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Abstract. Effective weather forecasting for cyclones is 

crucial for minimizing harm to both people and the 
environment. Accurate estimation of tropical cyclone 
(TC) intensity is essential for disaster prevention. 
Although convolutional neural networks (CNNs) have 
improved this process, they often struggle to capture 
global spatial relationships in images. Quantum Image 
Processing (QIP) leverages quantum computing 
advantages but faces challenges such as noise and 
hardware limitations. This study represents the first effort 
to estimate tropical cyclone intensity prediction using two 
popular quantum image representation formats: Flexible 
Representation of Quantum Images (FRQI) and a Novel 
Enhanced Quantum Representation (NEQR), as data 
encoders in Quantum Convolutional Neural Networks 
(QCNN) utilizing INSAT 3D satellite images.  By 
employing TCs from 2012 to 2021 as training data, the 
model achieved an overall mean square error (MSE) of 
0.0384 for FRQI and 0.0002 for NEQR. The findings 
indicate that NEQR significantly outperforms FRQI in 
cyclone image prediction. 

Keywords. Tropical cyclone, intensity prediction, 

QCNN, NEQR, FRQI. 

1 Introduction 

In recent years, the devastating impact of tropical 
cyclones on human life, property, the economy, 
agriculture, and development has highlighted the 
urgent need for accurate and efficient methods of 
estimating cyclone intensity [1].  

Quantum image processing (QIP) combines 
quantum computing with traditional image 
processing techniques to enhance the 
management and interpretation of high-
dimensional image data. Traditional methods often 
struggle with high computational costs and slow 
processing speeds when handling large datasets. 
Quantum computing improves efficiency by 
utilizing superposition and entanglement for 
parallel analysis [2].  

Key techniques such as Quantum Image 
Representation (QIR), Flexible Representation of 
Quantum Images (FRQI), and Novel Enhanced 
Quantum Representation (NEQR) enable the 
encoding of traditional images to be encoded into 
quantum formats, enhancing feature extraction 
and manipulation [3]. Quantum algorithms, 
including Grover's search and the quantum Fourier 
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transform, significantly accelerate tasks such as 
image recognition, compression, and pattern 
matching, offering exponential speedups 
compared to classical methods. 

However, the adoption of QIP faces challenges 
like noise, decoherence, and quantum hardware 
limitations. Hybrid quantum-classical approaches 
may provide solutions for practical applications in 
fields such as autonomous systems, medical 
imaging, and satellite data analysis. Yella Krishna 
et al [1] proposed a CNN algorithm for estimating 
the intensity of cyclones. Their approach combines 
features from satellite images and grayscale data, 
resulting in a more precise prediction model. This 
enhanced predictive capability strengthens early 
warning systems and provides a more effective 
means of mitigating the adverse effects of 
cyclones. Rose Atuah et al [2] used various deep 
learning models such as CNN, LSTM, and CNN-
LSTM for tropical cyclone intensity prediction using 
Hursat and Bestrack datasets from the NOAA. This 
study focuses on the superior performance of the 
LSTM model and underscores the potential of 
these methods to improve forecast accuracy. Biao 
Tong et al [3] investigated tropical cyclone(tc) 
intensity estimation using satellite cloud images, 
leveraging advanced deep learning techniques 
and smoothing methods. The study compared one-
stage and two-stage strategies, finding that a 
hybrid approach combining both, along with 
smoothing techniques, achieved superior accuracy 
than most existing models. Chong Wang et al [4] 
proposed a new deep learning framework known 
as TCIF-fusion, designed to enhance tropical 
cyclone intensity predictions in the Northwest 
Pacific region. This approach is guided by model-
based knowledge and utilizes a comprehensive 
dataset of 20,533 samples. The dataset 
incorporates ERA5 reanalysis data, satellite 
infrared (IR) imagery, and multiple other factors. 

Their method achieved a 24-hour forecast error 
of 3.56 m/s, outperforming traditional and 
advanced DL models by 4–22%. Juhyun Lee et al 
[5] developed a hybrid-CNN model combining 
satellite data and numerical model outputs to 
forecast TC intensity with lead times of 24, 48, and 
72 hours. The model showed significant 
improvements, with skill score gains of 22%, 
110%, and 7% for the respective lead times. Xiao-
Yan Xu et al [6] designed deep CNN models to 

