ISSN 2007-9737

Machine Learning, Missing Values, and Algorithm Selectors:
The Untold Story

Anna Karen Garate-Escamilla, José Carlos Ortiz-Bayliss*, Hugo Terashima-Marin

Instituto Tecnol6gico de Monterrey,
School of Engineering and Science, Monterrey,
Mexico

jcobayliss@tec.mx

Abstract. This paper presents a study of the
potential benefits of incorporating missing values into
the training process of algorithm selectors powered by
machine learning algorithms, particularly those used for
classification. This work analyzes various scenarios
related to omitting some of the data available for
training and measures the performance of the algorithm
selectors produced to estimate how resistant they are
to the presence of missing values within the training
data. Our experiments open a new and exciting
perspective on training algorithm selectors, one where it
is possible to save computational resources by omitting
some calculations, reducing the effort to produce
such selectors, but without significantly harming their
performance on unseen instances. For example, our
results show that given a proper training set and deciding
which runs to omit completely at random, some Machine
Learning strategies such as Neural Networks, Naive
Bayes Classifiers, and Support Vector Machines can
correctly operate as algorithm selectors with up to 50%
of the data missing (data about the solvers to choose
from), without any further treatment of the missing
values.

Keywords. Algorithm selection, bin packing problem,
machine learning, missing values.

1 Introduction

Over the years, dealing with complex problems
has motivated researchers to design and imple-
ment more powerful problem-solving techniques.
However, the increase in the capacity to deal with
challenging problems has paid a price: an increase
in the computational resources needed to develop
such strategies. In this regard, reusing solvers that
require low resource consumption seems a good

idea, assuming it is possible to get the best out of
such solvers while benefiting from their simplicity.

In this context, the current challenges have
developed a suitable playground for developing
and testing algorithm selectors. Algorithm
selectors are high-level strategies that manage
sets of algorithms (usually simple yet valuable
strategies such as heuristics), allowing them to run
interchangeably, avoiding the single selection of a
poor individual algorithm [19, 31].

The current literature contains various examples
of implementations inspired by the algorithm
selection rationale. Although using different
names, it is worth highlighting: algorithm
portfolios [3, 9, 19, 25], hyper-heuristics [15, 17,
26], and adaptive algorithms or adaptive algorithm
selection [16, 29]. Without any loss of generality,
this work will refer to any of these techniques
simply as algorithm selectors.

The demand for algorithm selectors that optimize
how existing straightforward techniques are used
has increased. Among the many ways such
algorithm selectors can be implemented, there is
an observable trend in the literature to power such
algorithms with machine learning models [22, 28,
35]. When algorithm selectors are implemented
using machine learning (ML) models, the process
can be treated as a supervised learning scenario,
in which the algorithms are provided with a
set of labeled examples to train the models.
Once these models are trained, they can be
used to solve unseen cases to estimate their
performance. As described, it is possible to
model the algorithm selection problem as a

Computacion y Sistemas, Vol. 29, No. 1, 2025, pp. 311-323

doi: 10.13053/CyS-29-1-5508

ISSN 2007-9737

312 Anna Karen Garate-Escamilla, Jose Carlos Ortiz-Bayliss, et al.

classification scenario that requires learning the
problem features (classifier’s input) that map to a
suitable algorithm to apply (classifier's output).

Although many combinatorial optimization prob-
lems are suitable to test the approach described in
this document, a very popular and straightforward
one was chosen: the One-Dimensional Bin
Packing Problem (BPP) [8, 12, 20]. In its simplest
formulation, the BPP manages an infinite number
of containers with the same capacity and a finite
set of items, each with a specific weight. Solving
the BPP requires packing all the items using
the fewest containers possible without exceeding
their capacity. This work implements algorithm
selectors as classifiers that learn to map the
problem features to a suitable heuristic for the BPP.
The algorithm selectors receive a set of instances;
for each instance, they can access the features
that characterize such an instance. Additionally,
for each instance, the algorithm selectors can
access the individual results of each heuristic on
that particular instance. At this point, it should
be clear that the algorithm selectors can identify
the best-performing heuristic per instance (since
they know the results of each heuristic for every
instance), creating a training case that maps the
problem features to the label corresponding to the
best heuristic for those problem features.

Commonly, datasets used for machine learning
tasks contain missing values [30]. However, it
seems unlikely to observe such values when the
results are computer-generated through simula-
tion, as is the case with this test problem. Although
unlikely to occur, it is clear that missing one or more
of the individual results from the heuristics may
bias the selection of the best-performing heuristic
per instance. In this context, missing values do
not represent a problem but an opportunity to
reduce the computational resources needed to
generate algorithm selectors. Thus, missing values
are introduced on purpose. The rationale behind
having missing values on the individual results
of the heuristics is that they may represent a
way of saving computational resources. In other
words, if the idea is to create a training table for n
BPP instances and m heuristics, the process must
solve each of the n instances m times, one per
heuristic. If some missing values are introduced

Computacion y Sistemas, Vol. 29, No. 1, 2025, pp. 311-323

doi: 10.13053/CyS-29-1-5508

(by randomly avoiding using some heuristics on a
few instances), then it would produce a table with
fewer results from the heuristics. Can this reduced
table be used to train algorithm selectors without
significantly decreasing performance? How many
missing values affect the algorithm selectors’
performance on such a reduced table? These
questions motivated our initial attempts on this
topic.

This work builds upon a previous research
that explored the impact of missing values when
using machine learning models as algorithm
selectors [23]. In this study, we expand the
scope of the previous research by including
various machine learning models as algorithm
selectors. To test our hypotheses, we use the
one-dimensional Bin Packing Problem (BPP).

