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Abstract. In multiple choice questions, an element
inherent to this type of evaluation arises that, due
to the same evaluation format, that is by chance, a
percentage of the correct answers do not reflect the
mastery of the question content being evaluated. For this
reason, in many cases, a correction formula is applied
that penalizes incorrect answers, leaving unanswered
questions without penalty. Of course, it is necessary
to mention this to the applicant prior to the start of
the test. The penalty in the case of questions with
k alternatives where only one is correct and all the
others are incorrect, depends on the number of options
and in most applications consists of subtracting a value
of 1/(k − 1) for each incorrect answer. This formula
assumes that the student knows the correct answer,
or that they ignore the question and answer randomly.
This is difficult to achieve in practice, since the student
usually has partial knowledge of the question theme,
helping them to eliminate one or more alternatives. In
this paper, an analysis is made of the value of the penalty
in cases where partial knowledge on the part of the
applicant is considered, which allows them to discard
one or more distracters.

Keywords. Partial knowledge, penalty formula,
distracters, testb, multiple choice.

1 Introduction

In a multiple-choice exam, a student may
frequently answer a question correctly by chance
or if they have partial knowledge and can eliminate
some incorrect answers and then choose correctly
at random. Intuitively we can see that the greater
the number of possible answers, the more difficult
it is to choose correctly at random, however,
for a greater number of answers, the difficulty
of finding a third or fourth distracter becomes
extremely difficult, as it is not easy for the
examiner to write questions with four or five equally
plausible answers.

This can be seen in many questions where
there are distracters that nobody or almost nobody
chooses, regardless of how much the student
knows [5, 8, 22, 23].

By reducing the number of alternatives, the
least acceptable ones are eliminated, building
more plausible and homogeneous alternatives in
content, thereby reducing the clues that make
it easier to respond correctly with only partial
knowledge of the problem.

Instead, increasing the number of questions to
cover more content and increase reliability may be
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more beneficial [20, 9, 24]. Most texts routinely
recommend using four or five answers, although
four is possibly the most frequent number, despite
the difficulty of constructing this type of test.

The probability of choosing correctly at random
is higher when there are only three options, but
frequently when there are more than three possible
answers, many of them are not admissible.

Many researchers tend to favor the three
alternative approach, since four questions with
three alternatives seem preferable to three
questions with four alternatives [14, 17, 19, 21].

There are several studies that confirm that three
answers are sufficient and perhaps better due
to the quality of the alternatives, thus reducing
flaws in homogeneity and plausibility, since a
greater number of alternatives increases the risk of
constructing irrelevant distracters and at the same
time increasing the heterogeneity of the content.

The analysis of the distracters is carried out by
means of indicators that compare the skill level
of the individual with the choice of alternatives
[12, 1, 16]. It is clear that any method of
educational evaluation must provide the most
accurate measurement possible.

In a multiple-choice exam, an intrinsic element
of this evaluation format is the possibility of
answering at random. Given that in this type
of question, there are often deficiencies in its
construction or that the respondent only has partial
knowledge, it can be inferred that the respondent
can deduce the correct answer or discard one or
more options to later choose at random, even with
a low level of knowledge.

This means that chance is a source of
measurement error, so it should be taken into
account that a percentage of the evaluation does
not reflect the progress and results of their
learning. In order to obtain a rating that is less
affected by chance, in most cases a correction
formula is applied.

In an attempt to dissuade students from
guessing their responses, correction formulas
have been implemented that penalize questions
answered incorrectly. The most commonly used in
questions where there are k possible alternatives

of which only one is correct, is that which penalizes
each wrongly answered question with:

m =
1

(k − 1)
. (1)

In the event that the student chooses at random
between three alternatives of which only one
is correct, each wrongly answered question is
penalized by 0.5.

The problem with this formula is that the
following two assumptions are implicitly made, with
the second being hard to fulfill:

– The student knows the answer and
answers correctly.

– The student does not know and randomly
chooses one of the alternatives (where
all possible answers are equally attractive
to the student).

