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This paper is organized as follows. Section 2 
presents state of the art, in section 3 materials and 
methods are shown, while in section 4 the 
experiments are listed, finally conclusions and 
future works in section 5 are presented. 

2 State of the Art 

The development of cochlear mechanics analysis 
and modeling started during the 20th century. The 
first steps appeared around 1925, but the research 
was expanded strongly after 1950. The 
mathematical biophysical approach remained 
mostly linear until the late 1970’s, even though 
several nonlinear auditory phenomena were 
well known [3]. 

The initial study of the linear cochlea is relevant 
because of: 

– It gives a proper introduction to the 
mathematical and biophysical concepts that 
are used in this research area. 

– Current insight in analysis of complex systems 
is largely based on tools from linear 
signal analysis. 

– Major developments started with the analysis 
of a linear cochlea [3-4]. 

The first mechanical theory of the cochlea was 
proposed by Peterson and Bogert in 1950 [5]. It 
was based on hydrodynamics, considering the 
cochlea as a system of two channels that vary in 
shape, similar in cross section, and separated by 
an elastic membrane with constant dynamic 
variables. The model makes use of the parameters 
reported in the experimental work of Bèkèsy [4, 6]. 
In the following years, theories about the 
mechanics of the cochlea were developed, but in 
1971 Rhode reported physical measurements of 
its physiology, and the theories that were proposed 
previously were found inadequate [7-8]. 

Later in 1972, Lesser and Berkley developed a 
model that matches all the previously reported 
observations, modeling the cochlea as a system 
with fluid flow, and the basilar membrane as a 
system of concatenated, forced, 
harmonic oscilators [1]. 

In 1976, Allen [9] used the Lesser and Berkley 
model to obtain the parameters of the basilar 
membrane using the Green’s function, obtaining an 

approximate set of parameters of its behavior. Later 
in 1981, Neely [10] proposed a two-dimensional 
mathematical model of the cochlea and their 
numerical solution using finite differences 
approximations of the Laplace’s equation, 
obtaining, so far and to the best of our knowledge, 
the best parameters of the mechanical response of 
the cochlea. 

The solution to the model of the basilar 
membrane as a system of forced harmonic 
oscillators has been proposed by Lesser and 
Berkeley in 1972 [1], using potential flow theory 
and Fourier series. Later in 1974 [11], Siebert 
generalized the solution of Lesser and Berkley 
considering a mechanical force at the two ends of 
the basilar membrane. A similar solution was found 
in 1981 by Peskin [12]. 

The following studies considered the physical 
structure of the basilar membrane to solve the 
model, emphasizing studies in 1984 by Rhode [13], 
in 1985 by Hudspeth [14] and 1996 by Boer [15]. In 
recent years, authors have developed solutions 
considering state space models: in 2007 by Elliott 
et al. [16] and 2008 by Ku et al. [17]. Recently, 
these studies have been used for Automatic 
Speech Recognition Systems [18-19]. 

According to Place Theory of Hearing proposed 
by Helmholtz [20] and demonstrated by Békésy’s 
observations [21], the position along the basilar 
membrane at which the maximum hair cell and 
nerve response occurs is correlated with its 
frequency of the sound. Therefore, a function 
capable of calculating that relationship is called 
cochlear frequency-position function. From 
different methodologies for calculating these 
functions, Greenwood developed an accurate 
cochlear frequency-position function by integrating 
an exponential function fitted to a subset of critical 
bandwidths [22]. 

The critical bandwidth is the region along the 
basilar membrane where the nerve endings 
produce a large response to a sinusoidal audible 
signal. This is because the response of the hair 
cells along the basilar membrane to a sinusoidal 
tone is not limited to a single receptor or even to a 
narrow band of receptors, but to a bandwidth. For 
Music Transcription Tasks, we employed NMF 
(Non-Negative Matrix Factorization) as algorithm 
as is knowing this is a group of algorithms in 
multivariate analysis and linear algebra where a 
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matrix V is factorized into (usually) two matrices W 
and H, with the property that all three matrices 
have no negative elements. 

The way humans perceive music is related to 
their ability to identify signals coming from multiple 
separate sources. A transcription system performs 
a similar function by detecting notes from each 
individual source, classifying and grouping them 
into structures called dictionaries. An NMF model 
is capable of decomposing an input spectrogram 
as a part-based representation of sources or notes. 

