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Abstract. Job descriptions are posted on many online
channels, including company websites, job boards or
social media platforms. These descriptions are usually
published with varying text for the same job, due to
the requirements of each platform or to target different
audiences. However, for the purpose of automated
recruitment and assistance of people working with these
texts, it is helpful to aggregate job postings across
platforms and thus detect duplicate descriptions that
refer to the same job. In this work, we propose an
approach for detecting duplicates in job descriptions. We
show that combining overlap-based character similarity
with text embedding and keyword matching methods
lead to convincing results. In particular, we show that
although no approach individually achieves satisfying
performance, a combination of string comparison, deep
textual embeddings, and the use of curated weighted
lookup lists for specific skills leads to a significant boost
in overall performance. A tool based on our approach is
being used in production and feedback from real-life use
confirms our evaluation.

Keywords. Job posting analysis, similarity
embeddings, domain knowledge, duplicate detection,
deployed application.

1 Introduction

With increasing digitization of business processes,
the possibility to assist people working in the
area of human resources by leveraging means
of automated recruiting has become an important
topic [4, 14]. Technologies like artificial intelligence
(AI) and robot process automation (RPA) can be
applied to a wide range of tasks in a typical
recruiting process, such as automated screening
of job portals (e.g., LinkedIn) for retrieving
job offerings published by hiring companies or
personal job profiles and CVs [13].

However, even with advanced methods and
tools for collecting such data, further processing
can be challenging. Especially when merging
data stemming from multiple sources, curating
and cleaning the vast amount of records captured
regularly is crucial [5, p. 6]. For instance,
a database might contain current job postings
targeting recruitment of freelancers for IT projects
that have been published on several job platforms
in parallel and which in fact relate to one single job
reference. As of now, while many other steps in
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the recruitment process can already be automated
quite successfully, the detection of such duplicates
within unstructured textual data is not an easy task
to solve [20]. This is partially due to the fact that
platform and company specific constraints often
result in similar, but not identical postings for both:
different job advertisements being part of the same
project, as well as job postings coming from the
same company, but relating to different projects [2].

For those reasons simple automated duplicate
checks usually lead to a high rate of false positives,
which is why this task is often still solved in the
form of time consuming manual work. To address
this problem and to provide a useful programmatic
solution, we investigated different methods of
similarity detection tailored to the specific goal of
finding duplicates among the textual contents of
job postings.

Our key findings are that several approaches
deliver good results, but only a combination of
text similarity matching with domain knowledge
in the form of a weighted skills averages and
text embedding gives a very high score with few
false positives. An application based on our
duplicate detection approach was developed in a
economically viable way and has been successfully
deployed as a live system for the past months.

2 Industrial Use Case
and Requirements

Recruiters deal with the matching of candidates
with job positions, for example finding a suitable
IT freelancers for specific software development
projects. One task the recruiters need to perform
consists in the curation of a job listings database.
Companies looking for IT freelancers often publish
open positions on many different web sites, in
slightly different variations.

These open positions need to be aggregated
and duplicates need to be identified. This
time-consuming process occurs mostly manually
or with some degree of automation that however is
error prone and requires manual oversight. To give
an idea of the difficulty of the task, some example
borderline cases can be named:

– the same job posting may be published on two
different sites with slightly different wording in the
title and text description,

– the same company may be looking for two
people for the same Java development project,
one for front-end and one for back-end, resulting
in very similar postings for different jobs or,

– the same employer may be looking for two Java
developers in a project, one working on site
in the company offices, one being a remote
working position.

These examples show that detecting duplicate job
listings is hard to achieve in a reliable way by simply
matching basic data such as job title description
and company name, or only analyzing the required
skills. A sophisticated combination of several
different criteria, however, can greatly increase the
detection performance.

As the project was conducted for a real-world
use-case in cooperation with Contractor Consulting
GmbH1, the goal was to have a tool ready
for production use. Because of this, some
specific requirements applied that may would not
have been relevant in the setting of a larger
research project:

– Both, the development and operation costs
had to be limited in order to get a viable
business case. The development and usage
of the resulting tool must be cheaper than
the labor cost of manually detecting duplicates,
and the additional costs generated by false
detection (false positives/negatives). The tool
will be used in a semi-automated fashion, where
listings marked as duplicate, i.e. true and
false positives, are reviewed by the recruiting
experts; while non-duplicates are processed
automatically and no further review or action
is triggered. Therefore, in the context of
misclassifications, false positives pose less of
an issue to the users than false negatives due
to the human review and feedback loop. The
potential savings generated by the new tool
do not justify the development and usage of
large-scale solutions. Development effort was
limited to about 15 to 20 person days.