We summarize the rest of this document as
follows. Section 2 provides an overview of this
study with respect to related works. In Section 3,
we describe the solution model. We describe
the experiments conducted and analyze their main
results in Section 4. Finally, Section 5 presents the
conclusion and provides potential paths for future
work.

2 Related Work

The literature is rich in options for implementing
algorithm selectors. We can find relatively
recent examples of these selectors powered by
evolutionary computation [4, 18], reinforcement
learning [37, 40], Simulated Annealing [32, 34],
and fuzzy logic [21], to mention a few. However,
we are particularly interested in implementing
algorithm selectors that work as classifiers —they
receive an instance characterization and return a
suitable algorithm to apply.

Although we lack space for an exhaustive
review of the literature on ML-based algorithm
selectors, specifically those that work as classifiers
as previously described, the following lines provide
a chronological overview of some of the most
significant works related to this topic.

Guo and Hsu studied how machine learning
could be applied in algorithm selectors for
NP-hard optimization problems (where NP stands
for non-deterministic polynomial). They tested

ISSN 2007-9737

Machine Learning, Missing Values, and Algorithm Selectors: The Untold Story 313

their approach on the Most Probable Explanation
Problem in probabilistic inference [10]. Li et al.
combined neural networks and logistic regres-
sion to produce problem-independent algorithm
selectors [14]. A few years later, Ortiz et al.
explored using Learning Vector Quantization (LVQ)
Neural Networks to choose which heuristic to use
when solving constraint satisfaction problems [24].
Tyasnurita et al. produced algorithm selectors
for the Open Vehicle Routing Problem. They
used a Time Delay Neural Network to extract the
patterns within the training data so the algorithm
selector could work as a classifier on unseen
instances [39]. Ortiz et al. proposed a framework
for generating and evaluating algorithm selectors
for Constraint Satisfaction Problems using various
machine learning models [22]. Tornede et
al. investigated meta-learning approaches to aid
algorithm selection for the Boolean Satisfiability
Problem [38]. Among the more recent studies,
Mohamad et al. examined the use of recurrent
neural networks to address the sequential aspects
of combinatorial problems such as the Bin
Packing Problem [1]. Additionally, Diaz et
al. utilized attention-based neural networks as
meta-learners to improve the performance of the
mapping mechanism in algorithm selection [7].
We end this brief review with Salama et al.,
who proposed a Support Vector Machine (SVM)
classifier with a radial basis function kernel
to select the most promising dispatching rule
within the Job Shop Scheduling problem, claiming
to obtain savings in the computational budget
concerning similar selectors implemented via
Genetic Programming [33].

3 Solution Approach

The solution approach proposed produces algo-
rithm selectors using various popular machine
learning models: Repeated Incremental Pruning to
Produce Error Reduction (RIPPER), Decision Tree
(DT), k-Nearest neighbors (kNN), Support Vector
Machines (SVM), Naive Bayes Classifier (NB), and
Neural Networks (NN). Once we train such models,
they are ready to solve a BPP instance. They
read the problem state (considering the problem

features) and recommend a suitable heuristic to
use given the current problem state.

The solution approach requires to generate and
preprocess the data before we can apply the
machine learning strategies. The following lines
describe these steps.

3.1 Instance Generation

The repository contains 2000 BPP instances gen-
erated using an evolutionary approach proposed
by Plata et al. [27]. These instances exhibit the
peculiarity of being suitable for particular heuristics
and harmful to others. So, the repository contains
instances that are best solved using only one of the
heuristics, allowing for a balanced set where each
heuristic is the best option for only a fraction of
the data set. We use four techniques in this work.
Then, 25% of the training set is best solved by each
heuristic.

We have divided the instances into two exclusive
sets, each containing 1000 instances. All the
instances in these sets contain 100 items, a bin
capacity of 128 units, and a maximum item length
of 64. The first set was used for training purposes
(undergoing various preprocessing steps that will
later be described), and the second test was used
exclusively for testing purposes. These instances
are publicly available here'.

3.2 Heuristics

We solved each instance in the repository using
four commonly used heuristics [23]. In all cases,
the heuristics work with only one item at a time,
and their task is to select the bin where the current
item is to be packed. A short description of the
heuristics used in this work is as follows:

1. First Fit (FF) looks for the first available bin
with enough capacity for packing the item.

2. Best Fit (BF) looks for a bin that minimizes the
waste when packed.

3. Worst Fit (WF) prefers the bin that maximizes
the waste when the item is packed.

"https://bit.ly/BPP-Garate2024

Computacion y Sistemas, Vol. 29, No. 1, 2025, pp. 311-323

doi: 10.13053/CyS-29-1-5508

ISSN 2007-9737

314 Anna Karen Garate-Escamilla, Jose Carlos Ortiz-Bayliss, et al.

4. Almost Worst Fit (AWF) packs the item in the
bin with the second most waste produced.

If there is no bin where we can pack the current
item, the system opens a new bin for it. In the event
of ties, the first bin that meets the heuristic’s criteria
is preferred.

3.3 Problem Characterization

The one-dimensional Bin Packing Problem (BPP)
is straightforward to formulate, but this simplicity
comes with limitations. For instance, the only
feature available for the items is their length.
Therefore, to characterize the instances, we rely on
basic features related to the lengths of the items.
In this work, we have used five of such features.
LENGTH measures the average length of the items
within the instance (this value is normalized by
dividing the actual average by the maximum length
of items considered for this work, 64).

STD measures the standard deviation of the
length of the items (also divided by 64, the
maximum length allowed for the items). VSMALL
represents the proportion of “very small” items in
the instance (items with a length smaller or equal
to 15% of an empty bin’s capacity).