When applying the algorithm to the polyphonic 
TAM problem, the objective of the algorithm is to 

Factor a non-negative matrix: 

𝑉 ∈ ℜ|≥0
𝑀𝑥𝑁

, 

a time-frequency representation of the signal with 

M ∈ ℕ as the feature dimensions and N ∈ ℕ as 

the number of segments over time, in two 

matrices [23]: 

The range R ∈ ℕ is a constant parameter defined at 
the beginning of the algorithm; in the case 
of polyphonic. 

TAM, it corresponds to the number of tones to 
recognize in the musical piece. 

Works related and founded in the literature has 
shown that initializing W and H along with update 
rules can dramatically improve the chances of NMF 
converging to a musically favorable solution. 
Therefore, in the state of the art, when the STFT 
technique is used to generate the matrix V, it is 
recommended to initialize each of the elements of W 
with the Fourier magnitude spectra that in turn 
correspond to each of the notes of the instrument, 
for this work the piano. 

For a long time, Automatic Speech Recognition 
Systems have used parameters related with 
Cepstrum and Homomorphic Analysis of Speech 
[24] Linear Prediction Coefficients (LPCs) [25], Mel 
Frequency Cepstrum Coefficients (MFCCs) [26], 
Perceptual Linear Prediction Coefficients (PLPs) 
[27], these last two being the most important. 

This set of parameters uses spectral 
representation as the most significant 
representation of the speech signal. In each of 
these representations, the principal objective is to 
have a representation to compress the speech 
data without irrelevant information pertinent to the 
phonetic data analysis and to enhance aspects of 

the signal that contribute significantly to the 
detection of phonetic differences. 

Other tasks where the reduction of the 
information of the speech signal is relevant are 
there when a great amount of reference 
information, such as speech signals for ASR that 
employed digital networks, is stored. Then, the 
reduction in the capacity of this information is a 
problem when we process database speech, used 
for transmission or storage [28, 29]. 

Undoubtedly, speech is the most important 
auditory information perceived by humans, but the 
auditory system does not respond as a linear but a 
logarithmic measurement system. MFCC and PLP 
coefficients employ Mel and Bark scales 
respectively that consider perceptual aspects to 
obtain a set of coefficients that rep- resent the 
speech signal. 

One aspect to mention is that cochlea 
properties have not been considered. Inside the 
cochlea a particular frequency analysis is realized. 
It transforms frequency response into distance 
response [30]. Then, the solutions before 
mentioned take only the perceptual response 
without considering the principal operation of the 
cochlea. Therefore, to understand the cochlear 
operation using models permits an analysis of 
speech signal closer to hearing human. 

3 Materials and Methods 

One of the most important characteristics related 
with cochlear models is to try to find a response 
that can be adjusted to the cochlea behavior, in 
state of the art, it is possible to find the 
Greenwood’s work [31] that explain how the basilar 
membrane works when a frequency pulse is 
coming there. 

Greenwood demonstrated his function fitted 
consistently cochlear observations on human 
cadaver ears and, with changes of constants, those 
on elephant, cow, guinea pig, rat, mouse, and 
chicken [31], as well as in vivo (behavioral-
anatomical) data on cats. Twenty-nine years later, 
Greenwood used the same basic function and 
extended his study with observations in new 
physiological data of human, cat, guinea pig, 
chinchilla, monkey, and gerbil [31]. He proved the 
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newer extended data were fit by the same basic 
function quite well (1): 

𝑓𝑟(𝑥) = 𝐴(10𝑎𝑥 − 𝑘), (1) 

𝑥 =
1

𝑎
𝑙𝑜𝑔10 (𝑓𝑟

(𝑥)

𝐴
+ 𝑘) , 

(2) 

where f is frequency (Hz), x is the distance from the 
apex of the cochlea (helicotrema end), A=165.4, 
a=0- 01, and k=1 are coefficients [31]. a is the 
gradient of high frequency end of the map, i.e., the 
coefficient of the derivative evaluated at the highest 
frequency, A is a constant which shifts the curve 
as a whole for a long the log-frequency axis, and k 
is constant, which introduces curvature into the 
frequency position function so as to fit low-
frequency data. 

The function essentially required only an 
empirical adjustment of a single parameter to set 
an upper frequency limit. 