1www.contractor.de
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– Additionally, the software shall have no
licensing and hardware renting costs. This
means that using large cloud AI platforms or
hardware-intensive large language models was
not an option.

– Whenever possible, easy to understand and
easy to maintain solutions should be preferred,
so as to ensure that the tool can be maintained
by the end users.

These requirements constrained the scope of
considered approaches and tools used during
the project, also excluding the fine-tuning of big
language models with curated data sets.

3 Related Work

Usage of AI solutions in recruitment processes is
common and well documented, though typically
the task addressed is the analysis and review of
applications and resumes [3].

Some research has already addressed job
descriptions. In [27], the authors show how
removing stop words and extracting relevant
features from online job description postings help
in the detection of fake postings.

Works like [2] address the specific task
of duplicate detection for online recruitment
using standard de-duplication techniques like
Jaccard Similarity and n-grams with limited
success. Furthermore, [30] investigated different
24 methods for job duplicate detection, including
usage of different tokenizers.

Another common use case from a different, yet
still technical domain is the detection of duplicates
among free text bug reports, where in some cases
similar techniques have been applied [25] [26]
However, extensive usage of domain knowledge is
not applied there.

Text comparison is a common task for which
many approaches exist. However, classic
algorithms such as Levenshtein distance [15],
TF-IDF [24] or longest common subsequence
(LCS) [16] are not suitable for our approach, as the
job listings contain many similar-looking text blocks
on a word and character basis, but are often very
different in terms of meaning.

[10] use Word2Vec [17] embeddings to detect
short text duplicates. The usage of embeddings is
clearly relevant to our work, job descriptions tend
to be long documents and thus require a different
approach than the one proposed by the authors.

[9] provide a review of plagiarism detection
methods, an area related but not identical to
our problem domain. The findings confirm that
using new machine learning techniques and a
combination of approaches is most promising.

[28] give an overview of text similarity
measurement techniques. One main finding
of the study that is relevant to the present work is
the confirmation that text matching is application
and domain-specific, i.e. dependent on the type of
texts and on the task to be accomplished after the
similarity has been computed. In order to create
performant solutions, different algorithms need to
be considered.

Overall, our overview of related work shows
that though many approaches exist for computing
text document similarity, a selection of the most
appropriate one is always task and domain specific
and thus needs to be reviewed for each new
project. The particularities of job descriptions
texts and the project requirements mentioned
in the previous section lead us to conduct the
experiments described in the following chapters.

4 Data Resources

During the project phase we had access to
a database with about 45.000 collected project
tenders and according textual descriptions. The
typical content of a job description is well
established and has already been studied. [18]
mention the main elements of such a text: a
job title, required skills, preferred skills and
responsibilities. In our specific case and
dataset, we identified the following features as
most relevant:

– Title: The headline on top of the
project proposition.

– Description: The text body describing the
project and job requirements.
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Fig. 1. Example of job offering comparison for two different positions that are part of the the same project. While
the original description text has greater parts of overlap in boiler plate text sections, the extracted pure skill texts differ
significantly. Yellow markings indicate overlapping text parts between source and target texts. The censored parts mark
confidential information

Additionally, each project in the data set is
identified by a unique project ID. The description
is the textual main body of the job posting and
typically consists of the following elements:

– a short introduction text usually describing the
company that is looking for a freelancer,

– the tasks to be accomplished – often in form of
a bullet-point list,

– requirements to be met by the potential
candidate, for example years of experience in a
specific area, required hard and soft skills, etc.,

– general working information such as start and
end date of the project, remote or on-site
position, or amount of hours of work expected,

– a short ending text describing the
application process.

The exact elements and their order may vary
from document to document. Additionally, many
postings contain additional ”glue” or ”boilerplate”
text added by the company or recruiting agency,
which does not carry information for our task, but
can lead to false positive detections.

Besides the textual information that we get
for each job offer, the data set also contains
some meta information for each sample like date
of publishing, which we use to limit matching
candidates to a realistic time range in which we
expect duplicates of the same job to appear (e.g.,
a few weeks).

