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Abstract. Leukemic retinopathy (LR) presents significant
challenges in automated diagnosis due to the scarcity
of accurately labeled images. This work addresses
these challenges through deep learning techniques,
utilizing models such as You Only Look Once (YOLO)
for lesion detection and the Segment Anything Model
(SAM) for automatic labeling.  The results show
that the Segment Anything Model-Diabetic Retinopathy
(SAM-DR) outperforms manual labeling, especially in

detecting Hemorrhages (HE), with an mAP50 of 0.804.

Furthermore, the comparison between transfer learning
(TL) and dual transfer learning (DTL) reveals that DTL
improves lesion detection across all classes. This
automated approach not only enhances accuracy in
lesion segmentation but also serves as a valuable asset
in scenarios where specialist labeling is limited and data
is scarce, enabling effective leveraging and transfer of
acquired knowledge to similar pathologies.

Keywords. Leukemic retinopathy, diabetic retinopathy,
YOLO, SAM, dual transfer learning.

1 Introduction

LR occurs when abnormal leukocytes invade
the retina, causing multiple retinal manifestations,
including Microaneurysms (MA), Foveal infiltrates
(FI), Cotton wool spots (EX), Roth spots (RS) and
HE [20, 3].

Beyond the clinical manifestations, early signs of
LR in leukemic patients frequently emerge before
symptoms become apparent in other parts of the
body. Therefore, early detection through regular
ophthalmic exams and retinal image analysis
is crucial for timely diagnosis and treatment of
leukemia. In this context, the use of advanced
techniques such as deep learning for the automated

classification of retinal images emerges as a
powerful tool, significantly improving the accuracy
and speed of disease detection. However, to date,
only one study has focused on the detection of LR,
primarily addressing the classification of the disease
[14], highlighting the need for further research in this
area.

This article focuses on the automated detection of
lesions in LR. The ability to identify lesions in retinal
images is essential, and the use of deep learning
models, such as those based on YOLO [15], enable
these detections. This automated approach not
only optimizes analysis time but also, reduces the
possibility of human error, providing more consistent
and reliable results.

The use of intelligence models for detecting
lesions, faces significant challenges becuse of the
lack of an adequate quantity of accurately labeled
images. Manual labeling by experts is an arduous
and costly process that requires high specialization.
In addition, collaboration among experts is often
limited by availability and time, further complicating
the creation of robust datasets. Here is where
tools like the SAM [8] can play a crucial role,
enabling automatic labeling that facilitates the
process and making it more accessible to the
research community.

To overcome these challenges, techniques such
as TL and DTL are presented as effective solutions.
These techniques allow leveraging pre-trained
models in related domains, such as diabetic
retinopathy (DR), to transfer that knowledge to LR,
thereby optimizing results despite the limitation
of images. In this context, the combined use of
YOLO for object detection and SAM for automatic
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labeling is further enhanced, creating a workflow
that maximizes efficiency and accuracy in the
automated diagnosis of this disease.

The main contributions of this research are:

— To implement an automatic labeling method
using a pre-trained YOLO model on the DR
dataset, in combination with SAM.

— To propose an innovative procedure that lever-
ages the knowledge gained from previously
segmented elements in DR images adapting it
to LR.

— To introduce an approach using deep learning
techniques for segmentation of lesions in
fundus images associated with LR.

This article is structured as follows: Section 2
describes related work in lesion detection, with
a particular focus on DR. Section 3 details the
utilized methodology, explaining the knowledge
transfer approach between related diseases, as
well as the models used, such as the YOLO model
and the SAM model, along with the performance
metrics employed. Section 4 provides detailed
information on the databases used. Section 5
presents the experiments performed, the results
obtained and their corresponding discussion, while
Section 6 discusses the conclusions and states
possible directions for future research.

2 Related Work

This section provides an overview of different
studies for the detection of lesions associated with
DR using YOLO. Firstly, [19] proposed a model
based on YOLOVS, integrated with the Jetson Nano
development kit and a CSI camera module, for
real-time detection of retinal lesions; this model
achieved a top1 accuracy of 93.77 % in the training
dataset and 72.6% in the validation dataset. On the
other hand, [23] focused on the detection of MA,
proposing an automatic model based on YOLOVS.
The results were 88.23 % in recall, 97.98 % in
precision, 92.85 % in F1-score and 94.62 % in
Average Precision (AP).