As Greenwood, Jimenez and Oropeza [19] also 
developed a methodology to obtain the relationship 
between the excitation frequency in the cochlea 
and the corresponding distance along of the 
cochlea but based on a different approach. 
Jimenez and Oropeza [19] found his function 
solving the model of fluid mechanics developed by 
Lesser [1] through an analysis of 
mechanical resonance: 

𝐴 =
𝐹 𝑚⁄ (𝑥)

√4𝜋2𝑓2 −
𝑘(𝑥)2

𝑚(𝑥)
− 4𝜋2𝑓2 𝑅(𝑚)2

𝑚(𝑥)2  

  , 

 

(3) 

where: 𝑘(𝑥) = 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑠𝑡𝑖𝑓𝑛𝑒𝑠𝑠, 

𝑚(𝑥) = 𝑏𝑎𝑠𝑖𝑙𝑎𝑟 𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝑚𝑎𝑠𝑠,  

𝑅𝑚(𝑥)  =  𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒. 

From (3) we can obtain the following expression 
to try to find the distance that depends of a 
specific frequency: 

𝑏 × 𝑥(𝑓) = (𝑙𝑛 (
4𝜋2𝑓𝑅

2𝑚 + (𝑅𝑚
2 2𝑚)

𝐴
)), (4) 

where (4) is a generic expression because of its 
possible to find different values of the 𝑅𝑚(𝑥), 𝑚(𝑥) 

or 𝑘(𝑥), obtained from different papers reported in 
the state of the art. 

After that, to demonstrate that is possible to find 
a similar equation but using another 
cochlear model. 

We used the model proposed by Neely in [10]. 
But now, using analysis based in non-linear 
regression to obtain the relation between 
frequency and distance, was used. The 
mathematical expressions obtained are 
the following: 

𝑓(𝑥) = 2.003 × 104𝑒−1.1412𝑥. (5) 

This same equation is able to be expressed as 
the position along the cochlea as a function of 
frequency as (6) demonstrate: 

𝑥(𝑓) =
𝑙𝑛𝑓(𝑥) − 𝑙𝑛2.003 ∗ 104

−1.4142
. (6) 

With equations (2), (4) and (6), we are able to 
predict the position if maximum displacement on 
the basilar membrane as a function of frequency 
and vice versa. Figure 1 shows the pressure level 
with respect a frequency value such as Neely 
algorithm propose. 

Independently of the cochlea model used, it 
must to try to adjust to the representation showed 
in fig 1. Then each one of the expressions (2) (4) 
and (6) determinate the distance where a 
frequency is present given the pressure difference 
in basilar membrane and where it has the most 
great value of excitation as is showed in figure 2. 

The result of curve obtained from the function 
(4) developed in this work is consistent with the 
curve of Greenwood’s function (2). On the other 
hand, the curve of function proposed by Jimenez 

 

Fig. 1. Pressure difference into cochlea when is excited 
by a pulse of frequency 

Computación y Sistemas, Vol. 29, No. 1, 2025, pp. 169–178
doi: 10.13053/CyS-29-1-5511

José Luis Oropeza Rodríguez, Omar Velázquez López172

ISSN 2007-9737



used the following values k(x)=109e-2x, R(x)=200 

and M(x)=0.15. 

Figure 3 shows the diagram for the polyphonic 
music transcription using NMF algorithm. Our 
propose consists in add the spectral auditory-
filtering block to modify the time/frequency 
representation (spectrogram of the signal) but 
using an auditory bank-filters, where central 
frequencies of each filter is obtained according to 
the equations (3,4,6). 

4 Results and Discussions 

In this section we compare and validate our 
propose join the Greenwood solution with respect 

to standard parameters or spectral representation 
used in ASR systems and Music Transcription 
respectively. As a first experiment, the frequency 
values for N = 251 points along a 40 mm long 
cochlear partition were calculated. 

Figure 4 shows the behavior of the equation 5 
when a factor k is plus to it. 

One time that we find an equation that show the 
behavior of the cochlea related with the excitation 
frequency-distance is possible to apply it to 
different fields of the science. 

For that, we selected two applications: 
Automatic Speech Recognition and Music 
Transcription, both of them associated with the 
human auditory. It is important to mention that each 
of them has its particularities and so much 

 

Fig. 2. Behavior of the expressions 

 

Fig. 3. Diagram for the proposed polyphonic transcription system 

 

Fig. 4. Frequency along the cochlea from function proposed by equation 5 plus a factor k=-160 
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algorithms have been proposed to try to solve the 
problem inside of them. 