In other words, the assumption that justifies the
application of this formula is that the student knows
the correct answer with confidence, or the student
totally ignores the question and answers randomly.

It is worth mentioning that there are other
corrective formulas also developed to penalize
wrong answers, but ultimately they are based
on the assumption that wrong answers are
unsuccessful attempts to get the answer right
without actually knowing the correct answer, and
so their purpose is to dissuade the student from
responding when they are not sure of the right
answer [15, 18, 25].

The choice of an option can also be made
for reasons unrelated to skill, either by pure
chance due to ignorance of what to answer
or due to incorrect reasoning, or because the
option seems attractive due to the student?s
incomplete knowledge of the subject. Studies
show that when the correct answer is ignored,
the answers are not chosen randomly as the
correcting formula assumes.

A student may at least know that some
answer is incorrect and randomly choose among
the rest, or perceive that one answer is more
probably correct than others [2, 3, 10]. In
order for the candidate to refrain from using
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chance, they are encouraged to leave the
question unanswered where they have doubt,
since unanswered questions are not penalized.

On the other hand, incorrectly answered
questions are penalized, and accordingly it is
preferable not to answer when they do not know
an answer. However, in many cases this warning
is ignored, especially when the student has partial
knowledge and accepts the risk, and answers
despite being warned [6, 13].

There are also individuals who do not
guess and prefer not to answer even though
wrong answers are not penalized, so choosing
correctly at random does not have the same
advantages for everyone.

Likewise, it is not unknown that for some
objective tests, although they may be well
constructed, to stimulate poor consideration in
the student, due in part to the opportunity to
answer using chance in case of not knowing
or having partial knowledge of the problem,
despite a warning that a correction formula is
being used [15, 6, 25].

With the standard method of penalty
calculation, if the student does not know the
answer or has partial knowledge of the problem,
it is likely that they will answer the question,
despite knowing that a penalty will be used if they
answer incorrectly. This is probably because the
correction formula penalty is not the correct value
or is underestimated [6].

The standard penalty formula does not take
into account the partial knowledge of the student,
causing the penalty value to be below its optimal
value, which means that the decision to omit an
item may reflect discrimination in the students that
ends up benefiting those less risk averse and
penalizes risk avoiders [11].

This discrimination is auxiliary to the reduction
of the measurement error, which is why a greater
penalty is advocated. It has been shown that
women often act in a more risk averse manner,
compared to men [11]. In other words, women are
more likely to leave an answer blank when they
are not sure, which puts them at a disadvantage
compared to men.

Some authors [11, 7, 4]) establish that an
effective penalty that discourages guessing exceed

the standard penalty by a considerable amount,
and thus increase the reliability and validity of
the test. Simulations have also been carried out
[11] where it is shown that the optimal penalty is
relatively high.

None of these methods meet the requirements
of a perfect penalty system for assessing
knowledge in multiple choice tests. In order to
study a more realistic penalty value, we consider
the case where partial knowledge of the supporter
is considered, and propose a penalty value that
differs from the traditional value as mentioned in
the aforementioned studies.

To motivate a deeper study in the student
taking a multiple choice exam, it is necessary that
the student is aware of the importance of having
precise knowledge, and that imprecise knowledge
is not useful in their professional training [2] and
Sabers 1988. For this reason, it is necessary to
develop research on the true value of the penalty
so that it reduces the likelihood of the student
answering without having precise knowledge.

2 Main Results

In this work, an investigation is made on the
penalty value in multiple choice exam questions,
taking into account the partial knowledge of the
student. It can be used where they do not know
the answer and respond randomly, or if they have
partial knowledge that helps them rule out some
options and then proceed to answer randomly. The
problem that we will address consists of multiple
choice questions with three alternatives, where one
of them is correct and the other two incorrect.

The omitted questions are not penalized,
instead the wrongly answered questions are
penalized. On these assumptions, we are
interested in measuring in a certain way the actual
knowledge of the student. Considering the above
scenarios, we define the following events shown in
Table 1. The events A1, A2 and A3 are disjoint
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Table 1. Possible events when answering a question

B The question is
answered correctly. p Probability of the question

being answered correctly.