Other features like working place, duration (for
freelancers that work on specific projects this is
usually already fixed in the job posting) and starting
date are also stored for every job posting. Although
these structured features could also be indicators
for duplicates, during our pretesting we found them
to be misleading for many cases as well, since
different projects and jobs might share the same
place or dates and some features are missing for
some candidates in the database.

Even though such information might be useful
for the validation of detected duplicates, in our
work we focus on comparing the larger textual
features mentioned before such as job description
and title. In addition to the job posting data,
we had access to an (automatically created) key
word list containing the 25.000 most frequent skills
(occurring at least seven times in resumes).
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Fig. 2. Overview of the different scoring approaches in their respective matching classes and the final selected
component of each class for the total score. The components were selected by their performance on the validation set

Accompanied by the skill list we also introduced
a skill black list during the project phase with
the aim to exclude misleading or wrong entries
in the skill list. A small test set was manually
annotated with 50 duplicate-pairs identified by
Contractor. This test set exhibits the a high quality
and was used only used for final testing of the
deployed pipeline.

After the implementation of the first version of
the detection pipeline, we created a validation set
by annotating a set of 176 job posting-pairs with
corresponding predictions by the pipeline. After
curation, we ended up with 74 duplicates and 73
non-duplicates.

We refer to those 73 non-duplicates also
as fake-duplicates, since they were labeled
as duplicates by our algorithm and therefore
exhibit at least some degree of similarity to the
matching source.

29 of the predictions could not be assigned
confidently to one of the classes (duplicate,
non-duplicate) even after review from the domain
experts and were removed from the curated
dataset. This validation set was used to fine-tune
the parameters and thresholds during development
of the matching algorithms.

5 Method and Experimental Setting

5.1 Data Preprocessing

Before comparing job offerings with each other, the
whole dataset (and especially the textual contents)
are preprocessed and cleaned: we remove special
characters such as line breaks or enumeration
characters to receive a normalized version of all
texts – mainly containing letters, white spaces
and numbers. We make an exception for special
characters like ’+’ or slashes that can appear in
technical skills (e.g., C++, S/4 Hana), which we
keep in the text corpus.

Besides, similar to the approach proposed by
[12], we extract and lowercase all skill terms
from the original description texts based on the
skill list and skill black list mentioned in the
previous section together with their weights (see
Section ”Weighted Keyword Matching”). This
preprocessing is done for all further matching
methods and score computations.

5.2 Evaluation Metrics

For measuring the quality of our matching
algorithms, we resort to standard metrics like
Precision, Recall and F1-Score, which have proven
to be reliable indicators for duplicate detection
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tasks [1]. We compute them over all matched
pairs of project publication records in our data
sets. In detail, we handle a comparison result as
true positive (TP) if an actual duplicate has been
detected successfully, and as false negative (FN)
if this is not the case. Similarly, non-duplicate
pairs that have been assigned with a duplicate
label are treated as false positives (FP), while true
negatives (TN) are all pairs of correctly labeled
non-duplicates.

As proposed by previous works [7], we use
score dependent threshold values (TH) for the
decision of label assignment. Thus, if a matching
pair sample gets assigned a score above the
threshold by an algorithm, it is labeled as a
predicted duplicate, otherwise it is assigned the
non-duplicate prediction label.

We use the validation set containing both
duplicates and fake-duplicate job pairs introduced
in the previous section as a development set for
score and threshold optimization and evaluate our
final pipeline on the test set containing only known
duplicate pairs to ensure that our approach is valid
for unseen data.

5.3 Overlap-based Similarity Matching

We use a simple Text Overlap Score computation,
that computes the degree of matching text blocks
between two job publications and serves as a
baseline for all further experiments. In detail,
the Python package levenshtein2 is used to get
all larger text blocks (with minimum length of 15
characters) within the source text that also appear
in the target candidate of the current matching pair.

We define S as the source text and T to be the
target matching text. For each overlapping block i,
we define bi as its length. If there are a total of n
overlapping blocks, the total length of overlapping
text is:

B =

n∑
i=1

bi. (1)

Then, the TOS is calculated as follows:

TOS =
B

len(S)
. (2)

2maxbachmann.github.io/Levenshtein/levenshtein.html

This means, we sum up the length of the
overlapping string blocks (number of overlapping
characters) and normalize the result by dividing
through the total length of the source text to
get a percentage value that indicates the degree
of overlap.