Similarly, SMALL represents the proportion of
‘small’ items in the instance (items with a length
larger than 15%, but smaller than 35% of an
empty bin’s capacity), and MEDIUM represents the
proportion of ‘medium’ items in the instance (items
with a length larger or equal to 35% of an empty
bin’s capacity). These thresholds were chosen
based on preliminary observations. It is worth
noting that the maximum item length is 64, which
is half the capacity of an empty bin. Therefore,
there is no need to account for ‘large’ or “very large”
items.

3.4 Data Preparation

The rationale behind this work is to validate
if machine-based algorithm selectors can be
produced without a significant performance de-
crease when some individual heuristics results
are missing. |If this is the case, we could save
resources by omitting a few results (saving some
calculations).

Computacion y Sistemas, Vol. 29, No. 1, 2025, pp. 311-323

doi: 10.13053/CyS-29-1-5508

The first split of 1000 instances produced will
be referred to as TX00. This set contains all
the available training data (no missing values).
The second split, the one devoted to testing the
algorithms, will be referred simply as the test set.

Taking TX00 as a basis, we gradually introduced
missing values into the results obtained by the
heuristics on TX00. This way, we produced three
training sets based on the proportion of missing
values introduced: AX10 (10%), AX25 (25%), and
AX50 (50%).

Since we intentionally eliminate some individual
results from the heuristics to generate the missing
values, the probability that a result is missing is
the same for all the heuristics. According to the
theory related to missing values, we deal with
the most straightforward case, when values are
Missing Completely at Random (MCAR) [11].

It is relevant to remind the reader that introducing
missing values affects only the values of the
heuristics and does not affect the 1000 instances
from the test set. Then, the values related to the
features that characterize the instances and the
test set remain unaffected and complete.

After creating the three training sets with varying
proportions of missing values (AX10, AX25, and
AX50), we generated two new versions of each
set: one where only complete cases were retained
(by removing any rows with missing values), and
another where missing values were imputed using
the median bin usage per heuristic.

These approaches represent two fundamental
techniques for handling missing data. Finally, for
each version of the sets, we identified the best
heuristic based on the available results for each
instance. At this point, the data is ready to train the
classifiers. A graphical depiction of the instances
considered for this work is shown in Figure 1.

3.5 The Classifiers

he solution approach described in this document
employs various classifiers. Each classifier
possesses distinct characteristics and applications,
allowing for a versatile and robust predictive
modeling framework.

A brief description of these classifiers is provided
in the following lines:

ISSN 2007-9737

Machine Learning, Missing Values, and Algorithm Selectors: The Untold Story 315

Trainingset fF==========-------—-—-—-—-—---- > TX00
[1000] [7000]
Complete cases only
BX10
10% %61
> AXI0
[1000]
- - cx10
Data imputation IW
Complete cases only
BX25
25%) 317
Missing value insertion ‘ > AX25
Data imputation CX25 7000
Complete cases only
50%) BX50
| 52
=1 AX50
L]
Data imputation CX50 ,W
Testset ~ _ pememmmmmmmmmmmmmmmmmmmmm-- - > Test set
[1000 [1000]

Fig. 1. An overview of the instances used in this investigation. The top-right numbers indicate the proportion of missing
values contained in each set. Conversely, the bottom-right numbers indicate the instances contained in each set.

— RIPPER is arule-based learner that generates — Decision trees (DT) construct a tree-like

a set of production rules from the training
data [6]. It is known for its speed
and efficiency, especially in managing large
datasets. Ripper is particularly advantageous
in contexts that require interpretable mod-
els, as experts can easily understand the
generated rules. This work uses the ripper
implementation, JRip from the library RWeka in
R and keeps the default configuration provided
by the function.

k-Nearest neighbors (kNN) is a
non-parametric method that classifies
instances based on the majority class
among their neighbors (in this case, the
five-nearest) in the feature space [36]. This
classifier is straightforward and effective for
smaller datasets, though its computational
efficiency decreases with larger datasets due
to the need for distance calculations. This
work uses the function knn from the library
class in R (using the default configuration

provided by the function).

structure resembling a flowchart to represent
decisions based on feature values [5]. This
intuitive model offers clear interpretability,
making it suitable for exploratory data anal-
ysis. To implement the decision trees in
this work, the function rpart from the library
RPart in R was used. In all cases, the
default configuration was used (including the
maximum depth of any node of the final tree,
which is set to 30 by default).

— Support Vector Machines (SVM) are robust

classifiers that function by finding a hy-
perplane that effectively separates different
classes in the feature space [2]. For this work,
the implementation of the SVMs use the most
common kernels: Support Vector Machine
with a Linear kernel (SVM-L), Support Vector
Machine with a Polynomial kernel (SVM-P),
and Support Vector Machine with a Gaussian
kernel (SVM-G). To implement these three
SVMs, we used the function ksvm from
the library kernlab with kernels vanilladot,

Computacion y Sistemas, Vol. 29, No. 1, 2025, pp. 311-323

doi: 10.13053/CyS-29-1-5508

ISSN 2007-9737

316 Anna Karen Garate-Escamilla, Jose Carlos Ortiz-Bayliss, et al.

polydot, and rbfdot, respectively. No addi-
tional parameter adjustment was conducted.

— Naive Bayes (NB) is a probabilistic classifier
based on Bayes theorem and assumes
independence between features given the
class label [41]. The NB classifier was
implemented using the function naiveBayes
from the library e1071 in R. The default
configuration was used in all the cases.

— Neural networks (NN) are inspired by the
human brain [13]. They excel in capturing
complex patterns and relationships within
data, making them suitable for various
applications, particularly in image and speech
recognition. We implemented the neural
networks as multi-layer perceptrons using the
function neuralnet from the library neuralnet
in R. In all the cases, the architecture used
contained two hidden layers of three and two
neurons. The number of input neurons was
five (one per feature that characterizes the
instance) and four output neurons (one per
available heuristic). The only parameter that
was adjusted was the number of maximum
steps, which was increased to 9 x 10° to
increase the opportunities of convergence.