A1
The correct answer is not known and the question
is answered at random. p1

Probability of the correct answer not being known
and the question answered at random.

A2
An option is discarded and then the question is
answered at random. p2

Probability of an option being discarded and the
question then being answered at random.

A3 The correct answer is known. p3 Probability of the correct answer being known.

Fig. 1. Points Q = (x, y) with coordinates
P = (p1, p2, p3) where p1 + p2 + p3 = 1

and the following condition holds: p1 + p2 + p3 = 1.
Applying the total probability formula, we get:

P (B) = P (A1)P

(
B

A1

)
+ P (A2)P

(
B

A2

)
+ P (A3)P

(
B

A3

)
, (2)

P (B) = p1

(
1

3

)
+ p2

(
1

2

)
+ p3 · 1. (3)

We now consider the random variable X
defined as:

X =

{
1 if the question is answered correctly,

−m if the question is answered incorrectly, (4)

where the value of m is the penalty in case of the
student having answered the question incorrectly,
when the following condition is met:

E(X) = p3. (5)

That is, we expect that on average the student
answers correctly. Calculating the expected value

we have:

E(X) = 1

[
p1

(
1

3

)
+ p2

(
1

2

)
+ p3 · 1

]
−

m

[
1−

(
p1

(
1

3

)
+ p2

(
1

2

)
+ p3 · 1

)]
.

(6)

Equating E(X) to the value p3, which is the
probability of knowing the correct answer, we
obtain the equality:

2p1 + 3p2
6

+ p3 +m

[
2p1 + 3p2 + 6p3 − 6

6

]
= p3. (7)

Solving the value of m we get:

m = − 2p1 + 3p2
p1 + 3p2 + 6p3 − 6

. (8)

In the previous equality m remains undefined if
p3 = 1, since from the condition p1 + p2 + p3 = 1 it
follows that p1 = p2 = 0 and thus the denominator
would be equal to zero. However, for the value
p3 = 1, we can assign the value of m = 0, since
the student answers the question correctly and
would not have any penalty. The formula can be
defined as follows:

m(p1, p2, p3) =


− 2p1 + 3p2
2p1 + 3p2 + 6p3 − 6

if p3 ̸= 1,

0 if p3 = 1.

(9)

Clearly, the penalty depends on the values p1,
p2 and p3, although we really only need two values
since the third is determined by the condition
p1 + p2 + p3 = 1.

The traditional formula (1) is applied if the
conditions “the student knows and answers
correctly” or “the student does not know and
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Fig. 2. Penalty function values m(x, y)

chooses one of the three alternatives at random”
are met, these conditions are verified in formula
(2) when p2 = 0, and in such a case we have
(1 − p3) = p1, and the value of the penalty is
m = 0.5, which coincides with the
value of formula (1).

We are interested in the different values that m
can take for arbitrary values of p1, p2 and p3 with
the condition p1 + p2 + p3 = 1.

However, finding or knowing the values of at
least two of the variables p1, p2 and p3, is too
difficult because they depend in particular on the
degree of knowledge of each student, which makes
it almost impossible to try to find them in a group
of students. One of the statistical techniques to
solve this type of problem is to find an average
value for m.

In this case the average value would be the
center of mass which, once found, gives us a value
of m which we can use in a general way for any
values of p1, p2 and p3.

Calculating the center of mass, whose value
is defined by triple integrals of function (2) over
the points (p1, p2, p3) that satisfy the condition
p1 + p2 + p3 = 1, does not seem to be a simple
calculation which forces us to implement a method

that reduces the dimensionality and to be able to
know what the center of mass is.

For this purpose, we use a transformation that
reduces the dimensionality. We only need to
calculate double integrals, and that is achieved
taking into account the condition p1 + p2 + p3 = 1.

To reduce the dimensionality of the problem,
we take into account that all non-negative real
numbers p1, p2 and p3 where p1 + p2 + p3 = 1,
can be represented inside an equilateral triangle T
with sides 2/

√
3.