During our first pretest experiments using the
overlap score, we found that many of the job
offering texts consist of larger blocks of boiler
plate text (such as introduction of the company
or common contact information) that are shared
among different job offerings published by the
same company or agency.

This results in high TOS values for different
job postings. On the other hand, we identified
other passages of the description text as most
relevant for distinguishing between job offers,
specifically all sections containing project-related
skill requirements.

In Figure 1 we illustrate this finding with an
example: The start and end of the matching source
text overlap in most parts with the target, while the
skill list indicates that in this case indeed different
job offerings are compared.

For this reason, besides computing a simple
overlap score over the whole job description
text, we additionally compute a Skill Overlap
Score (SOS) that only considers matching blocks
appearing in the concatenation of all listed skill
words and terms detected in the whole description
text (see bottom of Figure 1). These pure skill
texts, representing the most specific parts of a job
offering, are extracted during the preprocessing
phase by using the skill list.

Note, that for each pair matched with the
overlap scores we compute a forward and a
backward score, since the choice of source and
target texts influences the length of the resulting
matching blocks. Therefore, the final TOS is
calculated by taking the mean of the forward and
backward pass:

TOSfinal =
TOSforward + TOSbackward

2
. (3)

The final Skill Overlap Score SOS is
computed analogously.
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Table 1. Experimental results for different matching
score computations listed as Precision (P), Recall
(R) and F1-Score (F1) of correctly recognized project
duplicates on the validation set. TH indicates the
threshold chosen for the specific score, and * the scores
used to compute the Total Score (TS)

Matching Score TH P R F1

Text Overlap (TOS) 0.40 0.48 0.66 0.55

Skill Overlap (SOS) * 0.40 0.89 0.66 0.76

Text Embedding (TES) 0.50 0.52 0.81 0.63

Skill Embedding (SES) * 0.50 0.66 0.97 0.79

Title Embedding (TTES) 0.50 0.49 0.74 0.59

All Text Embedding (AES) 0.50 0.57 0.95 0.71

Weighted Skill (WSS) * 0.20 0.84 0.97 0.90

Total Score (TS) 0.35 0.89 0.99 0.94

5.4 Embedding-based Similarity Matching

In addition to the string overlap scores, we also
test similarity matching based on text embeddings
in order to capture semantic similarities (e.g.,
different wordings and phrases) not detected
by the strict string matching approach. In
detail, since our data contained both German
and English job descriptions, we used a
multilingual text encoding method as proposed
by [29] and provided by the pretrained model
distiluse-base-multilingual-cased-v13 from the
Python library sentence-transformers [21].

Embeddings for all data samples are computed
during preprocessing and cached for all further
comparison actions. During pairwise matching
of job descriptions, we compute the Embedding
Score (ES) with the commonly used cosine
similarity [23] between embedding vectors Se of
source S and Te of target candidate T as follows:

ES = cosine similarity(Se,Te) =
Se · Te

∥Se∥∥Te∥
. (4)

We then normalize the results by mapping
(eventually appearing) negative values to 0
(indicating no significant similarity between S and
T ) for ensuring comparability of scores.

3www.sbert.net/docs/pretrained models.html

Similar to the computation of the overlap
scores, we calculate embedding scores for
different parts of the original job description:

– Text Embedding Score (TES): Embedding over
the whole job description text.

– Skill Embedding Score (SES): Embedding over
the pure skill text (concatenation of all found
skill terms).

– Title Embedding Score (TTES): Embedding
over the headline of the job description (retrieved
from a separate feature in the data set).

– All Text Embedding Score (AES): Embedding
over concatenation of all texts (title, description
and skill text).

5.5 Weighted Keyword Matching

During the pretesting phase of the project,
we found that skill terms mentioned in job
descriptions are key features regarding the task
of duplicate detection. On the other hand,
since the list of relevant skills was created in
an automated manner, it also contains wrong
or misleading keywords (examples for that are
”English”, ”experience” or ”team work”) that are
not indicating real technical skill requirements for
the job.

Furthermore, very common terms like ”Java”,
that are occurring in a lot of job descriptions, are
considered as not helpful for finding duplicates.
Although a skill black list as introduced in the Data
Resources section was used, manual capturing of
all misleading terms was not feasible within the
scope of the project.