predict tropical cyclone intensity, minimum central 
pressure (MCP), and maximum 2-minute mean 
wind speed (MWS) near the center. The models 
utilized data from ocean and atmospheric 
reanalysis and Best Track hurricane records 
(2014–2018). Sensitivity experiments were 
performed to assess the influence of various 
predictors, revealing that VGG-16 delivered the 
best results. Daisuke Matsuoka et al [7] introduced 
a deep learning approach using CNNs to identify 
tropical cyclones (TCs) and their precursors based 
on 20 years of simulated OLR data. Their method 
achieves high detection probabilities (POD 79.9–
89.1%) and reasonable false alarm ratios (FAR 
32.8–53.4%), successfully identifying precursors 
up to 7 days before TC formation. None of the 
existing work indicates the use of different 
encoding models combined with quantum 
algorithms for predicting cyclone intensity. Alijoyo 
et al. (2024) [8] proposed a hybrid CNN-Bi-LSTM 
model optimized with a GA-enhanced Fruit Fly 
Optimizer (FFO) for predicting cyclone intensity. 

Their approach outperforms traditional models 
by effectively capturing spatial-temporal patterns, 
achieving an accuracy of 99.4%, which surpasses 
that of VGG-16 (78%) and Ty 5-CNN (95.23%). 

This model enhances disaster preparedness by 
providing more accurate forecasts of cyclone 
intensity. Desale et al. [9] proposed a CNN-based 
model for estimating cyclone intensity using 
satellite images. This model incorporates 
histogram analysis for feature extraction and 
employs adaptive thresholding techniques (mean, 
Gaussian, Otsu) for segmentation. Unlike 
traditional methods, their approach also predicts 
potential coverage distance and introduces a user-
friendly visualization portal, thereby enhancing 
accessibility for end-users in disaster 
preparedness and response. Xu et al. [10] 
proposed a CWGAN-GP-based model for 
predicting the evolution of tropical cyclone (TC) 
intensity. This model treats TC intensity as a 
random variable influenced by both the state of the 
TC and various environmental factors. Trained on 
a dataset of 1,010 historical TCs, the model 
effectively captures high-dimensional, non-
Gaussian probabilistic characteristics, 
outperforming traditional regression models. It 
separately calibrates TC behaviors over oceanic 
and terrestrial environments before integrating the 
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results. The findings demonstrate improved 
accuracy in replicating probabilistic intensity 
distributions and input-output relationships, 
underscoring the model's potential for TC risk 
assessment and hazard prediction in regions such 
as Southern China.  

Atuah et al. [11] developed three deep learning 
models (CNN, LSTM, and CNN-LSTM) to predict 
tropical cyclone (TC) intensity using the Hursat and 
Bestrack datasets from NOAA. Their findings 
indicate that while the LSTM model performed the 
best, the differences in performance among the 
models were minimal. 

This research contributes to enhancing TC 
intensity prediction, which can help mitigate the 
devastating effects of cyclones on lives and 
property. Stein et al. [12] introduced QuCNN, a 
Quantum Convolutional Neural Network that 
adapts classical CNNs for quantum systems 
through entanglement-based backpropagation. 
This model calculates similarities between 
quantum filter states and quantum data states, 
facilitating efficient training with a single-ancilla 
qubit routine.  

Validated on MNIST images, QuCNN 
demonstrates effective gradient backpropagation 
and filter state training, thereby advancing 
Quantum Machine Learning for future applications. 

2 Materials and Methods 

In our work, we first apply preprocessing 
techniques such as resizing, rescaling, data 
augmentation and normalization. After completing 
the preprocessing, the modified images are fed as 
input to the encoding models, specifically FRQI 
and NEQR, to transform the classically 
represented cyclone images into quantum state 
images. Finally, the encoded images are trained 
using QCNN. 

2.1 Flexible Representation of Quantum Image 
Representation (FRQI) 

The FRQI works by encoding an image into a 
quantum state that captures both pixel intensity 
and spatial location. The pixel intensity is encoded 
in the amplitude of the quantum state, while the 
spatial location is encoded using phase 
parameters. The entire image is stored as a 
superposition of qubit states, which allows for 
parallel processing, as illustrated in Fig. 1. 
Quantum gates are subsequently applied to 
manipulate these states for various image 
operations, such as rotation, filtering, and 
transformations, taking advantage of the speed 
and efficiency of quantum computation. The 
representation of the FRQI state is 
specified in Eq. 1: 

|I(θ)〉=  
1

2𝑛
 ∑22𝑛−1

𝑖 = 0   (cos(θi)|0〉+ sin(θi)|1〉) ⊗ |i〉, (1) 

where,  

|I⟩: quantum state of the image. 
2n: total number of pixels in the image 

|i⟩: basis state encoding the spatial position of the 
i-th pixel 
θi: angle parameter encoding the grayscale or 
intensity value of the i-th pixel 