4.1 Distribution of the Frequency Relationship 
with its Position along the Cochlea 

As mentioned in the first section of this work, the 
cochlea behaves like a filter, which has a 
bandwidth bounded by a maximum frequency 𝑓𝑚𝑎𝑥 

corresponding to a position in the oval window and 
a minimum frequency 𝑓𝑚𝑖𝑛 corresponding to 
the helicotrema. 

From the last analysis a computational model to 
obtain the distance where the maximum 
displacement of the basilar membrane occurs to a 
specific excitation frequency of the system was 
developed, which depends of the physical 
characteristics of the basilar membrane.  

The following procedure shows in table 1 
describes the computational model of the cochlea 
using this propose [10]. It is important to mention 
that the maximum response of the pressure curve 
used in [10] was obtained. 

As we can see table 1 shows the procedure to 
obtain a set of parameters to be applied in 
Automatic Speech Recognition using the classical 
MFCC parameters but modified using our propose 
previously mentioned. 

4.2 Transcription Model 

The first step consists of calculating the 
spectrogram of the music signal of the piece to be 

recognized and storing the modified spectrum for 
each segment such as explained in section 3 and it 
was illustrated in figure 3, storing it in the V matrix. 

The columns of W should be labeled and 
initialized with the filtered spectrum of each 
complete isolated piano note. 

Since an optimal detection threshold is sought 
to obtain the best transcription performance, 
different experiments were carried out by setting 
the threshold value on each row of H. 

This is how it was determined that the threshold 
value that provides the most consistent results is of 
µ+ 1/2 σ of the set of all rows of H. The performance 
of the proposed system is compared with Marolt's 
SONIC [32]. Likewise, using the same dataset and 
calculating the central frequencies from the 
Greenwood function presented in the last 
experiment when implementing the filter bank, it 
becomes possible to make a comparison and 
evaluate which cochlear function helps to be better 
in transcription task. 

7Its important to mention that the last stage of 
the transcription system called post-processing 
consists of representing the W and H factors as 
elements of tone and temporal activity, 
respectively. Each column of W then represents a 
tone and each row of H is associated with it, 
describing its onsets and duration. This is how the 
final product of this stage consists of tone events, 
with their onset and duration. 

Therefore, it is possible to obtain a segment-
level transcription that in turn can be compared 

Table 1. Description of the procedure to obtain MFCC coefficients modified 

 Obtain speech signal, realize preprocessing (It includes 

pre-emphasis, segmentation, windowing and feature 

extraction), for each sentence. 

 In the feature extraction, the same procedure as MFCC 

was used but the filter bank is constructed following the 

next steps. 

o Take the minimal and maximal frequency, where filter 

bank are going to be constructed. Default   HTK   uses 

𝑓𝑚𝑖𝑛 = 0 and𝑓𝑚𝑎𝑥 = 𝐹𝑠⁄2. 

o For each center frequencies of the bank-filter obtained 
with MFCC we must to obtain the distance in the cochlea 
from equations 4 or 6, it depends what kind of model we 
want to use. 

o Determine the linear frequency related with 

these distances, this represents the center of 

the filter bank using equations 1, 3 or 5. 

o Construct filter bank with frequency center 

obtained from the Mel equation. 

 Follow the same steps to obtain MFCC, multiply 

spectral representation from Fourier Transform 

with filter bank, calculate energy by bands using 

logarithm, and finally, apply discrete cosine 

transform. 

 Obtain a new set of coefficients for each speech 
signal. 

 Train the ASR and proceed with recognition task 
using the new parameters. 
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with a MIDI file that serves as a reference. In the 
second experiment, a corpus elaborated by J. 
Hansen at the University of Colorado Boulder was 
used [33]. Only 9 speakers with ages ranging from 
22 to 76 were used and we applied normal corpus 
not under Stress sentences contained into corpus. 

The words were “brake, change, degree, 
destination, east, eight, eighty, enter, fifty, fix, 
freeze, gain, go, hello, help, histogram, hot, mark, 
nav, no, oh, on, out, point, six, south, stand, steer, 
strafe, ten, thirty, three, white, wide, & zero”. A total 
of 4,410 files of speech were processed. Finally, 
Tables 2 shows results when using our proposal 
(Cochlear Mechanics Cepstrum Coefficients –
CMCC-) the best representations used in the state 
of the art and in the last experiment versus MFCC 
in SUSAS corpus, while table 3 shows the results 
of the Music Transcription task for a corpus 
described in the first column. 