Each of these classifiers brings unique strengths
to the solution approach, and their performance will
be assessed through the accuracy obtained on the
various datasets considered for this study.

4 Experiments and Results

The experimental setup consists of four experi-
ments, described below. All the experiments were
implemented using the R programming language
(version 4.1.2 — “Bird Hippie”) and ran on a 4-core
Linux Mint computer with 16 GB of RAM.

4.1 Training with all the Data Available

In this experiment, the idea was to produce
eight algorithm selectors using the set TXO00,
which contains 1000 BPP instances and no
missing values. The results will be used as
a reference when training with missing values.

Computacion y Sistemas, Vol. 29, No. 1, 2025, pp. 311-323

doi: 10.13053/CyS-29-1-5508

Bin usage
o
©

4
@

i i

0.7- * * *

FF BF WF AWF RIPPER kNN DT SVM-L SVM-P SVM-G NB NN
Algorithm selector

Fig. 2. Bin usage of the four heuristics and the algorithm

selectors on the test set. These algorithm selectors were

trained on set TX00 (that contains no missing values).

To determine the best heuristic, the process
chooses the heuristic with the largest bin usage for
each instance.

As shown in Figure 2, all the classifiers
outperform the individual heuristics. Actually, by
looking at the notches from the boxplots, there
is statistical evidence that supports, with 95% of
confidence, that each of the classifiers is better (in
terms of bin usage) than the four heuristics (on an
individual pairwise comparison).

Among the algorithm selectors produced, SVM-L
and SVM-P obtained the best accuracy, with
66.5% of correctly classified cases. The accuracy
obtained by the remaining methods in this
experiment is shown in Table 1.

4.2 Training with Missing Values

The algorithm selectors for this second experiment
were trained using the sets AX10, AX25, and
AX50, which contain different proportions of
missing values (10%, 25%, and 50%, respectively).
To determine the best heuristic, the process
chooses the heuristic with the largest bin usage for
each instance.

When the result of one heuristic is missing
for one particular instance, that best heuristic is
chosen only among the collected results. The sets
used in this experiment received no treatment to
deal with the missing values. So, eight algorithm
selectors were trained and used to solve the test
set. The results on the test set, in terms of bin
usage are shown in Figures 3, 4, and 5. In all
cases the results of the heuristics are also shown
as a reference, although they do not work as
algorithm selectors.

ISSN 2007-9737

Machine Learning, Missing Values, and Algorithm Selectors: The Untold Story 317

Table 1. Accuracy obtained by each of the methods under study on the various test sets in this work. The best result

per classifier is highlighted in bold.

TX00 | AX10 AX25 AX50 | BX10 BX25 BX50 | CX10 CX25 CX50
RIPPER | 59.8% | 53.5% 41.5% 27.4% | 53.2% 53.1% 36.3% | 53.4% 46.8% 32.2%
kNN | 57.4% | 56.0% 50.3% 43.2% | 58.5% 56.4% 51.2% |57.6% 53.3% 42.2%
DT | 60.0% | 59.2% 58.6% 55.6% | 59.2% 59.0% 49.7% | 59.7% 59.3% 25.0%
SVM-L | 66.5% | 66.2% 66.4% 55.3% | 66.6% 65.2% 59.0% | 66.4% 62.0% 25.0%
SVM-P | 66.5% | 66.2% 66.4% 55.3% | 66.6% 65.2% 59.0% | 66.4% 62.0% 25.0%
SVM-G | 66.2% | 66.6% 65.9% 57.9% | 65.4% 63.5% 56.2% | 66.8% 64.6% 32.8%
NB | 61.3% | 60.4% 59.3% 58.3% | 60.6% 58.5% 55.9% | 60.0% 60.4% 57.1%
NN | 65.7% | 65.7% 64.1% 59.4% | 65.1% 65.2% 52.7% | 65.6% 66.4% 41.5%

Bin usage
=
©

o
@

%
* *]
07 " "

FF BF WF AWF RIPPER kNN DT SVM-L SVM-PSVM-G NB NN

Algorithm selector

Fig. 3. Bin usage of the four heuristics and the algorithm
selectors on the test set. These algorithm selectors were
trained on set AX10. AX10 contains 10% of missing
values in the individual results of the heuristics.

Training with 10% of missing values in the
results of the heuristics seems to have little impact
on the performance of the algorithm selectors
produced. As in the case of the first experiment,
the algorithm selectors produced in this experiment
outperform the heuristics when compared in a
pairwise manner, with 95% of confidence (the
classifiers’ notches do not overlap with those of
the heuristics). However, as the percentage
of missing values increases, the performance of
some algorithm selectors decreases.

For example, when 25% of the data about the
heuristics is lost, RIPPER and kNN significantly
reduce their performance, reaching only 41.5 and
50.3%, respectively (see Figure 4 and Table 1).
However, regarding how they solve the instances,
only RIPPER and DT are affected, reducing
their performance close to the one of BF, the
best individual performer of the heuristics. The
remaining methods and the accuracies obtained
are shown in Table 1.

Bin usage
o
©

o
Y

0.7- *
WF AWF RIPPER kNN DT SVM-L SVM-P SVM-G NB NN
Algorithm selector

FF BF

Fig. 4. Bin usage of the four heuristics and the algorithm
selectors on the test set. These algorithm selectors were
trained on set AX25. AX25 contains 25% of missing
values in the individual results of the heuristics.

When trained on AX50, a set containing 50%
of missing values concerning the results of the
heuristics, the performance decreases even more.
This time, RIPPER and kNN correctly classify only
27.4% and 43.2% of the instances in the test
set. However, when kNN fails to select the best
heuristic, it fails selecting a competent heuristic,
reducing the impact in its performance in terms
of bin usage. According to the bin usage metric,
RIPPER and DT fail as algorithm selectors since
they somehow replicated the behavior of BF, the
best individual heuristic in the test set according to
its bin usage.