In [17] they focused on fundus lesion detection
using YOLOVS, using the DDR and IDRiD datasets.
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On the DDR dataset, the model achieved a mean
Average Precision (mAP) of 0.2630 and F1-score of
0.3485 in the validation stage, and a mAP of 0.1540
and F1-score of 0.2521 in the test stage.

For their part, [6] used an enhanced version
of YOLOv4 with integrated SENet. The Kaggle
dataset on DR was used to validate the model.
Experimental results showed a 12.68% increase
in F-score.

Finally, [1] propose a YOLOv3-based system for
detection and localization of DR lesions. The model
achieved a mAP of 0.216 in lesion localization in
the DDR dataset.

A comparison of YOLO models and labeling
methods used for lesion detection in retinopathy
is presented in Table 1. The ’Author/Year’ column
lists the articles reviewed, including author and year
of publication. The YOLO models used in these
studies range from YOLO v3 to YOLO v8, all applied
to detection of DR.

In all previous studies, manual labeling of images
was employed to identify lesions. In contrast, the
proposed approach uses a variant of the YOLO
v8-obb model, which applies DTL for detection in
both DR and LR . In addition, the SAM model is
used to perform automatic annotation.

3 Methodology

3.1 Proposed DTL Semantic Segmentation
Model

The methodology proposed in this work follows a
DTL approach for lesion detection in LR, leveraging
knowledge acquired from DR.

As illustrated in Figure 1, this process begins
with automatic label generation, where the SAM,
previously trained on DR, generates automatic
lesion masks for both datasets (DR and LR).
This method allows label creation without manual
intervention, which is especially useful in scenarios
where expert labeling is limited.

Next, the YOLO architecture is trained using DR
images and their automatically generated labels
by SAM to learn relevant features of retinopathy
lesions. This model serves as a foundation for
knowledge transfer, capturing patterns that could
be shared between the two pathologies. The YOLO
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Table 1. Comparison of YOLO Models and Labeling Methods for Lesion Detection in Retinopathy

Disease Labeling DTL

Author/Year Model
[19)/2023 YOLO v7
[23]/2023 YOLO v8
[17)/2022 YOLO v3

[6]/2022 YOLO v4
[1]/2021 YOLO v3
Proposed
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RD Manual -
RD Manual
RD Manual -
RD Manual -
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Fig. 1. Diagram of the Proposed Methodology for DTL in Segmentation

model trained on DR is then adapted to a new
YOLO architecture specifically designed for lesion
detection in LR images.

Subsequently, this second modified YOLO
architecture is trained with LR images and their
SAM-generated labels, leveraging the knowledge
transferred from DR. Finally, the final model is used
to detect and analyze lesions in LR images.

This DTL approach improves accuracy in lesion
segmentation and optimizes the use of limited data,
making it a valuable solution in medical contexts
where manual labeling is scarce.

3.2 YOLO Model

YOLO is an object detection model that reformulates
the problem as a regression task to directly predict
bounding boxes and class probabilities from a single
evaluation of the entire image. Unlike previous

approaches that repurpose classifiers to perform
detection, YOLO employs a unified neural network
that predicts bounding boxes for each class.

The YOLOv1 architecture consists of 24
convolutional layers followed by two fully connected
layers, as illustrated in Figure 2. The authors
originally designed the network by using the first
20 convolutional layers as the backbone. They
then added an average pooling layer and a fully
connected layer, and pre-trained the model on
the ImageNet 2012 dataset. During the inference
process, the final four convolutional layers and the
two additional fully connected layers were integrated
and randomly initialized. This configuration allowed
YOLOv1 to maintain a balance between speed and
accuracy in object detection, standing out as a fast
and efficient approach in its field.
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Fig. 2. YOLO Architecture [15]

YOLO has evolved significantly since its first ver-
sion, with each iteration introducing improvements
in accuracy, efficiency, and functionality. From
YOLOvV2, which incorporated batch normalization
and anchor boxes, to YOLOv10, which eliminates
the need for Non-Maximum Suppression, each
version has expanded the model's capabilities.
YOLOVv8, developed by Ultralytics, stands out for
its versatility, supporting a wide range of computer
vision tasks. YOLOV9 introduced new methods
such as Programmable Gradient Information (PGl)
and the Generalized Efficient Layer Aggregation
Network (GELAN). Finally, YOLOv10, created by
researchers from Tsinghua University, advanced
real-time object detection with an end-to-end
head that eliminates the need for Non-Maximum
Suppression (NMS) [21].