2.2 Novel Enhanced Quantum Representation 
(NEQR) 

NEQR is a method for encoding digital images into 
quantum states, emphasizing the efficient 
representation of pixel values and spatial 
information. Unlike FRQI, which encodes pixel 
intensities using angles (amplitudes), NEQR 
directly encodes grayscale or color pixel values as 
binary strings in qubit registers, as shown in Fig. 2. 
This approach allows for the exact representation 

 

Fig. 1. FRQI- Quantum Circuit 

 

Fig. 2. NEQR-Quantum Circuit 
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of pixel values, making NEQR suitable for image 
processing tasks that require precise operations. 
For a digital image, NEQR encodes each pixel into 
a quantum state, as represented in Eq. 2. 

|I〉=  
1

2𝑛  ∑22𝑛−1
𝑖 = 0   |Pi〉⊗ |i〉, (2) 

where,  

|I⟩: quantum state of the image. 

22n: total pixels in the image 

|Pi⟩: encoding the intensity value (grayscale or 

color) of the ith pixel in binary form. 

|i⟩: encoding the spatial location of the ith pixel. 

2.3 Quantum Convolutional Neural Network 
Architecture 

We utilize Quantum Convolutional Neural Network 
(Quantum CNN) architecture that integrates 
quantum circuit elements to replicate and enhance 
the functionalities of traditional CNNs. As 
illustrated in Figure 2, the Quantum CNN begins by 
encoding 16×16 grayscale images into quantum 
states using the FRQI encoder. This encoding 
process applies Hadamard gates to initialize the 
image qubits, followed by multi-controlled RY 
rotations that encode pixel intensities into the 
quantum state vector. This process is analogous to 
the convolutional layers in classical CNNs, which 
extract feature maps. In our Quantum Layer, 
translationally invariant unitary operations are 
systematically applied, mirroring the role of 
convolutional filters in capturing spatial 
hierarchies. To introduce nonlinearity, a pooling 
mechanism is implemented, where a subset of 

qubits is measured, and the outcomes dictate 
subsequent unitary transformations on 
neighboring qubits. 

This effectively reduces the system's degrees 
of freedom, similar to the pooling layers in classical 
networks. This iterative process of convolution and 
pooling continues until the quantum state is 
sufficiently condensed. Subsequently, a fully 
connected layer, represented by a learned unitary 
operation, processes the remaining qubits to 
generate the final output. 

2.4 Architecture 

In Fig. 3, the QCNN Architecture for Tropical 

Cyclone Intensity Prediction is illustrated, 

showcasing the integration of quantum and 

classical layers for efficient feature extraction 

and prediction: 

1. Input: INSAT-3D/3DR Cyclone Image: 

The input to the model is a cyclone image obtained 
from the INSAT-3D/3DR satellite. These images 
contain essential information on cloud structure, 
temperature, and other meteorological features 
critical for predicting cyclone intensity. 

2. Data Preprocessing: 

Before the image is fed into the quantum encoding 
layer, it undergoes several preprocessing steps: 

 Handling Missing Values: If any pixel data is 
missing or corrupted, interpolation or other 

 

Fig. 3. QCNN Architecture for Tropical Cyclone Intensity + Prediction 
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techniques are employed to restore 
the data. 

 Red Scaling: Red scaling is a preprocessing 
step in which the red channel of an image is 
adjusted and scaled to enhance feature 
extraction. The red channel often highlights 
cloud patterns, temperature variations, and 
cyclone structures more effectively. 

 Normalization: Pixel values are normalized 
(e.g., between 0 and 1) to ensure uniformity 
and improve convergence during training. 

 Augmentation: Data augmentation 
techniques (e.g., rotation, flipping,) are 
applied to improve model robustness 
and generalization. 

3. Quantum Encoding Layer (FRQI/NEQR) :  

 The preprocessed image is then encoded 
into a quantum state using the Flexible 
Representation of Quantum Images (FRQI) 
or the Novel Enhanced Quantum 
Representation (NEQR). 

 FRQI encodes grayscale images by 
associating intensity values with quantum 
phase angles. 

 NEQR encodes pixel intensity directly into 
qubit states, enabling a more 
accurate representation. 

 This encoding transforms classical image 
data into quantum information, facilitating 
quantum processing. 

4. Quantum Convolutional Layer + ReLU:  

 Once the image is encoded into a quantum 
state, it passes through a quantum 
convolutional layer (QConv layer). 