The algorithm selectors powered with SVM-G,
Naive Bayes Classifier and Neural Networks were
capable of maintaining a solid performance even
when 50% of the data regarding the heuristics was
missing during the training process, obtaining an
accuracy of 57.9%, 58.3%, and 59.4%. We provide
the accuracy obtained by the remaining methods in
Table 1.

Computacion y Sistemas, Vol. 29, No. 1, 2025, pp. 311-323

doi: 10.13053/CyS-29-1-5508

ISSN 2007-9737

318 Anna Karen Garate-Escamilla, Jose Carlos Ortiz-Bayliss, et al.

Bin usage

FF BF WF AWF RIPPER kNN DT SVM-L SVM-P SVM-G NB NN
Algorithm selector

Fig. 5. Bin usage of the four heuristics and the algorithm
selectors on the test set. These algorithm selectors were
trained on set AX50. AX50 contains 50% of missing
values in the individual results of the heuristics.

Something worth mentioning is that the outliers
disappeared when we used test set AX50.
Contrary to what we might think at first sight,
this is not a good indicator. The outliers
disappeared because some methods exhibited a
larger standard deviation in their results. Thus, the
values that were considered unusual in previous
cases are now considered ‘normal’ because the
data are more spread out.

4.3 Working only with Complete Cases

The third experiment used a standard approach for
handling missing values known as complete cases
analysis. This involved removing any instance
from the AX10, AX25, and AX50 datasets where
at least one heuristic result was missing. As
anticipated with this method, the number of training
examples decreased proportionally to the number
of missing values. Consequently, the resulting
datasets —BX10, BX25, and BX50— experienced
reductions of 33.9%, 68.3%, and 94.8% in the
number of instances, respectively (see Figures 6,
7, and 8). That such a significant loss of
data is impractical for real-world applications.
Nonetheless, this experiment was designed to
examine the effects of missing values and evaluate
the impact of commonly used techniques for
addressing them.

Similarly to what happened in the previous
experiment, eight algorithm selectors were trained
using the sets BX10, BX25, and BX50 to evaluate
their performance on the test set. The rationale
behind this experiment is to evaluate if keeping
only complete cases may be used to deal with

Computacion y Sistemas, Vol. 29, No. 1, 2025, pp. 311-323

doi: 10.13053/CyS-29-1-5508

Bin usage
o
©

=)
)

i

07- x
FF BF WF AWF RIPPER kNN DT SVM-L SVM-P SVM-G NB NN
Algorithm selector

Fig. 6. Bin usage of the four heuristics and the algorithm
selectors on the test set. These algorithm selectors
were trained on set BX10. BX10 originally contained
10% of missing values in the individual results of the
heuristics, but for this experiment, only complete cases
were considered.

missing values in the context of algorithm selector
generation.

When trained using only the complete cases
(sets BX10, BX25, and BX50), the algorithm
selectors did not exhibit an apparent decrease in
performance regarding the bin usage, at least with
sets BX10 and BX25 (which come from sets with
10% and 25% of missing values per heuristic). The
algorithm selectors trained with BX10 are similar to
those generated with TX00 and AX10.

What is more surprising is that the performance
of RIPPER and kNN are better on the test set
when trained on BX25 than on its counterpart,
AX25. With these training sets, the algorithm
selectors that showed the best performance in
terms of accuracy were SVM-L, SVM-P, and NN,
with 65.2%. Training on set BX25 decreased the
performance of all the algorithm selectors (see
Table 1). Despite that, some remained competitive
and statistically superior to the other methods.
That is the case for SVM-L, SVM-P, and SVM-G,
which obtained an accuracy of 59.0%, 59.0%, and
56.2%, respectively. Conversely, RIPPER and kNN
were severely affected by the drastic reduction in
the number of examples for training when using set
BX50.

4.4 Training with Data Imputation

For the final experiment, data imputation tech-
niques were considered. Data imputation refers to
a method for retaining the majority of the dataset’s
data and information by substituting missing data

ISSN 2007-9737

Machine Learning, Missing Values, and Algorithm Selectors: The Untold Story 319

Bin usage
=
©

=)
)

i

*

0.7- * *
FF BF WF AWF RIPPER kNN DT SVM-L SVM-P SVM-G NB NN
Algorithm selector

Fig. 7. Bin usage of the four heuristics and the algorithm
selectors on the test set. These algorithm selectors
were trained on set BX25. BX25 originally contained
25% of missing values in the individual results of the
heuristics, but for this experiment, only complete cases
were considered.

Bin usage
o
©

o
Y

0.7-
FF BF WF AWF RIPPER kNN DT SVM-L SYM-P SVM-G NB NN
Algorithm selector

Fig. 8. Bin usage of the four heuristics and the algorithm
selectors on the test set. These algorithm selectors
were trained on set BX50. BX50 originally contained
50% of missing values in the individual results of the
heuristics, but for this experiment, only complete cases
were considered.

with a different value. Thus, rather than retaining
only complete cases, we synthetically generated
values to fill the gaps in the AX10, AX25, and AX50
datasets. This process involved calculating the
median bin usage per heuristic (excluding missing
values) from the training set and using this median
to impute any missing values for the heuristics.
While this method enabled us to retain all records,
it comes with a trade-off: some imputed values
could potentially introduce bias in the selection of
the optimal heuristic for each instance.