On the other hand, object detection is a task
that involves identifying the location and class of
objects in an image or video sequence. The output
of an object detector is a set of bounding boxes that
enclose the objects in the image, along with class
labels and confidence scores for each box.

In the Oriented Bounding Boxes (OBB) version
of YOLO, object detection goes a step further by
introducing an additional angle that allows a more
precise localization of objects. This is achieved
through rotated bounding boxes that precisely
enclose objects in the image, providing class labels
and confidence scores for each box. This version
is ideal when it is necessary to identify objects of
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interest in a scene with greater accuracy in their
orientation.

3.3 SAM Model

SAM [8], is an advanced image segmentation
model designed to perform real-time segmentation
by integrating computer vision techniques and
transformer-based neural networks. The process
begins with the image encoder, which uses a
pre-trained Vision Transformer (ViT) to transform
a high-resolution image into an embedding, i.e.,
a compact numerical representation of the image.
This embedding represents a reduced version of the
original image, with a resolution of 64 x 64 pixels
and 256 channels, allowing the model to operate
more efficiently since this processing is done only
once per image.

The model also includes a prompt encoder,
responsible for processing the prompts that guide
the model in the segmentation task. These prompts
can be specific points in the image, bounding boxes,
or even text-based instructions. Each type of prompt
is encoded in a particular way, enabling the model
to understand and effectively use both geometric
and contextual information.

The mask decoder is the component responsible
for generating a segmentation mask from the
image embedding and the prompt embeddings,
as shown in Figure 3. This decoder is based
on a modified transformer that performs multiple
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stages of attention, both self and cross, between
the prompts and the image embedding.

Specifically, the lightweight mask decoder uses
a two-layer design where each performs a cycle of
operations, including self-attention on the tokens,
cross-attention between the tokens and the image
embedding, and updates via Multilayer Perceptron
(MLP).

image
embedding
(256x64x64) masks

output tokens

prompt tokens
[N, X256)

|
chen ToU
mip
m I} SCOres

mask decoder
Fig. 3. Lightweight Mask Decoder Diagram [8]

After processing these operations, the image em-
bedding is upscaled using transposed convolutions
to increase its resolution, facilitating the precise
generation of the final masks through a pointwise
product between the image embedding and the
MLP output.

This approach also allows the decoder to handle
ambiguity in predictions; when a single prompt
generates multiple valid outcomes, the model
predicts several masks simultaneously, selecting
the most accurate one. However, when multiple
prompts are used, the model simplifies the
prediction to a single mask to avoid redundant
results.

Finally, SAM improves the accuracy of the
predicted masks by combining two loss functions:
focal loss and dice loss. In addition, it incorporates
an Intersection Over Union (loU) prediction head,
which allows to measure how accurately the
predicted mask covers the real object in the image.

3.4 Labeling of LR Images

This section describes the process of automatic
labeling of LR images using two approaches based
on the SAM model.

SAM: First, image labeling was performed using
the weights of a YOLO model previously trained
on the COCO dataset. This automatic annotation
process was performed by specifying the location

of the images [8]. This approach uses the
YOLO model to detect regions of interest in the
images, while SAM takes care of segmenting these
regions, thus generating the necessary labels for
the dataset.

SAM-DR: Subsequently, an enhanced automatic
annotation process was implemented to generate
segmentation datasets with higher accuracy. In this
version, a pre-trained detection model specifically
tuned for DR images was used. This process was
carried out by specifying the location of the images,
along with the pre-trained detection model and the
SAM model [8].