Specifically, each point Q = (x, y) ∈ T is
identified with the point P = (p1, p2, p3) where
each pi is the perpendicular distance from the point
Q = (x, y) to one of the lines Li that are part of the
triangle T , i = 1, 2, 3, see Figure (1).

To characterize the points of the triangle T we
need the equations of the lines L2 and L3 of T , as
shown in Figure (1):

– Equation of the line L2: y = 2−
√
3x.

– Equation of the line L3: y =
√
3x.

The characterization of the triangle T has
the expression:

T =



(x, y)(
0 ≤ x ≤ 1√

3
and 0 ≤ y ≤

√
3x

)
∨(

1√
3
≤ x ≤ 2√

3
and 0 ≤ y ≤ 2−

√
3x

)


. (10)

If Q = (x, y) is a point in the XY plane inside
triangle T . The distance from point Q to line L2 is:

p2 = d(Q,L2) = 1− 1

2

(
y +

√
3x

)
. (11)

The distance from point Q to line L3 is:

p3 = d(Q, L3) =
1

2

(√
3x− y

)
. (12)

Taking into account the two previous equalities,
a point Q = (x, y) inside the triangle T
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corresponds to the point P = (p1, p2, p3) whose
values are:

p1 y, (13)=

p2 1− 1

2
(y +

√
3x), (14)=

p3
1

2
(
√
3x− y). (15)=

The correspondence of any point Q = (x, y)
inside the triangle T with the point P = (p1, p2, p3)
that satisfies (3) and moreover p1 + p2 + p3 = 1 is
a one to one correspondence. Indeed, it is clear
that if Q = (x, y) is a point inside the triangle T on
the XY plane, then the points p1, p2 and p3 of (3)
satisfy p1 + p2 + p3 = 1.

Conversely, if we have three positive points
such that p1+p2+p3 = 1, then there exist numbers
x, y such that the equalities (3) are fulfilled. Taking:

y = p1 and x =
1− p2 + p3√

3
. (16)

Substituting the values of (3) in the formula (2)
we obtain:

m(x, y) = −
2y + 3

(
1− 1

2
(y +

√
3x)

)
2y + 3

(
1− 1

2
(y +

√
3x)

)
+ 6

(
1

2
(
√
3x− y)

)
− 6

. (17)

The condition p3 ̸= 1 and the equalities (3) imply
that x ̸= 2/

√
3 and y ̸= 0. Then making some

simplifications we get:

m(x, y) =
6− 3

√
3x+ y

6− 3
√
3x+ 5y

if x ̸= 2√
3

and y ̸= 0. (18)

Figure (2) shows the penalty function m(x, y)
defined on the XYZ plane. With the technique
used we have been able to reduce the dimension
of the problem which has allowed us to visualize
the form of the penalty function.

Examining the shape of the graph we realize
that the minimum penalty value is m = 0.5,
which is in agreement with the statement that
the traditional corrective formula (1) gives us the
minimum penalty.

We can also realize that the maximum penalty
is one, and that it takes this value, among other

cases, when the student does not know the correct
answer, answers randomly or answers wrong, and
accordingly a point is subtracted.

The center of mass is defined as the point on
the XY plane whose coordinates Cmass = (x̄, ȳ)
are defined as:

Cmass = (x̄, ȳ) =

(
My

M(x, y)
,

Mx

M(x, y)

)
, (19)

where:

M(x, y) =

∫∫
T

m(x, y) dA, (20)

Mx =

∫∫
T

y m(x, y) dA, (21)

My =

∫∫
T

x m(x, y) dA. (22)

For the calculation of M(x, y), taking into
account the conditions of formula (4), we obtain:

M(x, y) =

∫∫
T

m(x, y) dA =

∫ 1/
√
3

0

∫ √
3x

0

6− 3
√
3x+ y

6− 3
√
3x+ 5y

dy dx +

lim
ε→0

∫ (2/
√
3)−ε

1/
√
3

∫ 2−
√
3x

ε

6− 3
√
3x+ y

6− 3
√
3x+ 5y

dy dx =

0.22556695 + 0.19364271 = 0.41920966.