As depicted in Figure 9, training the algorithm
selectors on set CX10 did not affect the
performance of the selectors. In fact, the results
obtained on the test set when training with
AX10, BX10, and CX10 are almost identical.
Then, 10% of missing values seem not to affect
the training process. The decrease in the

1.0~

Bin usage
o
©

4
@

i ¥

07- x
FF BF WF AWF RIPPER kNN DT SVM-L SVM-P SVM-G NB NN
Algorithm selector

Fig. 9. Bin usage of the four heuristics and the algorithm
selectors on the test set. We trained the algorithm
selectors on set CX10. CX10 originally contained 10% of
missing values in the individual results of the heuristics,
but we replaced that 10% of missing values with the
median of the corresponding heuristic.

i

FF BF WF AWF RIPPER kNN DT SVM-L SVM-P SVM-G NB NN
Algorithm selector

Bin usage
=
©

o
®

Fig. 10. Bin usage of the four heuristics and the
algorithm selectors on the test set. We trained the
algorithm selectors on set CX25. CX25 originally
contained 25% of missing values in the individual results
of the heuristics, but we replaced that 25% of missing
values with the median of the corresponding heuristic.

performance of some algorithm selectors, such as
RIPPER and DT, is evident when we train using
CX25 (Figure 10). Regardless of this reduction in
the performance concerning bin usage, RIPPER
remains statistically superior to the four heuristics
(in a pairwise comparison) with 95% confidence
(the notches of the boxplots do not overlap).

Finally, Figure 11 shows the worst scenario in
this study, which occurs when CX50 is used to
train the algorithm selectors and we can observe
a significant decrease in the accuracy of almost
all the selectors. In this case, the selectors
are not statistically different from BF, the best
individual heuristic on the test set. The only
algorithm selectors that remain competitive under
these conditions are NB and NN, which obtained
accuracies of 57.1 and 41.5%. The rest of the
results for this dataset are shown in Figure 1.

Computacion y Sistemas, Vol. 29, No. 1, 2025, pp. 311-323

doi: 10.13053/CyS-29-1-5508

ISSN 2007-9737

320 Anna Karen Garate-Escamilla, Jose Carlos Ortiz-Bayliss, et al.

Bin usage
=
©

=)
)

wngafabaat!

0.7- *
FF BF WF AWF RIPPER kNN DT SVM-L SVM-P SVM-G NB NN
Algorithm selector

Fig. 11. Bin usage of the four heuristics and the
algorithm selectors on the test set. We trained the
algorithm selectors on set CX50. CX50 originally
contained 50% of missing values in the individual results
of the heuristics, but we replaced that 50% of missing
values with the median of the corresponding heuristic.

5 Conclusion and Future Work

We have examined several scenarios involving
missing values and their impact on the perfor-
mance of algorithm selectors used as classifiers.
Our findings indicate that missing values during
training do not necessarily impair the performance
of these algorithm selectors (see Table 1). This
opens up the possibility of intentionally using
missing values to reduce the computational
resources needed for their generation.

For example, missing values could be introduced
in the training data by systematically avoiding
solving the training instances with some heuristics.
Since we can control which cases to avoid solving,
we can guarantee to keep a Missing Completely at
Random (MCAR) scenario, which is the one where
all the cases exhibit the same probability of being
missing.

This idea could lead to important savings of up
to 25% of the computing power devoted to solving
the instances during the training process.

Besides, we observed that working with 10%
and 25% of missing values does not seem
to significantly change the methods’ general
performance, regardless of whether they work with
complete cases or use data imputation.

However, for larger proportions, such as 50%
of missing values, the methods’ performance
presents a notorious decrease, regardless of the
technique used to deal with the missing values

Moreover, an interesting situation is yet to be
explored: the occurrence of qualitative features to

Computacion y Sistemas, Vol. 29, No. 1, 2025, pp. 311-323

doi: 10.13053/CyS-29-1-5508

characterize the problem instances. So far, the
work conducted on algorithm selectors for the BPP
has relied on quantitative features only.

Although there is no apparent reason to think
that the ideas presented in this work could not
apply to such a scenario, we can only affirm that
they will be useful once they have properly been
tested.

Based on this investigation, we have identified
several potential avenues for future research.
While our current study focused on Missing Com-
pletely at Random (MCAR) scenarios, exploring
more complex cases such as Missing at Ran-
dom (MAR) and Missing Not at Random (MNAR)
could be valuable [11].

References

1. Alissa, M., Sim, K., Hart, E. (2023).
Automated algorithm selection: From feature-
based to feature-free approaches. Journal of
Heuristics, Vol. 29, No. 1, pp. 1—-38. DOI:
10.1007/510732-022-09505-4.

2. Cervantes, J., Garcia-Lamont, F.,
Rodriguez-Mazahua, L., Lopez, A.
(2020). A comprehensive survey on support
vector machine classification: Applications,
challenges and trends. Neurocomputing,
Vol. 408, pp. 189-215. DOI: https:
//doi.org/10.1016/j.neucom.2019.10.118.

3. Chalé, M., Bastian, N. D., Weir, J.
(2020). Algorithm selection framework for
cyber attack detection. Proceedings of the
2nd ACM Workshop on Wireless Security and
Machine Learning, Association for Computing
Machinery, New York, NY, USA, pp. 37—42.
DOI: 10.1145/3395352.3402623.

4. Chen, H., Zhang, J., Li, R., Ding, G., Qin,
S. (2022). A two-stage genetic programming
framework for stochastic resource constrained
multi-project scheduling problem under new
project insertions. Applied Soft Computing,
Vol. 124, pp. 109087. DOI: https://doi.org/
10.1016/j.asoc.2022.109087.

10.

11.

12.

ISSN 2007-9737

Machine Learning, Missing Values, and Algorithm Selectors: The Untold Story 321

. Chen, T., Guestrin, C. (2016). Xgboost: A

scalable tree boosting system. Proceedings
of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data
Mining, Association for Computing Machinery,
New York, NY, USA, pp. 785-794. DOI: 10.
1145/2939672.2939785.