In this case, combining the pre-trained detection
model with SAM not only improves the accuracy
of the generated labels, but also optimizes the
process of creating datasets for more specific
segmentation tasks.

Manual Labeling: For manual labeling of the
images, the Roboflow [9] platform was used,
selected for its intuitive interface and tools that
facilitate the process of annotating and exporting
the images.

3.5 Performance Metrics

Intersection over Union (loU): loU is a metric
that quantifies the overlap between a predicted
bounding box and an actual bounding box, as
shown in Equation 1. It is defined as the ratio of the
area of the intersection to the area of the union of
the two boxes:

Intersection Area
loU = -
Union Area

(1)

Average Precision (AP): AP calculates the area
under the precision-recall curve, providing a single
value that reflects the model’s performance in terms
of precision and recall. It can be expressed as in
Equation 2:

1
AP:/ Precision(r)dr. (2)
0

where r is the recall and precision is evaluated at
different thresholds of recall.

mean Average Precision (mAP50): mAP50
refers to the mean Average Precision at an loU
threshold of 50%. This metric evaluates how well
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the model's predictions match the ground truth
when a predicted bounding box overlaps with the
actual object by at least 50%.

mAP50-95: mAP50-95 represents the mean
Average Precision calculated across multiple loU
thresholds, specifically from 50% to 95% in
increments of 5%. This metric provides a
more comprehensive evaluation of the model’s
performance by considering a range of overlap
levels between predicted and ground truth
bounding boxes.

Precision and Recall: They are fundamental
metrics in the evaluation of classification models,
as shown in Equation 3. Precision quantifies
the proportion of true positives among all positive
predictions and is defined as:

True Positives (TP)

Precision = 151 Faise Positives (FP)’

(3)

The recall measures the proportion of true
positives among all actual positives and is
calculated as in Equation 4:

TP

Recal = 75 1 False Negatives (FN) ¥

F1-score: The F1-score is the harmonic mean
of precision and recall, providing a balanced metric
that takes into account both false positives and false
negatives, as shown in Equation 5:

2 x Precision x Recall
F1-score = — ) (5)
Precision + Recall

This metric is ideal for achieving a balance
between precision and recall when assessing the
model’s effectiveness.

4 Dataset Description and Attributes

4.1 DR and LR Datasets

During the first stage, which required training the
model with images of DR, a dataset of ocular
lesions, labeled through the Roboflow portal [16],
was used. This dataset was composed of a total
of 3,930 images, distributed into 3,624 images for
training, 154 images for validation, and 152 images
for testing. Each image was 640 x 640 pixels in
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Fig. 4. Manually labeled image of DR

size and the labels corresponded to four classes of
lesions: EX, HE, MA and SE, as shown in Figure 4.

Regarding LR images, a comprehensive review
was conducted across various sources, such as
medical journals and websites, with the aim of
identifying representative images of this condition.
As a result of this search, 49 images were
selected from various specialized sources on this
arrangement [7, 18, 20, 12, 13, 10, 11, 2, 5, 4, 22].

4.2 Lesion Morphology in LR

The morphology of retinal lesions is crucial for the
diagnosis of diabetic and leukemic retinopathies,
including HE, MA, EX, RS, and FI.

HE are bleeding areas within the retina that
appear as dark red or brown spots with variable
shapes and sizes. On the other hand, EX are
deposits of lipids and proteins that appear as yellow
spots with well-defined edges, usually associated
with MA and macular edema. MA are small dilations
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of retinal capillaries, visible as well-defined red dots,
and are often the first sign of vascular damage in
the retina.

RS are hemorrhagic spots with a pale white
center, formed by fibrinous material or cellular
debris, and are associated with conditions such
as leukemia. Finally, FI are accumulations
of inflammatory cells or deposits in the fovea,
appearing as opaque or gray areas, affecting
high-resolution vision.

5 Experiments and Results

5.1 Knowledge Transfer Experiments for Lesion
Detection in Retinopathy

First Experiment: Automatic Label Generation.

Version 1 of the SAM model was used, fine-tuned
with a pretrained model on DR images. This
model generated automatic lesion masks for both
databases (DR and LR).