(23)

For the calculation of Mx we have:

M(x, y) =

∫∫
T

m(x, y) dA =

∫ 1/
√
3

0

∫ √
3x

0

y
6− 3

√
3x+ y

6− 3
√
3x+ 5y

dy dx+

lim
ε→0

∫ (2/
√
3)−ε

1/
√
3

∫ 2−
√
3x

ε

y
6− 3

√
3x+ y

6− 3
√
3x+ 5y

dy dx =

0.06657315 + 0.05725798 = 0.12383113.

(24)
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For the calculation of My we have:

M(x, y) =

∫∫
T

m(x, y) dA =

∫ 1/
√
3

0

∫ √
3x

0

x
6− 3

√
3x+ y

6− 3
√
3x+ 5y

dy dx+

lim
ε→0

∫ (2/
√
3)−ε

1/
√
3

∫ 2−
√
3x

ε

x
6− 3

√
3x+ y

6− 3
√
3x+ 5y

dy dx =

0.08378158 + 0.14906623 = 0.23284781.

(25)

Using the values above, the coordinates of the
center of mass Cmass = (x̄, ȳ) are:

x̄
My

M(x, y)

0.23284781

0.41920966
0.55544476, (26)= = =

ȳ
Mx

M(x, y)

0.12383113

0.41920966
0.29539188. (27)= = =

Therefore:

Cmass = (x̄, ȳ) = (0.55544476, 0.29539188). (28)

The average penalty is:

m(x̄, ȳ) =
6− 3

√
3x̄+ ȳ

6− 3
√
3x̄+ 5ȳ

= 0.74262183. (29)

Evidently, if we translate the problem in terms
of p1, p2 and p3 we get the same penalty as seen
below. The point (x̄, ȳ), in terms of p1, p2 and p3
see (4), corresponds to the point:(

1− p2 + p3√
3

, p1

)
=

(x = 0.48102927, y = 0.29539188).

(30)

This in turn corresponds to the values:

p1 y 0.29539188, (31)= =

p2 1− 1

2
(y +

√
3x) 0.37127479, (32)= =

p3
1

2
(
√
3x− y) 0.33333333. (33)= =

Substituting these values into formula (2)
we obtain:

m = − 2p1 + 3p2
2p1 + 3p2 + 6p3 − 6

= 0.74262183. (34)

Which effectively gives us the same value as
before. Figure (2) shows that the penalty applied
using the traditional formula (1) is the minimum
penalty value m = 0.5, and this fact can influence
the student’s decision to think that they gain more
by answering without fully knowing the answer than
by leaving the question unanswered.

However, the average penalty generated by
formula (2) is much higher and can persuade the
student not to answer if they do not have precise
knowledge of the question and can encourage the
student to study more efficiently in this type of test.

There are studies where the conclusion is
reached that the penalty in the traditional corrective
formula (1) is small and that it should be greater
[6]. In this study we confirm two facts that have
been perceived in previous studies, one is that the
traditional penalty is effectively the minimum and
secondly, that this penalty should be greater taking
into account the partial knowledge of the student.

3 Conclusions

The penalty found in this investigation, which takes
into account a partial knowledge of the student,
validates in a certain way the investigations of
authors who affirm that a method to discourage
guessing in multiple choice tests, and thereby
increasing their reliability and validity, is to set the
penalty for incorrect responses high, relative to the
traditional one.

Authenticity of answers and validity of scores
are hallmarks of a well-constructed objective
test. The importance of using a good corrective
formula to minimize the guessing problem involves
ensuring the validity of the inferences about
the learning and the objective result obtained
by the student.

The approach of the problem shown in this
work, for objective multiple-choice tests, confirms
in a certain way that the traditional penalty is
underestimated and that a higher one would help
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dissuade students from taking the risk of answering
without having precise knowledge, which would
that benefits students who avoid risk.
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