. Cohen, W. W., Singer, Y. (1999). A simple,

fast, and effective rule learner. Proceed-
ings of the Sixteenth National Conference
on Artificial Intelligence and the Eleventh
Innovative Applications of Atrtificial Intelligence
Conference Innovative Applications of Artificial
Intelligence, American Association for Artificial
Intelligence, USA, pp. 335-342.

. Diaz de Leon-Hicks, E., Conant-Pablos,

S. E., Ortiz-Bayliss, J. C., Terashima-Marin,
H. (2023). Addressing the algorithm selection
problem through an attention-based meta-
learner approach. Applied Sciences, Vol. 13,
No. 7. DOI: 10.3390/app13074601.

. Eliiyi, U., Eliiyi, D. T. (2009). Applications

of bin packing models through the supply
chain. International journal of business and
management, Vol. 1, No. 1, pp. 11-19.

. Gomes, C. P., Selman, B. (2001). Algorithm

portfolios. Artificial Intelligence, Vol. 126,
No. 1, pp. 43-62. DOI: https://doi.org/10.
1016/50004-3702(00)00081-3.

Guo, H., Hsu, W. H. (2007). A machine
learning approach to algorithm selection for
NP\mathcal{NP} -hard optimization prob-
lems: a case study on the MPE problem. Ann.
Oper. Res., Vol. 156, No. 1, pp. 61-82. DOI:
10.1007/s10479-007-0229-6.

Heymans, M. W., Twisk, J. W. (2022).
Handling missing data in clinical research.
Journal of Clinical Epidemiology, Vol. 151,
pp. 185-188. DOI: https://doi.org/10.
1016/j.jclinepi.2022.08.016.

Korte, B., Vygen, J. (2018). Bin-Packing.
Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 489-507. DOI: 10.1007/

978-3-662-56039-6_18.

13.

14.

15.

16.

17.

18.

19.

20.

LeCun, Y., Bengio, Y., Hinton, G. (2015).
Deep learning. nature, Vol. 521, No. 7553,
pp. 436.

Li, J., Burke, E. K., Qu, R. (2011).
Integrating neural networks and logistic re-
gression to underpin hyper-heuristic search.
Knowledge-Based Systems, Vol. 24, No. 2,
pp. 322-330. DOI: https://doi.org/10.
1016/j.knosys.2010.10.004.

Li, W., Ozcan, E., Drake, J. H., Maashi,
M. (2023). A generality analysis of multiob-
jective hyper-heuristics. Information Sciences,
Vol. 627, pp. 34-51. DOI: https://doi.org/
10.1016/j.ins.2023.01.047.

Lin, J., Lamichhane, A., Chen, C., Lu,
J. (2018). The adaptive algorithm for
the selection of sources of the method
of fundamental solutions. Engineering
Analysis with Boundary Elements, Vol. 95,
pp. 154—159. DOI: https://doi.org/10.
1016/j.enganabound.2018.07.008.

Marcel Panzer, B. B., Gronau, N. (2023).
A deep reinforcement learning based hyper-
heuristic for modular production control.
International Journal of Production Research,
Vol. 0, No. 0, pp. 1-22. DOI: 10.1080/
00207543.2023.2233641.

Melder, D., Drake, J., Wang, S. (2023).
An evolutionary hyper-heuristic for airport slot
allocation. Correia, J., Smith, S., Qaddoura,
R., editors, Applications of Evolutionary
Computation, Springer Nature Switzerland,
Cham, pp. 53-68.

Munoz, M. A, Soleimani, H.,
Kandanaarachchi, S. (2022). Benchmarking
algorithm portfolio construction methods.
Proceedings of the Genetic and Evolutionary
Computation Conference Companion,
Association for Computing Machinery,
New York, NY, USA, pp. 499—502. DOI:
10.1145/3520304 . 3528880.

Munien, C., Ezugwu, A. E. (2021). Meta-
heuristic algorithms for one-dimensional bin-
packing problems: A survey of recent ad-

Computacion y Sistemas, Vol. 29, No. 1, 2025, pp. 311-323

doi: 10.13053/CyS-29-1-5508

ISSN 2007-9737

322 Anna Karen Garate-Escamilla, Jose Carlos Ortiz-Bayliss, et al.

21.

22.

23.

24.

25.

26.

27.

Computacion y Sistemas, Vol. 29, No. 1, 2025, pp. 311-323

vances and applications. Journal of Intelligent
Systems, Vol. 30, No. 1, pp. 636—663.

Olivas, F., Amaya, l., carlos Ortiz-Bayliss,
J., Conant-Pablos, S. E., Terashima-Marin,
H. (2021). Enhancing hyperheuristics for
the knapsack problem through fuzzy logic.
Computational Intelligence and Neuroscience,
Vol. 2021.

Ortiz-Bayliss, J. C., Amaya, l., Cruz-Duarte,
J. M., Gutierrez-Rodriguez, A. E., Conant-
Pablos, S. E., Terashima-Marin, H. (2021). A
general framework based on machine learning
for algorithm selection in constraint satisfaction
problems. Applied Sciences, Vol. 11, No. 6.
DOI: 10.3390/app11062749.

Ortiz-Bayliss, J. C., Garate-Escamilla, A. K.,
Terashima-Marin, H. (2024). Missing data
and their effect on algorithm selection for
the bin packing problem. Mezura-Montes, E.,
Acosta-Mesa, H. G., Carrasco-Ochoa, J. A.,
Martinez-Trinidad, J. F., Olvera-Ldpez, J. A.,
editors, Pattern Recognition, Springer Nature
Switzerland, Cham, pp. 34—43.