Second Experiment: Initial Training with DR
Images. Using DR images and their automatically
generated labels from SAM, fine-tuning was applied
to a YOLO network, previously trained on the COCO
dataset, to learn relevant features of retinopathy
lesions. Several versions of YOLO were tested,

and the one with the best results was selected.

This model serves as a foundation for knowledge
transfer, capturing patterns that could potentially be
shared between the two pathologies.

Third Experiment: Model Transfer to the YOLO
Architecture for LR. After training the YOLO model
with DR images, a second knowledge transfer was
conducted, applying the previously optimized model
to a new YOLO architecture specifically designed
for lesion detection in LR images.

Training with LR Images. Finally, the modified
YOLO architecture was trained with LR images and
their SAM-generated labels. This step allowed the
model to be adjusted to the specific characteristics
of LR lesions, benefiting from previously transferred
knowledge from DR.

Table 2. Comparing lesion segmentation results in LR
images with SAM and SAM-DR labeling

Version Class Precision Recall Fi-score mAP50 mAP50-95

YOLO v5 all 0.408 0.218 0.281 0.204 0.090
YOLO 8 all 0.239 0.254 0.246 0.222 0.125
YOLO v8-obb  all 0.454 0.267 0.336 0.279 0.152
YOLO v9 all 0.422 0.229 0.296 0.223 0.096

5.2 Results in TL in YOLO with DR Images

Table 2 below presents the results obtained in
the first stage of the research, in which different
versions of the YOLO model in its ‘'m’ size and
Object Detection mode were trained using DR
images, with the aim of determining which version
best fits the datasets.

Among the evaluated versions, YOLO v8-obb
shows the best results in terms of precision, recall,
and mAP, standing out with a precision of 0.454,
suggesting that it is the most suitable option for
lesion segmentation in this context. For this reason,
YOLO v8-obb was chosen over the other versions.

5.3 Image Labeling of LR with SAM and
SAM-DR

Figure 5 below presents the results of the
automatic labeling generated by SAM, comparing
two approaches: without prior TL and applying TL
with DR images

In cases (a) and (b), the labels were automatically
generated with SAM without applying prior TL. As
seen in Figure (a), SAM selects a retinal area
that does not correspond to any specific lesion,
indicating incorrect or irrelevant segmentation.
Similarly, in Figure (b), SAM selects areas of the
black background, evidencing a lack of accuracy
in identifying the areas of interest. In both
cases, the detected classes are not given specific
names, limiting the usefulness of labeling in
these scenarios.

On the other hand, in Figures (¢) and (d), TL
was applied with DR images prior to SAM labeling;
SAM-DR successfully identified some of the lesions
present, assigning labels corresponding to the
classes learned during training, but mislabeled or
incomplete areas still remain.
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(b)

Fig. 5. Figures (a,b) correspond to masks generated
automatically with SAM; while (c,d) were generated
automatically with SAM-DR

5.4 Lesion Segmentation in LR Images using
YOLO v8-obb

Table 3 shows the results obtained during the
segmentation of lesions in LR images using the
YOLO v8-obb model. This analysis focuses on
evaluating the precision and effectiveness of the
model in detecting various characteristic lesions
of this disease, highlighting the advantages and
limitations observed during the process.

Above are the results obtained by comparing
the quality of lesion segmentation of the LR image
set, using two approaches: automatic labeling with
the SAM model and SAM-DR labeling using a
fine-tuning process with DR images.

Table 3. Comparing lesion segmentation results in RL
images with SAM and SAM-DR labeling

Labeling Class Precision Recall F1-score mAP50 mAP50-95

SAM all 0.143 1 0.250 0.497 0.049
- 0.143 1 0.250 0.497 0.049
all 0.688 0.447 0.541 0.577 0.323

SAM-DR  EX 0.442 0.333 0.379 0.349 0.206
HE 0.934 0.560 0.700 0.804 0.441
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Fig. 6. Lesions detected using YOLO: (a) with SAM; (b)
with SAM-DR

(d)

Fig. 7. Segmented lesions with LR images using YOLO:
(a,b) manually labeled; (c, d) labeled with SAM-DR

Figure 6 visually illustrates the differences in
the segmentation of lesions associated with LR
using two different approaches. Image (a) presents
lesions segmented using only the SAM model.
While image (b) shows the lesions segmented by
the SAM-DR model.