The results of these experiments confirm that 
the behavior of the proposed function is close to 
the Green- wood’s function. Moreover, taking into 
account that his function fitted cochlear 
observations on human cadaver ears quite well, and 
with changes of constants, those on ten 
different species. 

Therefore, the function proposed in this work 
obtaining from a new approach achieves the same 
objective, which is to describe the behavior 
simulated of the human ear but using mechanical 
cochlear models. 

In Automatic Speech Recognition the results 
showed that with this purpose it’s possible to find a 
better result that MFCC coefficients because two 
words were recognized adequately. In Music 
Transcription the results showed that it’s possible 
to modify the spectrum employed in NMF algorithm 
using a bank-filter adapted to our equations that 

Table 2. Results obtained for automatic speech recognition task for SUSAS Corpus 

boston1 

 SENTENCE N H S WORD H D S I N 

HTK normal 91.43 224 21 245 91.67 231 7 14 0 252 

Greenwood 91.43 224 21 245 91.67 231 7 14 0 252 

Our purpose 1 91.43 224 21 245 91.67 231 7 14 0 252 

Our purpose 2 91.43 224 21 245 91.67 231 7 14 0 252 

boston2 

 SENTENCE N H S WORD H D S I N 

HTK normal 95.51 234 11 245 95.63 241 7 4 0 252 

Greenwood 95.51 234 11 245 95.63 241 7 4 0 252 

Our purpose 1 95.51 234 11 245 95.63 241 7 4 0 252 

Our purpose 2 95.92 235 10 245 96.03 242 7 3 0 252 

boston3 

 SENTENCE N H S WORD H D S I N 

HTK normal 96.73 237 8 245 96.83 244 7 1 0 252 

Greenwood 96.73 237 8 245 96.83 244 7 1 0 252 

Our purpose 1 96.73 237 8 245 96.83 244 7 1 0 252 

Our purpose 2 96.73 237 8 245 96.83 244 7 1 0 252 

general1 

 SENTENCE N H S WORD H D S I N 

HTK normal 96.73 237 8 245 96.83 244 7 1 0 252 

Greenwood 96.73 237 8 245 96.83 244 7 1 0 252 

Our purpose 1 96.73 237 8 245 96.83 244 7 1 0 252 

Our purpose 2 96.73 237 8 245 96.83 244 7 1 0 252 
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present a relation between frequency and distance 
into cochlea. 

Both experiments showed that is possible to 
integrate the purpose in these aspects related with 
human hearing and is necessary to probe in other 
applications to analyze the scope of the proposal. 

In our days, so many papers related with deep 
learning algorithms use the spectrogram or MFCC 
parameters as input information to Recurrent 
Neural Networks (RNN), Long Short-Term Memory 
(LSTM) or Transformers Neural Networks 
(TNN) [34-37]. 

5 Conclusions 

The main contribution of this paper is the 
formulation of a cochlear frequency-position 
function based on a biomechanical model and its 
applications for Automatic Speech Recogniton and 
Music Transcription. We have demonstrated that 
such function is consistent with 
Greenwood’s function. 

In addition, this study leaves a methodology to 
find cochlear functions based on a non-linear 
regression method among others computational 
algorithms, applicable for any data set of a 
frequency type vs position inside of the cochlear 
position. Such cochlear functions are exponential 
and they represent a very simple 
mathematical expression. 

On the other hand, although the proposed 
function was obtained from a cochlear model it is 
also possible to perform the reverse procedure [5]. 

That is, such cochlear functions might aid in the 
development of cochlear models. 

For example, in recent papers, recurrent neural 
networks or transformers are used but the spectral 
representations (normally spectrogram or MFCC) 
are used. Then one of the possible future works 
that can be developed is modify the behavior of this 
spectral representations by the propose presented 
in this paper trough a bank-filters constructed from 
human hearing at we presented for the music 
transcription task and compare the results with or 
without the bank filters. 

Then will be interesting to show these ideas 
modifying MFCC by CMCC for ASRs tasks and 
spectral representation of audio signal by the filter 
bank proposed in this paper. 
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