Ortiz-Bayliss, J. C., Terashima-Marin, H.,
Conant-Pablos, S. E. (2013). Learning vector
quantization for variable ordering in constraint
satisfaction problems. Pattern Recognition Let-
ters, Vol. 34, No. 4, pp. 423-432. DOI: https:
//doi.org/10.1016/j.patrec.2012.09.009.

Piechowiak, K., Drozdowski, M., Eric
Sanlaville (2022). Framework of algorithm
portfolios for strip packing problem. Com-
puters & Industrial Engineering, Vol. 172,
pp. 108538. DOI: https://doi.org/10.1016/
j.cie.2022.108538.

Pillay, N., Qu, R. (2018). Selection Construc-
tive Hyper-Heuristics. Springer International
Publishing, Cham, pp. 7-16. DOI: 10.1007/
978-3-319-96514-7_2.

Plata-Gonzalez, L. F.,, Amaya, l., Ortiz-
Bayliss, J. C., Conant-Pablos, S. E.,
Terashima-Marin, H., Coello, C. A. C.
(2019). Evolutionary-based tailoring of syn-
thetic instances for the knapsack problem. Soft

doi: 10.13053/CyS-29-1-5508

28.

29.

30.

31.

32.

33.

34.

Comput., Vol. 23, No. 23, pp. 12711-12728.
DOI: 10.1007/s00500-019-03822-w.

Pylyavskyy, Y., Kheiri, A., Ahmed, L. (2020).
A reinforcement learning hyper-heuristic for
the optimisation of flight connections. 2020
IEEE Congress on Evolutionary Computation
(CEC), pp. 1-8. DOI: 10.1109/CEC48606.
2020.9185803.

Rauchwerger, L., Yu, H. (2006). An adaptive
algorithm selection framework for reduction
parallelization. IEEE Transactions on Parallel
and Distributed Systems, Vol. 17, No. 10,
pp. 1084-1096. DOI: 10.1109/TPDS.2006.
131.

Ren, L., Wang, T., Sekhari Seklouli, A.,
Zhang, H., Bouras, A. (2023). A review
on missing values for main challenges and
methods. Information Systems, Vol. 119,
pp. 102268. DOI: https://doi.org/10.1016/
j.1s.2023.102268.

Rice, J. R. (1976). The algorithm selection
problem. Vol. 150f Advances in Computers.
Elsevier, pp. 65—118. DOI: https://doi.org/
10.1016/80065-2458(08)60520-3.

Rodriguez-Esparza, E., Masegosa, A. D.,
Oliva, D., Onieva, E. (2024). A new
hyper-heuristic based on adaptive simulated
annealing and reinforcement learning for the
capacitated electric vehicle routing problem.
Expert Systems with Applications, Vol. 252,
pp. 124197. DOI: https://doi.org/10.1016/
j.eswa.2024.124197.

Salama, S., Kaihara, T., Fujii, N., Kokuryo,
D. (2023). Dispatching rules selection
mechanism using support vector machine
for genetic programming in job shop
scheduling. IFAC-PapersOnLine, Vol. 56,
No. 2, pp. 7814-7819. DOI: https://doi.
org/10.1016/j.ifacol.2023.10.1149. 22nd
IFAC World Congress.

Shang, C., Ma, L., Liu, Y., Sun, S.
(2022). The sorted-waste capacitated location
routing problem with queuing time: A cross-
entropy and simulated-annealing-based hyper-
heuristic algorithm. Expert Systems with Ap-

35.

36.

37.

38.

ISSN 2007-9737

Machine Learning, Missing Values, and Algorithm Selectors: The Untold Story 323

plications, Vol. 201, pp. 117077. DOI: https:
//doi.org/10.1016/j.eswa.2022.117077.

Slavchev, B., Masliankova, E., Kelk, S.
(2019). A machine learning approach to
algorithm selection for exact computation of
treewidth. Algorithms, Vol. 12, No. 10. DOI:
10.3390/a12100200.

Taunk, K., De, S., Verma, S., Swetapadma,
A. (2019). A brief review of nearest neighbor
algorithm for learning and classification.
2019 International Conference on Intelligent
Computing and Control Systems (ICCS),
pp. 1255—-1260.

Tong, Z., Chen, H., Liu, B., Cai, J., Cai,
S. (2022). A novel intelligent hyper-heuristic
algorithm for solving optimization problems.
J. Intell. Fuzzy Syst, Vol. 42, No. 6,
pp. 5041-5053. DOI: 10.3233/JIFS-211250.

Tornede, A., Gehring, L., Tornede, T.,
Wever, M., Hiillermeier, E. (2022). Algorithm
selection on a meta level. Mach. Learn.,

Vol. 112, No. 4, pp. 1253—1286. DOI: 10.1007/
510994-022-06161-4.

39. Tyasnurita, R., Ozcan, E., John, R. (2017).
Learning heuristic selection using a time delay
neural network for open vehicle routing. 2017
IEEE Congress on Evolutionary Computation
(CEC), pp. 1474-1481. DOI: 10.1109/CEC.
2017.7969477.

40. Zhang, Y., Bai, R., Qu, R., Tu, C., Jin, J.
(2021). A deep reinforcement learning based
hyper-heuristic for combinatorial optimisation
with uncertainties. Eur. J. Oper. Res., Vol. 300,
pp. 418—427.

41. Zolnierek, A., Rubacha, B. (2005). The
empirical study of the naive bayes classifier
in the case of markov chain recognition task.
Kurzynski, M., Puchata, E., Wozniak, M.,
zotnierek, A., editors, Computer Recognition
Systems, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 329-336.

Article received on 25/05/2024; accepted on 18/07/2024.
Corresponding author is José Carlos Ortiz-Bayliss.

Computacion y Sistemas, Vol. 29, No. 1, 2025, pp. 311-323
doi: 10.13053/CyS-29-1-5508