Figure 7 shows a visual comparison of the
segmented lesions achieved with YOLO. Images
(a) and (b) show the segmented lesions using
manually generated labels. In contrast, images (c)
and (d) present the segmented lesions using labels
automatically generated by the SAM-DR model. In
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these images, more lesions associated with LR are
detected compared to images (a) and (b).

Table 4. Comparing segmentation results with images
labeled with SAM-DR and manually, with two classes

Labeling Class Precision Recall F1-score mAP50 mAP50-95
all 0.688 0.447 0.541 0.577 0.323

SAM-DR  EX 0.422 0.333 0.372 0.349 0.206
HE 0.934 0.560 0.700 0.804 0.441
all 0.333 0.487 0.395 0.550 0.300

MANUAL EX 0.333 0.333 0.333 0.466 0.267
HE 0.333 0.640 0.438 0.654 0.332

Table 4 shows the results of the segmentation
of lesions associated with LR, comparing two
approaches: automatically generated labels with
SAM-DR and manually generated labels, for the HE
and EX classes.

It is important to highlight that in this comparison,
only two classes were used because the SAM-DR
model was trained exclusively with DR images,
where the specific lesions of LR were not present.

As a result, during segmentation with YOLO, the
SAM-DR model was only able to detect these two
classes, leading to the decision to compare the
same number of classes in both approaches to
ensure a fair and consistent comparison.

5.5 Efficiency of TL vs. DTL in Segmentation of
LR lesions

For this comparison, a dataset automatically
generated by SAM-DR was used. This dataset was
carefully reviewed and manually adjusted to include
classes that were initially not present and to correct
labeling errors.

Table 5 presents a comparison of lesion seg-
mentation results in LR images, both approaches
focused on the segmentation of five types of lesions:
EX, HE, MA, FI, and RS. In the TL approach, only
LR images were used. On the other hand, the DTL
approach leveraged a model previously trained with
DR images.

Finally, Figure 8 shows the bounding boxes gen-
erated by both techniques in lesion segmentation.
Figures (a) and (b), present the results obtained
with DTL. Meanwhile, Figures (c) and (d) show the
bounding boxes generated through TL.

Table 5. Comparing Results Between TL and DTL

Approach Class Precision Recall F1-score mAP50 mAP50-95

all 0.245 0.323 0.278 0.391 0.248
EX 0.244 0.333 0.281 0.343 0.274
L HE 0.511 0.68 0.583 0.659 0.363
MA 0 0 0 0.146 0.0775
Fl 0 0 0 0.155 0.0579
RS 0.472 0.600 0.528 0.654 0.466
all 0.535 0.424 0.473 0.388 0.231

EX 0.63 0.333 0.435 0.339 0.271
HE 0.616 0.52 0.563 0.603 0.301
MA 0.475 0.333 0.391 0.284 0.131
Fl 0.297 0.333 0.313 0.115 0.035
RS 0.659 0.600 0.628 0.600 0.415

DTL

5.6 Discussion

When analyzing the results presented in Table
2, it is observed that the YOLO v8-obb model
outperforms other versions in terms of precision,
recall, mAP50, and mAP50-95. Specifically, YOLO
v8-obb achieved a precision of 0.454 and a
recall of 0.267, representing a superior balance
between true positive detection and minimizing false
positives compared to other versions. Additionally,
the mAP50 reached 0.279 and the mAP50-95 was
0.152, indicating a better ability to correctly detect
classes across a wider range of loU thresholds.

In Table 3, it is observed that the labeling
performed exclusively with SAM shows limited
performance, with overall precision and recall of
0.143. These values reflect an insufficient ability
to correctly identify lesions in LR images. In
contrast, when using the SAM-DR model, the
results significantly improve, especially in the EX
and HE classes. The HE class shows a notable
improvement, achieving a precision of 0.934 and
a recall of 0.560. Additionally, while the first
experiment with SAM failed to properly assign labels
to the lesions.