For those reasons and as proposed by other
work like [12], we introduce another matching
approach: a Weighted Skill Score (WSS). In
contrast to the previous, presented scores which
use the skill list to different degrees, the WSS
focuses on the significance of individual skill
keywords by taking into account their relevance
among the whole corpus of the data set. For
that, we calculate weights for every skill term in
the skill list during preprocessing by counting their
occurrences in all project descriptions of the data
set to approximate a value of their significance.
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The weights are re-computed on a regular
basis, witch could also be done in an online
manner while the system is active and new project
descriptions are added to the data base. This
way the system can continuously learn during its
operation time. For a skill term si from the skill list,
we define f(si) as its frequency in the entire project
database. Then, the weight of the skill term is:

w(si) =
1

f(si)
. (5)

During calculation of the weighted score for
a matching pair, we take the inverse of every
precomputed skill term’s frequency because we
assign more frequent skill words less relevancy for
duplicate detection than specific skills that appear
very seldom. For a source text S and a target
candidate T , the Weighted Skill Score WSS is then
calculated as follows:

WSS =

∑
si∈(S∩T ) w(si)∑

si∈S w(si)
. (6)

The WSS consists of the sum of weights of all
skill terms found in both job descriptions S and T
divided by the sum of weights of all skills within the
source text of the matching pair. Again, we perform
a forward and backward pass by swapping S and
T and use the mean of both for the final weighted
skill scores WSSfinal:

WSSfinal =
WSSforward +WSSbackward

2
. (7)

5.6 Combined Matching

As a result of the experiments during a first
pretesting phase, we deducted a final combined
Total Score (TS) that is calculated by averaging
over the three (best performing) individual scores
– each coming from one of three categories
mentioned before.

Figure 2 visualizes the score influences
contributing to our total score: we found that
the skill related metrics perform best during our
tests, thus the TS consists of the average of Skill
Overlap Score SOS, Skill Embedding Score SES
and Weighted Skill Score WSS.

In principal, all employed scoring methods are
language and location independent and have been
applied to German and English job postings. For
better performance of the embedding methods, it
is advised to use an appropriate embedding model
for the target language or a multilingual one.

6 Results and Discussion

6.1 Threshold Finding

To identify suitable thresholds for each score,
we start visualizing the prediction results for
the different methods on the validation set with
duplicates and (similar looking) non-duplicates.
Figure 3 shows those predictions for every scoring
method introduced in the previous section.

Note that, due to the constrained scope of the
project, we set the threshold values manually by
human supervision to achieve a good prediction
performance for each scoring method. However,
we use the same values for every method group
to preserve comparability. The thresholds are
listed in Table 1 together with the according score
performance when applying these threshold values
for prediction on the validation set.

6.2 Experimental Results

Comparing the performance of individual scores,
Table 1 and Figure 3 indicate that using the text
overlap (TOS) and embedding score (TES) over
the whole description texts is not sufficient for
discriminating between real and fake duplicates.
This is also due to the already mentioned existence
of overlapping boilerplate text: some texts originate
from the same company or even project, but indeed
advertise different jobs. When concentrating on the
skill text containing only relevant technical terms
specific for a given job offer by using the SOS and
SES metrics, performance increases significantly.

In contrast, relying on the individual result of
the title score TTES is not helpful. Although in
the beginning we expected the headline of a job
offering to be a meaningful indicator for duplicate
references, we realized that these texts without
any further context are also highly misleading,
since a lot of independent companies and projects
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use the same wording and technical terms (e.g.,
”SAP developer wanted”) when publishing job
postings. Even combining the title and skill text
with the original job description text in the all
text embedding approach (AES) cannot deliver
good performance.

Overall, one of our key findings was that –
although they achieve the highest prediction scores
for real duplicate pairs – all of our embedding
approaches in general seem not to be capable of
separating fake duplicates from real ones, as the
corresponding plots in Figure 3 underline.

On the other hand, only using the weighted
skill score (WSS) without combining with any other
measure already performs well. The fact that
we attribute weights to significant skill features
allows reliable detection of fake duplicates, since
in contrast to the other metrics the influence of
overlapping (but maybe misleading) boilerplate text
on the prediction is reduced.

Note that a requirement for the productive
usage of this score computation is the continuous
update of the underlying skill weights to capture the
relevance of new terms and wordings that might
arise over time.

With combining the most promising individual
scores of each group (namely the skill based
scores) to form the total score TS, we can improve
the performance on the validation set to an F1
score of 0.94, meaning that most of the comparison
pairs could be classified correctly into duplicates
and non-duplicates.