 Quantum convolution applies quantum 
gates (analogous to filters in classical 
CNNs) to extract spatial features. 

 The activation function utilized in this 
context is the Rectified Linear Unit (ReLU), 
which introduces non-linearity and 
facilitates the learning of complex patterns. 

5. Quantum MaxPooling: 

 A quantum max-pooling operation is 
conducted to reduce dimensionality while 
preserving essential features. 

 This helps manage the number of qubits 
needed, thereby reducing 
computational complexity. 

6. Second Quantum Convolutional Layer + ReLU: 

 A second quantum convolutional layer is 
applied, similar to the first, to extract higher-
level features. 

 ReLU activation function is utilized once 
more to improve non-linearity in 
feature extraction. 

7. Quantum MaxPooling:  

 Another quantum max-pooling step further 
reduces dimensionality, making the data 
more manageable for the subsequent 
classical processing. 

8. Flatten Layer:  

 The quantum-processed image data is 
flattened into a 1D vector to prepare it for 
classical fully connected layers. 

Table 1. Performance Measures 

Metric Name  Metric Formula 

MSE MSE = 
1

𝑛
∑𝑛

𝑚 = 1 𝑒𝑚
2 

MAE MAE = 
1

𝑛
∑𝑛

𝑚 = 1 |𝑒𝑚| 

RMSE RMSE=√
1

𝑛
∑𝑛

𝑚 = 1 𝑒𝑚
2 

R2 R2 = 1 - 
𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
 

Table 2. Performance Analysis of FRQI and NEQR with 

QCNN 

 MSE MAE RMSE R2 

FRQI-

QCNN 
0.0384 0.1535 0.1437 0.1961 

NEQR-

QCNN 
0.0002 0.0061 0.0134 0.9959 

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1671–1677
doi: 10.13053/CyS-29-3-5448

An Evaluation of FRQI and NEQR Encoding Using QCNN for Forecasting Tropical Cyclone Intensity 1675

ISSN 2007-9737



9. Classical Fully Connected Layers:  

 The flattened quantum-processed features 
are passed to classical dense (fully 
connected) layers. 

 First Fully Connected Layer: Extracts key 
patterns from the quantum features. 

 Second Fully Connected Layer: Further 
refines the feature representation for the 
final output. 

10.  Cyclone Intensity Prediction:  

 The final layer outputs the predicted cyclone 
intensity based on the extracted features. 

3 Results and Discussion 

3.1 Dataset Description 

We collected cyclones' data from Kaggle1 [13] 
which contains INFRARED(IR) and RAW Cyclone 
Imagery from Indian Ocean 2012 to 2021 along 
with Cyclone Image intensity in KNOTS. We have 
considered the IR images for cyclone 
intensity prediction. 

3.2 Performance Measure 

We utilized the Mean Squared Error (MSE) and 
Root Mean Squared Error (RMSE) and R2 values 
as metrics to evaluate the model's performance for 

                                                      
1 https://www.kaggle.com/datasets/sshubam/insat3d-

infrared-raw-cyclone-images-20132021 

measuring the efficiency of the designed model as 
shown in Table 1 and Table 2.  

It has been observed from Fig. 4 that the loss 

value for NEQR with QCNN converges way faster 

than FRQI with QCNN. At the end of 10 epochs 

NEQR has achieved significantly less loss 

than FRQI. 

4 Conclusion 

Quantum machine learning has garnered 
significant interest due to the rapid advancements 
in quantum technology in recent years. Accurate 
estimation of tropical cyclone (TC) intensity is 
essential for disaster prevention. While 
convolutional neural networks (CNNs) have 
improved this task, they struggle to capture global 
spatial relationships in images. Quantum Image 
Processing (QIP) leverages quantum parallelism 
and entanglement to encode and process images 
more effectively, utilizing methods such as FRQI 
and NEQR.  

These techniques store pixel values and spatial 
coordinates in quantum states, allowing for an 
inherent representation of global patterns. 
Quantum systems can process data non-locally, 
making them well-suited for identifying structural 
patterns, such as cyclone spirals. QIP efficiently 
encodes high-dimensional information, requiring 
fewer resources than classical CNNs. NEQR 
improves image representation by encoding pixel 
intensity values as binary states, resulting in 
improved resolution and faster computation, which 
enables the QCNN to extract richer spatial 
features.  

In our paper, we present a generalized 
implementation scheme for two popular encoding 
methods, FRQI and NEQR, to predict cyclone 
intensity. Experimental results demonstrate that 
NEQR with QCNN outperformed FRQI with QCNN. 
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