During the second experiment, the proper
assignment of HE and EX labels was achieved.
On the other hand, in Figure 6, image (a) shows
the segmentation performed solely with SAM, with
detections that fail to cover all the lesion areas, even
outside the retina, reflecting the lack of precision
already evidenced in Table 2. In contrast, image
(b), the segmentation is much more precise and
complete, with better lesion area coverage.
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(@) (b)

(d)

Fig. 8. Segmented lesions: (a), (b) using TL and (c), (d)
using DTL.

The results presented in Table 4 show that
automatic labeling with SAM-DR offers superior
performance in terms of precision, recall, and mAP
compared to manual labeling. In the HE class,
SAM-DR achieves a precision of 0.934 and a recall
of 0.560, with an mAP50 of 0.804, representing a
significant improvement over the results obtained
with manual labeling.

Although in the EX class, manual labeling
shows better recall (0.487 compared to 0.333),
the precision and mAP are lower compared to the
results obtained with SAM-DR. This suggests that
the TL process applied to SAM offers a considerable
advantage in lesion identification, especially in the
HE class, compared to manual labeling.

In Figure 7, images (a) and (b) representing
detections with manually generated labels, show
less accurate and complete segmentation, reflect-
ing on the lower effectiveness of manual labeling
evidenced by lower precision and mAP values.
On the other hand, images (c) and (d), show
that detections made with labels automatically
generated by SAM-DR are more accurate and cover
a larger area of the lesions, which is consistent with
the superior quantitative results observed in Table 3.
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Moreover, the experiment comparing TL and DTL
utilized an enhanced dataset that was manually
adjusted to correct errors and add missing classes.
Table 5 shows moderate performance in the TL
approach, with an overall mAP50 of 0.391 and an
mAP50-95 of 0.248. In this approach, the HE and
RS classes achieved the best results, with mAP50
of 0.659 and 0.654, respectively. However, the
MA and FI classes were not adequately identified,
showing very low or even non-existent precision
and recall values, indicating a limited capacity of the
model to detect these lesions when trained solely
on LR images.

The DTL approach demonstrated significant
improvement in most metrics, achieving an overall
mAP50 of 0.388 and an mAP50-95 of 0.231. The
RS class showed superior performance with a
precision of 0.659 and a recall of 0.600, highlighting
the model’s effectiveness in detecting this specific
class. Additionally, a notable improvement was
observed in the HE class, where the mAPS50
reached 0.603.

This work faced several important limitations.
The lack of specific databases for LR complicated
the training process, as well as the generation
of synthetic images using Generative Adversarial
Networks (GAN) or traditional methods. In addition,
no clinical validation of the results obtained was
performed, which limits their applicability in real
medical settings.

Since no statistical tests were conducted, it is
important to clarify that the results presented are
based on direct comparisons rather than formal
statistical validation. These limitations emphasize
the need for further research and access to more
comprehensive datasets to improve both training
accuracy and clinical relevance. Furthermore,
performing a statistical analysis of the results
could provide a more rigorous assessment of their
effectiveness and robustness in clinical applications.

6 Conclusion and Future Work

The analysis demonstrates that the fine-tuning
applied to the SAM model significantly improves
segmentation quality compared to its original
version, specifically in the context of LR. Additionally,
it confirms that labeling with SAM-DR, powered
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by TL, offers a more precise and effective
lesion segmentation compared to manual labeling,
suggesting that this automated approach is not only
more efficient but also more consistent in lesion
detection. Lastly, the comparison between TL and
DTL reveals that using a pre-trained model with
DR images considerably enhances segmentation
precision and capability, especially in classes that
are difficult to detect.

This approach not only helps to mitigate the issue
of data scarcity but also serves as valuable support
in scenarios where expert assistance for labeling
is unavailable, though it should be considered as
a complement rather than a complete replacement
for expert labeling.

For future research, it is proposed to establish
collaborations with specialized medical personnel,
which will ensure that the segmentations and
detections performed by the models align with
clinical practice. Additionally, another important
aspect is the need to expand the dataset with
more images representing LR during its various
stages, which would contribute to a more robust
and generalizable model and finally, a statistical
analysis to be performed in order to further validate
the results obtained.
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