We believe that assembling the our scoring
method in this way enables us to compensate
for individual score weaknesses and to receive
more reliable and stable prediction results in the
combined score, as shown before [8]. During the
final phase of the project, we applied this optimized
setting to the test set consisting of 50 samples
which are exclusively real duplicate pairs.

Since there are no non-duplicates in this
dataset, the final test before productive deployment
ensures that the constructed total score can
identify the actual duplicates well by assigning
them a relatively high score. Although there was
a clearly visible scatter among predictions with a
TS ranging from 0.24 to 0.93, we could identify
some indicators of similarity for every test sample,

indicating the potential for further fine-tuning of the
TS. For a threshold of 0.2, all of the real duplicates
would have been detected. After feedback from
the project partner, however, thresholds were not
set to the optimal operating point for the (rather
small) test set, but to a more robust value (see
next section) for the final productive deployment.
This threshold choice implies more importance to
specificity (i.e. low false alarm rate) at the cost
of sensitivity.

7 Productive Deployment

After the experimental evaluation, the duplicate
detection framework in deployed in production
with periodic checks for recently published and
collected job descriptions. In terms of scalability,
once the initial vector database for the document
embeddings is generated, the computational
cost and time scales linearly in the number of
processed documents.

Since only a fixed time frame is compared to a
new job posting, the number of comparisons can
in fact vary but does not scale with the size of the
dataset. For the deployed system, the thresholds
for the score computations were adapted and an
additional criteria introduced: the TS threshold is
set to 0.6 and each individual scoring method must
achieve a minimum value of 0.1 in order to classify
a pair as duplicates.

With this setting, 58.860 published job
descriptions were analyzed and matched during
a first productive phase of six months, of which
33.865 were found to be no duplicates and 24.995
to be duplicates of other projects. In detail, for
every sample predicted as a duplicate we identified
about 2.5 duplicate job offerings on average.

This implies that the 24.995 duplicate
predictions contain about 10.000 unique job
postings, leading to a total sum of 43.705 postings
identified as unique within this period of time.
Overall, the positive feedback given by the end
users of the tool after several months of productive
usage confirm that our solution is working as
intended and validates our approach.
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Fig. 3. Score predictions for the different methods on the test set with 74 duplicates and 73 non-duplicates. The
thresholds are set manually for each score to gain a good distinction between positive and negative duplicate predictions
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8 Limitations

As stated by [6], choosing thresholds on a small
test set of samples might not scale appropriately
when the data set gets larger. Therefore, future
experiments on larger (labeled) test sets are
necessary for a more generalizable threshold
estimation. This was however not possible in the
scope of this work, due to the nature of requiring
high-quality labeled data, which had to be collected
manually by recruiting experts during the data
collection phase of the project.

An additional source of improvement is a
more sophisticated determination of the weights
assigned to the individual metrics that form the
Total Score (TS). The assumption, that individual
scoring approaches carry more information than
others to solve a task in a specific domain, is
reasonable and was also shown in [8].

9 Conclusion and Future Work

Our work showed that for duplicate detection in
real world scenarios, like detecting clones of job
descriptions, the integration of domain specific
expert knowledge is crucial. While applying
standard matching algorithms like string similarity
and embedding comparison only leads to limited
performance, we pointed out that combining these
approaches with context specific additions – in
our case the emphasis of significant skill terms
– achieves satisfactory results (F1-score of 0.94)
regarding capabilities for productive deployment.

For future work, we plan to do a larger
evaluation on bigger (human-curated) test sets to
identify possible weak points of our approach that
could not be addressed within the limited scope of
this first project. Furthermore, as large language
models (LLMs) become more advanced even in
not explicitly shown domains, they can be used
as a baseline classifier in zero- or many-shot
evaluations. This allows for a more comprehensive
evaluation, with the LLM serving as a proxy for
a human evaluator. Additionally, available LLMs
can be fine-tuned on the recruiting domain and
used as an additional scoring method, either
in parallel or incorporated as on component in
the Total Score (TS).

However, this raises the challenge of keeping
the tool computationally efficient, as SOTA LLMs
are quite expensive to operate [22]. Incorporating
feedback mechanisms for users is currently done
in an offline fashion by utilizing their feedback
on classification performance to re-calibrate the
thresholds over time. This could also be done
automatically at predefined intervals or by using
distribution shift [19] or performance monitoring
approaches [11].
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